Advances on Dielectric Photonic Devices and Systems beyond Visible

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Optics and Lasers".

Deadline for manuscript submissions: closed (10 July 2020) | Viewed by 29198

Special Issue Editors


E-Mail Website
Guest Editor
Department of Electrical Engineering and Information, Entries Polytechnic University of Bari, Via Orabona, 4-70125 Bari, Italy
Interests: fiber optics; long period grating (LPG) fiber devices; rare-earth doped fiber laser; microwave photonics; microwave devices
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, 70125 Bari, Italy
Interests: integrated optics; photonic crystals; plasmonics; graphene-based microwave and optical devices; nonlinear optics; microwave photonics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Photonics and Nanotechnology, National Research Council, IFN-CNR CSMFO Lab., Via alla Cascata 56/C, Povo, 38123 Trento, Italy
Interests: glass photonics; properties, structure and processing of glasses, crystals and film for optical applications and photonics; integrated optics; transparent glass ceramics; confined structures including photonic crystals, waveguides, microcavities, and microresonators
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The recent technological advances in the field of dielectric photonics, integrated optics, and optical fiber-based systems have paved the way for novel application areas based on the employment of optical beams as a feasible alternative to radio frequencies or microwave signals. In fact, optical beam propagation/processing allows application in biomedicine, via the interaction of light with biological tissues, such as in optical diagnostic and therapy; communication by exploiting, in addition to the conventional fiber optic systems, microwave photonics and radio-over-fiber techniques, optical 5G networks; material processing, via high brilliance and high power optical sources; sensing with the development of novel LiDAR (Light Detection and Ranging o Laser Imaging Detection and Ranging) systems, novel SERS (Surface Enhanced Raman Spectroscopy) substrates, microstructured optical fiber and photonic crystal based sensors; aerospace application via the developing of high performance devices including optical gyroscopes, medium infrared Mid-IR tracking systems; optical homeland security and surveillance. These and many others promising applications are a straightforward consequence of the optical technology progress. As an example, a number of activated materials have been ad-hoc synthesized for the construction of novel optical sources, in both conventional and exotic wavelength ranges, by embedding rare earth ions in different host materials (glass oxides, fluorides, chalcogenides, glass ceramics, crystalline, organics etc.) or by inclusion of rare earth ions in molecular complexes. In addition, novel optical materials as graphene promise novel applications through innovative optical circuitries. The availability of low cost commercial tunable optical sources as quantum cascade lasers and the fabrication of resonant microcavities and microstructured fibers, such as the terahertz sources, allow novel chemical and biological sensing set-ups. Further improvement of sensor performances can be obtained by covering dielectric structure with thin metal layer exploiting plasmon propagation or resonance. Moreover, surprising applications have been originated from the progresses in the field of optical amplification, fluorescent probes, luminescent labels, optical converters, switches, detectors, etc.

This Special Issue collects both original contributions and review papers on the optical devices and systems beyond visible, covering an extremely wide area of interest which ranges from telecommunication to optical remote sensing and earth atmosphere monitoring, from medical diagnosis and therapy to material processing, and from aerospace to security.

Prof. Dr. Francesco Prudenzano
Prof. Dr. Antonella D’Orazio
Dr. Maurizio Ferrari
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Dielectric materials for NIR, Mid-IR, THz devices
  • Rare earth doped devices
  • Optical fiber
  • Integrated optics devices
  • PBG devices, Metallo-dielectric photonic crystals, plasmonics
  • Microwave photonics
  • Optical communications
  • Aerospace photonics
  • Sensing
  • Green photonics
  • Advances in characterization techniques
  • NIR-MIR-Laser materials

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 179 KiB  
Editorial
Special Issue on Advances in Dielectric Photonic Devices and Systems beyond the Visible
by Francesco Prudenzano, Antonella D’Orazio and Maurizio Ferrari
Appl. Sci. 2023, 13(1), 428; https://doi.org/10.3390/app13010428 - 29 Dec 2022
Viewed by 1090
Abstract
The impressive advances in dielectric photonics, integrated optics, and optical fiber-based systems are paving the way for increasingly challenging applications in wide research areas [...] Full article
(This article belongs to the Special Issue Advances on Dielectric Photonic Devices and Systems beyond Visible)

