water-logo

Journal Browser

Journal Browser

Theory and Technology of Mine Water Disaster Prevention and Resource Utilization

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "New Sensors, New Technologies and Machine Learning in Water Sciences".

Deadline for manuscript submissions: closed (25 August 2024) | Viewed by 11032

Special Issue Editors


E-Mail Website
Guest Editor
College of Energy Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
Interests: water seepage; multi-field coupling; dynamic response; fracture characteristics; water bearing fracture mechanics; energy dissipation; disaster mechanism of water-rich coal and rock; disaster prevention
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
Interests: mining; mine disaster monitoring; seismology; rock mechanics; machine learning

E-Mail Website
Guest Editor
School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
Interests: rock dynamics; water inrush mechanism; fluid–structure interaction; slip mecha-nism of water-bearing faults

Special Issue Information

Dear Colleagues,

The complex hydrogeological conditions in deep mining areas, combined with large-scale and high-intensity mining activities, have triggered a series of mine water disasters and significant resource waste issues. The prevention of mine water hazards and the utilization of water resources are crucial for the safe operation of mines and the efficient utilization of mine water resources. Studying the occurrence mechanism of surrounding coal water disasters, advanced detection and disaster prevention can provide a theoretical basis and effective solutions for mine water treatment.

By studying fundamental mechanics theories of water-bearing coal rocks, technologies for the resource utilization of mine water, mechanisms of surrounding rock water disasters, and advanced technologies for the early warning and prevention of mine water disasters, an accurate prediction of and rapid response to mine water hazards can be achieved. This can minimize the losses caused by mine water disasters and effectively utilize water resources in mines. Therefore, this Special Issue aims to discuss the latest advances in the theory and technology of mine water hazard prevention and resource utilization.

All manuscripts related to the proposed topic are welcome. The Special Issue may include (without being limited to) the following themes:

(1) Fundamental mechanics of water-bearing coal and rock;

(2) Mechanism of surrounding rock water disaster;

(3) Theory and technology of mine water hazard detection;

(4) Theory and technology of monitoring, forewarning, prevention, and control of mine water disasters;

(5) Theory and technology of coordinated exploitation of coal–water dual resources;

(6) Resource utilization of mine water;

(7) Other related technology for mine water disaster prevention and resource utilization.

Given your competence in this area, we invite you to contribute a paper on the aforementioned subjects or others that may be relevant.

Dr. Helong Gu
Dr. Xueyi Shang
Dr. Huatao Zhao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mine water disasters
  • utilization of water resources
  • mine water treatment
  • fundamental mechanics theory of water-bearing coal rocks
  • surrounding rock water disasters
  • warning and prevention of mine water disasters

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

7 pages, 172 KiB  
Editorial
Theory and Technology for the Prevention of Mine Water Disasters
by Helong Gu, Xueyi Shang and Huatao Zhao
Water 2024, 16(20), 2952; https://doi.org/10.3390/w16202952 - 17 Oct 2024
Viewed by 367
Abstract
The complex hydrogeological conditions in deep mining areas, coupled with large-scale and high-intensity mining activities, have triggered a series of mine water disasters and significant resource waste issues [...] Full article

Research

Jump to: Editorial

18 pages, 6150 KiB  
Article
Characteristics of Deformation and Damage and Acoustic Properties of Sandstone in Circular Tunnel Morphology under Varying Inundation Depths
by Gang Liu, Shengxuan Wang, Dongwei Wang, Zhitao Yang and Yonglong Zan
Water 2024, 16(20), 2938; https://doi.org/10.3390/w16202938 - 15 Oct 2024
Viewed by 490
Abstract
When water damage occurs in a mine, variations in the immersion levels of tunnels at different burial depths can be observed. There is a significant relationship between the stability of the surrounding rock and the depth of immersion. Therefore, studying the deformation and [...] Read more.
When water damage occurs in a mine, variations in the immersion levels of tunnels at different burial depths can be observed. There is a significant relationship between the stability of the surrounding rock and the depth of immersion. Therefore, studying the deformation and damage characteristics of sandstone with circular holes at varying immersion depths, along with their acoustic properties, plays a crucial role in maintaining the stability of water-rich roadways. The TAW-2000 press and static strain system were utilized to investigate the mechanical properties, crack evolution, and deformation field distribution of sandstone with circular holes at varying immersion depths. Additionally, this study analyzed the impact of immersion depth on the characteristic parameters of acoustic emission. The results indicate that immersion depth is negatively correlated with the compressive strength and modulus of elasticity of sandstone; as immersion depth increases, the duration of the compression and yield phases of the rock samples also increases, while the duration of the elastic phase remains relatively unaffected. Furthermore, greater immersion depths correspond to a decrease in the total number of cracks, although the proportion of tensile cracks increases, making the formation of secondary cracks less likely. The frequency of acoustic emission events (transient elastic waves generated by the formation, extension, or closure of tiny cracks within the rock) shows a closely correlated dynamic with the stress–time curve of the rock sample. The acoustic emission ringing counts generated by rock samples under submerged water conditions tend to stabilize with a slight increase before signs of rupture appear. Additionally, the cumulative total energy of acoustic emissions from the rock samples decreases as the water level rises. These research findings provide significant reference value for addressing issues related to water immersion and the extent of water saturation in roadways within rock engineering. Full article
Show Figures

Figure 1

24 pages, 1682 KiB  
Article
Coal-Mine Water-Hazard Risk Evaluation Based on the Combination of Extension Theory, Game Theory, and Dempster–Shafer Evidence Theory
by Xing Xu, Xingzhi Wang and Guangzhong Sun
Water 2024, 16(20), 2881; https://doi.org/10.3390/w16202881 - 10 Oct 2024
Viewed by 511
Abstract
Due to the complex hydrogeological conditions and water hazards in coal mines, there are multiple indexes, complexities, incompatibilities, and uncertainty issues in the risk evaluation process of coal-mine water hazards. To accurately evaluate the risk of coal-mine water hazards, a comprehensive evaluation method [...] Read more.
Due to the complex hydrogeological conditions and water hazards in coal mines, there are multiple indexes, complexities, incompatibilities, and uncertainty issues in the risk evaluation process of coal-mine water hazards. To accurately evaluate the risk of coal-mine water hazards, a comprehensive evaluation method based on extension theory, game theory, and Dempster–Shafer (DS) evidence theory is proposed. Firstly, a hierarchical water-hazard risk-evaluation index system is established, and then matter-element theory in extension theory is used to establish a matter-element model for coal-mine water-hazard risk. The membership relationship between various evaluation indexes and risk grades of coal-mine water-hazard risk is quantified using correlation functions of extension set theory, and the quantitative results are normalized to obtain basic belief assignments (BBAs) of risk grades for each index. Then, the subjective weights of evaluation indexes are calculated using the order relation analysis (G1) method, and the objective weights of evaluation indexes are calculated using the entropy weight (EW) method. The improved combination weighting method of game theory (ICWMGT) is introduced to determine the combination weight of each evaluation index, which is used to correct the BBAs of risk grades for each index. Finally, the fusion of DS evidence theory based on matrix analysis is used to fuse BBAs, and the rating with the highest belief fusion result is taken as the final evaluation result. The evaluation model was applied to the water-hazard risk evaluation of Sangbei Coal Mine, the evaluation result was of II grade water-hazard risk, and it was in line with the actual engineering situation. The evaluation result was compared with the evaluation results of three methods, namely the expert scoring method, the fuzzy comprehensive evaluation method, and the extension method. The scientificity and reliability of the method adopted in this paper were verified through this method. At the same time, based on the evaluation results, in-depth data mining was conducted on the risk indexes of coal-mine water hazards, and it was mainly found that 11 secondary indexes are the focus of coal-mine water-hazard risk prevention and control, among which seven indexes are the primary starting point for coal-mine water-hazard risk prevention and control. The groundwater index in particular has the most prominent impact. These results can provide a theoretical basis and scientific guidance for the specific water-hazard prevention and control work of coal mines. Full article
Show Figures