Research

Jump to: Editorial, Review

13 pages, 5273 KiB  
Article
DLI-Based DP-QPSK Reception Scheme for Short-Range Optical Communication
by Huiwen Yin, Yue Yu and Zhiping Huang
Appl. Sci. 2020, 10(14), 4815; https://doi.org/10.3390/app10144815 - 13 Jul 2020
Cited by 2 | Viewed by 3933
Abstract
The unacceptably high cost of digital coherent receivers for short-range optical communication has in recent years fueled the study of alternative transmission schemes that are simultaneously highly performing and cost-effective. However, the proposed solutions (e.g., Kramers–Kronig receiver) usually require the cooperation of a [...] Read more.
The unacceptably high cost of digital coherent receivers for short-range optical communication has in recent years fueled the study of alternative transmission schemes that are simultaneously highly performing and cost-effective. However, the proposed solutions (e.g., Kramers–Kronig receiver) usually require the cooperation of a transmitting end, which is unachievable in the context of non-cooperative communication. In this work, we mainly studied a dual-polarization quadrature phase-shift-keying (DP-QPSK) non-coherent reception scheme based on a delay-line interferometer (DLI) and measures to improve the reception performance. A data recovery algorithm was proposed for DLI-based DP-QPSK demodulation. The simulation results demonstrated that the algorithm could accurately recover the raw data from the transmitter. Moreover, decreasing the differential delay of the DLI could effectively increase the chromatic dispersion tolerance of the receiver and the optimal delay scaled inversely with the chromatic dispersion. It was found that a DLI-based DP-QPSK reception scheme is a better choice for short-range, non-cooperative communication with less severe transmission impairments. Full article
(This article belongs to the Special Issue Advances on Dielectric Photonic Devices and Systems beyond Visible)
Show Figures

Figure 1

11 pages, 3418 KiB  
Article
Milliwatt-Level Spontaneous Emission Across the 3.5–8 µm Spectral Region from Pr3+ Doped Selenide Chalcogenide Fiber Pumped with a Laser Diode
by Lukasz Sojka, Zhuoqi Tang, Dinuka Jayasuriya, Meili Shen, Joel Nunes, David Furniss, Mark Farries, Trevor M. Benson, Angela B. Seddon and Slawomir Sujecki
Appl. Sci. 2020, 10(2), 539; https://doi.org/10.3390/app10020539 - 11 Jan 2020
Cited by 23 | Viewed by 3009
Abstract
A spontaneous emission fiber source operating in the mid-infrared (MIR) wavelength range from 3.5 to 8 µm is demonstrated for the first time at output power levels of at least 1 mW. The source is a Pr3+-doped selenide chalcogenide, multimode, glass [...] Read more.
A spontaneous emission fiber source operating in the mid-infrared (MIR) wavelength range from 3.5 to 8 µm is demonstrated for the first time at output power levels of at least 1 mW. The source is a Pr3+-doped selenide chalcogenide, multimode, glass fiber pumped with commercially available laser diodes operating at 1.470 µm, 1.511 µm and 1.690 µm. This MIR spontaneous emission fiber source offers a viable alternative to broadband mid-infrared supercontinuum fiber sources, which are comparatively complex and costly. The MIR emission wavelength range is significant for molecular sensing applications across biology and chemistry, and in medicine, agriculture, defense, and environmental monitoring. Full article
(This article belongs to the Special Issue Advances on Dielectric Photonic Devices and Systems beyond Visible)
Show Figures

Figure 1

9 pages, 1340 KiB  
Article
Light-Activated Zirconium(IV) Phthalocyanine Derivatives Linked to Graphite Oxide Flakes and Discussion on Their Antibacterial Activity
by Anna Lukowiak, Yuriy Gerasymchuk, Anna Wedzynska, Leili Tahershamsi, Robert Tomala, Wieslaw Strek, Dominika Piatek, Izabela Korona-Glowniak, Mateusz Speruda, Anna Kedziora and Gabriela Bugla-Ploskonska
Appl. Sci. 2019, 9(20), 4447; https://doi.org/10.3390/app9204447 - 20 Oct 2019
Cited by 6 | Viewed by 2996
Abstract
In search of an effective antibacterial agent that is useful in photodynamic therapy, new derivatives of zirconium(IV) phthalocyanine (ZrPc) complexes were obtained and linked to graphite oxide flakes. In the syntheses of ZrPc derivatives, two bis-axially substituted ligands with terminal amino group and [...] Read more.
In search of an effective antibacterial agent that is useful in photodynamic therapy, new derivatives of zirconium(IV) phthalocyanine (ZrPc) complexes were obtained and linked to graphite oxide flakes. In the syntheses of ZrPc derivatives, two bis-axially substituted ligands with terminal amino group and different lengths of linear carbon chain (C4 in 4-aminobutyric acid or C11 in 11-aminoundecanoic acid) were used. The optical properties (absorption and photoluminescence spectra) of ZrPcs and the composites were examined. Broadband red–near-infrared lamp was tested as an external stimulus to activate ZrPcs and the composites. Optical techniques were used to show generation of singlet oxygen during irradiation. Considering the application of graphite oxide-based materials as bacteriostatic photosensitive additives for endodontic treatment of periapical tissue inflammation, the antibacterial activity was determined on one Escherichia coli strain isolated directly from an infected root canal of a human tooth and one strain with silver and antibiotic resistance. Looking at the obtained results, modified levels of activity toward different bacterial strains are discussed. Full article
(This article belongs to the Special Issue Advances on Dielectric Photonic Devices and Systems beyond Visible)
Show Figures

Figure 1

8 pages, 1267 KiB  
Article
2D Dielectric Nanoimprinted PMMA Pillars on Metallo-Dielectric Films
by Tiziana Stomeo, Armando Casolino, Francesco Guido, Antonio Qualtieri, Michael Scalora, Antonella D’Orazio, Massimo De Vittorio and Marco Grande
Appl. Sci. 2019, 9(18), 3812; https://doi.org/10.3390/app9183812 - 11 Sep 2019
Cited by 6 | Viewed by 2604
Abstract
In this work, we propose an optimized nanoimprint protocol for the fabrication of a two-dimensional (2D) array of polymethyl-methacrylate (PMMA) nano-pillars deposited on different sputtered configurations (bilayer and multi-layer) of copper (Cu) and aluminum nitride (AlN) slabs supported by a silicon dioxide (SiO [...] Read more.
In this work, we propose an optimized nanoimprint protocol for the fabrication of a two-dimensional (2D) array of polymethyl-methacrylate (PMMA) nano-pillars deposited on different sputtered configurations (bilayer and multi-layer) of copper (Cu) and aluminum nitride (AlN) slabs supported by a silicon dioxide (SiO2) substrate. Both the Cu/AlN bilayer and multilayer thin films were deposited by a sputtering technique. The sub-micron PMMA pillars were realized by using nanoimprint lithography (NIL). In order to optimize the NIL process, several tests were performed by varying temperature and pressure, allowing us to achieve uniform and high-resolution pillars. The fabricated periodic array enabled the phase-matching of the incident plane wave exciting optical resonances. All the fabricated devices were then optically characterized by means of an ad hoc setup, where the reflected light from the sample was analyzed. The fabricated nano-pillars are mechanically stable, and they could be fully exploited for the realization of novel metallo-dielectric core/shell structures for sensing, surface-enhanced Raman spectroscopy, and light–matter interactions. Full article
(This article belongs to the Special Issue Advances on Dielectric Photonic Devices and Systems beyond Visible)
Show Figures