Figure 1

13 pages, 5400 KiB  
Article
A Geophysical-Drilling-Hydrochemical Coupled Method for Accurate Detection of Concealed Water-Conducting Faults in Coal Mines
by Tuo Lu, Haodong Liu, Hailiang Jia and Bo Wang
Water 2024, 16(18), 2619; https://doi.org/10.3390/w16182619 - 15 Sep 2024
Viewed by 523
Abstract
The detection of concealed water-conducting structures is essential for preventing water inrush disasters. Aiming to mitigate the limitations inherent in using any single technique, a comprehensive approach that combines integrated mining geophysical exploration, hydrogeological drilling, and hydrochemical exploration (GDH) is proposed for the [...] Read more.
The detection of concealed water-conducting structures is essential for preventing water inrush disasters. Aiming to mitigate the limitations inherent in using any single technique, a comprehensive approach that combines integrated mining geophysical exploration, hydrogeological drilling, and hydrochemical exploration (GDH) is proposed for the exploration of concealed water-conducting structures. By conducting a thorough analysis of the background geological data obtained through surface exploration, potentially concealed water-conducting structures can be predicted. Then, a combination of the seismic reflection method (SRM) and mine transient electromagnetic method (MTEM) can be used to detect the location and water-bearing properties of the target structures. Afterwards, the target drilling areas are defined by the anomalies detected by the integrated mine geophysical technique, and the drilling method can directly acquire the hydrogeological information of water-conducting structures and verify the results of the geophysical methods. By means of hydrochemical analysis, inrush water sources and their runoff conditions can be identified, and the spatial relationship betweenof the source aquifers and mining space can be determined; hence, the properties, scale, and configuration of the water-conducting structures can finally be evaluated. Employing a water-conducting fault in a mine as a case study, we verified that the integrated method overcomes the limitations and possible biases of each method, providing a multiple-method solution that can accurately detect concealed water-conducting structures to help prevent water inrush disasters. Full article
Show Figures

Figure 1

22 pages, 9330 KiB  
Article
Monitoring and Evaluation of Debris Flow Disaster in the Loess Plateau Area of China: A Case Study
by Baofeng Wan, Ning An and Gexue Bai
Water 2024, 16(17), 2539; https://doi.org/10.3390/w16172539 - 8 Sep 2024
Viewed by 2563
Abstract
The Loess Plateau area, with complex geomorphological features and geological structure, is highly prone to geologic disasters such as landslides and debris flow, which cause great losses. To investigate the initiation mechanism of landslide and debris flow disasters and their spreading patterns, historical [...] Read more.
The Loess Plateau area, with complex geomorphological features and geological structure, is highly prone to geologic disasters such as landslides and debris flow, which cause great losses. To investigate the initiation mechanism of landslide and debris flow disasters and their spreading patterns, historical satellite images in the Laolang gully were collected and digitized to generate three-dimensional topographic and geomorphological maps. Typical landslides were selected for landslide thickness measurement using a standard penetrometer and high-density electrical method. Numerical models were established to simulate the occurrence and development of landslides under different working conditions and to evaluate the spreading range based on the propagation algorithm and friction law. The results show that the 10 m resolution DEM data are well matched with the potential hazard events observed in the field site. The smaller the critical slope threshold, the greater the extent and distance of landslide spreading. The larger the angle of arrival, the greater the energy loss, and therefore the smaller the landslide movement distance. The results can provide scientific theoretical guidance for the prevention and control of rainfall-induced landslide and debris flow disasters in the Loess Plateau area. Full article
Show Figures

Figure 1

15 pages, 6690 KiB  
Article
Intrusion Event Classification of a Drainage Tunnel Based on Principal Component Analysis and Neural Networking
by Peng Yuan, Weihao Zhang, Xueyi Shang and Yuanyuan Pu
Water 2024, 16(17), 2409; https://doi.org/10.3390/w16172409 - 27 Aug 2024
Viewed by 568
Abstract
Drainage tunnel stability is crucial for engineering project safety (e.g., mine engineering and dams), and rockfall events and water release are key indicators of drainage tunnel stability. To address this, we developed a monitoring system to simulate drainage tunnel intrusions based on distributed [...] Read more.
Drainage tunnel stability is crucial for engineering project safety (e.g., mine engineering and dams), and rockfall events and water release are key indicators of drainage tunnel stability. To address this, we developed a monitoring system to simulate drainage tunnel intrusions based on distributed acoustic sensing (DAS), and we obtained typical characteristics of events like rockfall events and water release. Given the multitude of DAS signal feature parameters and challenges, such as high-dimensional features impacting the classification accuracy of machine learning, we proposed an identification method for drainage tunnel intrusion events using principal component analysis (PCA) and neural networks. PCA reveals that amplitude-related parameters—amplitude, mean amplitude, and energy—significantly contribute to DAS signal classification, reducing the feature parameter dimensions by 54.8%. The accuracy of intrusion event classification improves with PCA-processed data compared to unprocessed data, with overall accuracy rates of 79.1% for rockfall events and 72.7% for water release events. Additionally, the artificial neural network model outperforms the Bayesian and logistic regression models, demonstrating that ANN has advantages in handling complex models for intrusion event classification. Full article
Show Figures

Figure 1

14 pages, 5761 KiB  
Article
Hydrogeochemical Characteristics and Formation Processes of Ordovician Limestone Groundwater in Zhuozishan Coalfield, Northwest China
by Shidong Wang, Tiantian Wang, Zhibin Yang, Hongwei Tang, Hanjiang Lv, Feng Xu, Kaipeng Zhu and Ziyuan Liu
Water 2024, 16(17), 2398; https://doi.org/10.3390/w16172398 - 26 Aug 2024
Viewed by 500
Abstract
A comprehensive understanding of the characteristics and formation mechanisms of groundwater in mining areas is essential for the effective prevention of coal mine water and the rational management of groundwater resources. The objective of this study was to examine the hydrogeochemical characteristics and [...] Read more.
A comprehensive understanding of the characteristics and formation mechanisms of groundwater in mining areas is essential for the effective prevention of coal mine water and the rational management of groundwater resources. The objective of this study was to examine the hydrogeochemical characteristics and evolution of Ordovician groundwater in the Zhuozishan coal mine, located in the northwest region of China. A total of 34 groundwater samples were collected for hydrogeochemical analyses and the investigation of their evolution processes, with the aid of a piper trilinear diagram, a Gibbs diagram, and an ion ratio diagram. The results indicate that the concentration of sodium (Na+), potassium (K+), bicarbonate (HCO3), chloride (Cl), sulphate (SO42), total dissolved solids (TDS), and pH increases from the recharge area to the discharge area, whereas the concentration of calcium (Ca2+) and magnesium (Mg2+) decreases. The hydrogeochemical characteristics of the runoff from Zhuozishan to Gongdeer coalfield and further southward display a notable north–south directional change. The groundwater process is primarily controlled by rock weathering action and cation exchange, with Na+ and K+ deriving primarily from cation exchange and only to a minor extent from halite dissolution. In conclusion, the northern part of the coalfield is characterised by a geological structure that creates a retention area with groundwater, resulting in an unordered runoff process with a complex formation mechanism. The middle region is devoid of geological constraints that would alter the flow direction, thus simplifying the process of groundwater formation. In contrast, the southern area experiences an increase in strata depth and fault blocking, which creates a retention zone, thereby rendering the groundwater formation process more complex. This research contributes to the effective management of groundwater resources in this coalfield and other mining sites. Full article
Show Figures

Figure 1

20 pages, 10622 KiB  
Article
Research on the Development Height Prediction Model of Water-Conduction Fracture Zones under Conditions of Extremely Thin Coal Seam Mining
by Hongsheng Wang, Jiahao Tian, Lei Li, Dengfeng Chen, Yuxin Yuan and Bin Li
Water 2024, 16(16), 2273; https://doi.org/10.3390/w16162273 - 12 Aug 2024
Viewed by 830
Abstract
Addressing the difficult problem of predicting the height of water-conducting fracture zones in shallow and thin coal seams, a prediction model of water-conduction fracture zones based on a backpropagation (BP) neural network was developed by integrating theoretical analysis, field measurements, and algorithmic advancements. [...] Read more.
Addressing the difficult problem of predicting the height of water-conducting fracture zones in shallow and thin coal seams, a prediction model of water-conduction fracture zones based on a backpropagation (BP) neural network was developed by integrating theoretical analysis, field measurements, and algorithmic advancements. Firstly, through overburden migration analysis and correlation tests, the height index system of the water-conducting fracture zone was determined. This system includes mining height, buried depth, dip angle, working face width, and overburden rock lithology, with five groups of characteristic parameters. Then, 35 pairs of minefield-measured data were collected to establish the measured height data set of the water-conducting fracture zone. Secondly, a BP neural network prediction model and a traditional support vector regression (SVR) prediction model were constructed based on a Pytorch framework, and the models were trained and tested by selecting data sets. Thirdly, the optimal prediction model was determined by comparing the model with the empirical model and multiple regression model of mining regulations for coal pillar maintenance and pressure in buildings, water bodies, railways, and main shafts. Finally, a typical mine was selected for application to verify the suitability of the optimal model. The results show that: (1) the predicted value of the neural network model is consistent with the change trend of the measured value, which accords with the theoretical law; (2) compared with traditional forecasting methods, the error of the BP neural network prediction model is stable and the prediction effect is the best; (3) dropout can effectively mitigate mitigation training overfitting, achieve regularization, and improve prediction accuracy; (4) the field application further verified that the BP neural network model is the best for predicting the height of water-conducting fracture zones of extremely thin coal seams, and the research results can provide technical guidance for similar fragile coal seams. Full article
Show Figures

Figure 1

15 pages, 7611 KiB  
Article
The Hydrochemical Characteristics and Formation Mechanism of Highly Mineralized Coal Mine Water in Semi-Arid Regions in Northwest China
by Jian Yang, Wei Zhao, Xiangyang Liang and Feng Xu
Water 2024, 16(16), 2244; https://doi.org/10.3390/w16162244 - 8 Aug 2024
Viewed by 1005
Abstract
The over-exploitation of groundwater and the deterioration of its quality have heightened the importance of non-traditional water resources, such as mine water. The study of the water’s chemical characteristics and the formation mechanism of high-salinity mine water in semi-arid regions holds significant importance [...] Read more.
The over-exploitation of groundwater and the deterioration of its quality have heightened the importance of non-traditional water resources, such as mine water. The study of the water’s chemical characteristics and the formation mechanism of high-salinity mine water in semi-arid regions holds significant importance for zero discharge and the resource utilization of mine water in Northwest China. In this study, a total of 38 groundwater and mine water samples were collected to examine the hydrogeochemical characteristics of high-salinity mine water using Piper diagrams and Gibbs diagrams, as well as isotope analyses and ion ratio coefficients. Additionally, the corresponding mine water treatment recommendations were put forward. The results show that the TDS content of groundwater increases with hydrographic depth. The average TDS concentration of Quaternary, Luohe, and Anding groundwater is 336.87, 308.67, and 556.29 mg/L, respectively. However, the TDS concentration of Zhiluo groundwater and mine water is 2768.57 and 3826.40 mg/L, respectively, which belong to high-salinity water. The Quaternary, Luohe, and Anding groundwater hydrochemical type is predominantly HCO3-Ca type, and the Zhiluo groundwater and mine water hydrochemical type is predominantly the SO4-Na type. Furthermore, there is minimal difference observed in δD and δ18O values among these waters. It can be inferred that the Zhiluo Formation in groundwater serves as the primary source of mine water supply, primarily influenced by the processes of concentration caused by evaporation. The high salinity of mine water is closely related to the high salinity of Zhiluo groundwater. The high salinity of groundwater has evolved gradually under the control of the concentration caused by evaporation and rock-weathering processes. The dissolution of salt rock, gypsum, along with other minerals, serves as the material basis for high-salinity groundwater formation. In addition, the evolution of major ions is also affected by cation exchange. The TDS concentration of mine water ranges from 3435.4 mg/L to 4414.3 mg/L, and the combined treatment process of nanofiltration and reverse osmosis can be selected to remove the salt. After treatment, mine water can be used for productive, domestic, and ecological demands. Full article
Show Figures

Figure 1

20 pages, 10898 KiB  
Article
Extension Mechanism of Water-Conducting Cracks in the Thick and Hard Overlying Strata of Coal Mining Face
by Dong Wei, Helong Gu, Chungang Wang, Hao Wang, Haoyu Zhu and Yuyang Guo
Water 2024, 16(13), 1883; https://doi.org/10.3390/w16131883 - 1 Jul 2024
Cited by 1 | Viewed by 794
Abstract
It is of great significance for coal safety production and water resource protection in the Yuheng mining area to master the evolution law of water-conducting fractures under the condition of thick and hard overburden. This research focuses on the 2102 fully mechanized mining [...] Read more.
It is of great significance for coal safety production and water resource protection in the Yuheng mining area to master the evolution law of water-conducting fractures under the condition of thick and hard overburden. This research focuses on the 2102 fully mechanized mining face in the Balasu Coal Mine as the research background. The fracture evolution and strata movement characteristics in thick and hard overlying strata are simulated and analyzed by combining numerical simulation with physical simulation, and the formation mechanism of a water-conducting fracture in the overlying strata is revealed and verified by field measurements of the development height of “two zones”. The results show that the anisotropy of fracture propagation in low-position overlying strata is high, and the fracture propagation in high-position overlying strata is mainly vertical, which indicates characteristics of leapfrog development. The number and development height of fractures undergo the change–growth process of “slow–rapid–uniform”. Multiple rock strata together form a complex force chain network with multiple strong chain arches. The local stress concentration leads to the initiation of micro-cracks in contact fractures, and the cracks gradually penetrate from bottom to top and then the strong chain arches are broken. The water-conducting cracks in overlying strata show a dynamic expansion process of “local micro-cracks–jumping cracks–through cracks–water-conducting cracks”. The fracture between the caving zone and fracture zone presents obvious layered characteristics, the overall shape of the water-conducting fracture zone is “saddle-shaped”, and the maximum development height lags behind the coal mining face by about 180 m. Through the observation of water injection leakage and borehole TV observation of three boreholes under underground construction, combined with the results of water pressure tests, it is comprehensively determined that the height of the water-conducting fracture zone is 103.68~107.58, and the fracture–production ratio is 31.42~32.60, which is basically consistent with the results of numerical simulation and physical simulation. This research provides theoretical guidance and a scientific basis for coal mine water disaster prevention under similar geological conditions. Full article
Show Figures

Figure 1

13 pages, 3566 KiB  
Article
Experimental Study for the Matching of Explosives and Rocks Based on Rock Hydrophysical Properties
by Zhaozhen Zhu and Zhiyong Zhou
Water 2024, 16(13), 1807; https://doi.org/10.3390/w16131807 - 26 Jun 2024
Viewed by 1072
Abstract
The study of the hydrophysical properties of rocks is indispensable for the development of hydraulic engineering, especially for blasting operations in water. Reasonable matching between explosives and rocks increases the utilization of explosive energy and improves the blasting performances. Based on the energy [...] Read more.
The study of the hydrophysical properties of rocks is indispensable for the development of hydraulic engineering, especially for blasting operations in water. Reasonable matching between explosives and rocks increases the utilization of explosive energy and improves the blasting performances. Based on the energy law in the rock blasting process, the matching relationship between explosives and rock is studied by combining experimental and theoretical methods for the hydrophysical properties of the rock itself. Firstly, the theoretical solutions for crushing-zone energy, fragmentation energy and fragment-throwing energy are derived. Subsequently, concrete blocks are prepared with four types of cement–sand ratios, and four types of emulsion explosives are used to carry out single-hole blasting tests in which a high-speed camera is used to capture the trajectory of the blasting fragments that are later collected. Finally, the crushing energy, fracturing energy and fragment-throwing energy are calculated according to the test results and the basic parameters of the used explosives and concrete models. The results show that the size and distribution pattern of blasting blocks are significantly affected by the hydrophysical properties of concrete and explosive properties; the higher the energy consumption in the rupture zone, the smaller the size of the fragments and the more uniform the distribution. Moreover, the median utilization efficiency of explosive energy on rock breaking is 26.4%, the energy consumption in the crushing zone is approximately 8.4%, that in the rupture zone is approximately 10.9%, and that in the throwing energy of fragments accounts for approximately 7.1%. It is also found that the traditional wave impedance matching theory fails to obtain the best explosive energy utilization. On the contrary, the concrete specimen had the best fracturing effect and the highest energy utilization of 30.77% when the impedance ratio of concrete to explosives is 1.479. Full article
Show Figures

Figure 1

Back to TopTop