Figure 1

10 pages, 2408 KiB  
Article
Fiber Bragg Grating (FBG) Sensors in a High-Scattering Optical Fiber Doped with MgO Nanoparticles for Polarization-Dependent Temperature Sensing
by Carlo Molardi, Tiago Paixão, Aidana Beisenova, Rui Min, Paulo Antunes, Carlos Marques, Wilfried Blanc and Daniele Tosi
Appl. Sci. 2019, 9(15), 3107; https://doi.org/10.3390/app9153107 - 01 Aug 2019
Cited by 17 | Viewed by 4563
Abstract
The characterization of Fiber Bragg Grating (FBG) sensors on a high-scattering fiber, having the core doped with MgO nanoparticles for polarization-dependent temperature sensing is reported. The fiber has a scattering level 37.2 dB higher than a single-mode fiber. FBGs have been inscribed by [...] Read more.
The characterization of Fiber Bragg Grating (FBG) sensors on a high-scattering fiber, having the core doped with MgO nanoparticles for polarization-dependent temperature sensing is reported. The fiber has a scattering level 37.2 dB higher than a single-mode fiber. FBGs have been inscribed by mean of a near-infrared femtosecond laser and a phase mask, with Bragg wavelength around 1552 nm. The characterization shows a thermal sensitivity of 11.45 pm/°C. A polarization-selective thermal behavior has been obtained, with sensitivity of 11.53 pm/°C for the perpendicular polarization (S) and 11.08 pm/°C for the parallel polarization (P), thus having 4.0% different sensitivity between the two polarizations. The results show the inscription of high-reflectivity FBGs onto a fiber core doped with nanoparticles, with the possibility of having reflectors into a fiber with tailored Rayleigh scattering properties. Full article
(This article belongs to the Special Issue Advances on Dielectric Photonic Devices and Systems beyond Visible)
Show Figures

Figure 1

9 pages, 3362 KiB  
Article
Graphene-Based Cylindrical Pillar Gratings for Polarization-Insensitive Optical Absorbers
by Muhammad Fayyaz Kashif, Giuseppe Valerio Bianco, Tiziana Stomeo, Maria Antonietta Vincenti, Domenico de Ceglia, Massimo De Vittorio, Michael Scalora, Giovanni Bruno, Antonella D’Orazio and Marco Grande
Appl. Sci. 2019, 9(12), 2528; https://doi.org/10.3390/app9122528 - 21 Jun 2019
Cited by 11 | Viewed by 3430
Abstract
In this study, we present a two-dimensional dielectric grating which allows achieving high absorption in a monolayer graphene at visible and near-infrared frequencies. Dielectric gratings create guided-mode resonances that are exploited to effectively couple light with the graphene layer. The proposed structure was [...] Read more.
In this study, we present a two-dimensional dielectric grating which allows achieving high absorption in a monolayer graphene at visible and near-infrared frequencies. Dielectric gratings create guided-mode resonances that are exploited to effectively couple light with the graphene layer. The proposed structure was numerically analyzed through a rigorous coupled-wave analysis method. Effects of geometrical parameters and response to the oblique incidence of the plane wave were studied. Numerical results reveal that light absorption in the proposed structure is almost insensitive to the angle of the impinging source over a considerable wide angular range of 20°. This may lead to the development of easy to fabricate and experimentally viable graphene-based absorbers in the future. Full article
(This article belongs to the Special Issue Advances on Dielectric Photonic Devices and Systems beyond Visible)
Show Figures

Figure 1

15 pages, 496 KiB  
Article
Optimization of Optical Networks Based on CDC-ROADM Technology
by Stanisław Kozdrowski, Mateusz Żotkiewicz and Sławomir Sujecki
Appl. Sci. 2019, 9(3), 399; https://doi.org/10.3390/app9030399 - 24 Jan 2019
Cited by 21 | Viewed by 3817
Abstract
New generation of optical nodes in dense wavelength division multiplexed networks enables operators to improve service flexibility and make significant savings, both in operational and capital expenditures. Thus the main objective of the study is to minimize optical node resources, such as transponders, [...] Read more.
New generation of optical nodes in dense wavelength division multiplexed networks enables operators to improve service flexibility and make significant savings, both in operational and capital expenditures. Thus the main objective of the study is to minimize optical node resources, such as transponders, multiplexers and wavelength selective switches, needed to provide and maintain high quality dense wavelength division multiplexed network services using new generation of optical nodes. A model based on integer programming is proposed, which includes a detailed description of an optical network node. The impact on the network performance of conventional reconfigurable optical add drop multiplexer technology is compared with colorless, directionless and contentionless approaches. The main focus of the presented study is the analysis of the network congestion problem arising in the context of both reconfigurable optical add drop multiplexer technologies. The analysis is supported by results of numerical experiments carried out for realistic networks of different dimensions and traffic demand sets. Full article
(This article belongs to the Special Issue Advances on Dielectric Photonic Devices and Systems beyond Visible)
Show Figures

Figure 1

Review

Jump to: Editorial, Research

11 pages, 1303 KiB  
Review
Modulated 3D Cross-Correlation Dynamic Light Scattering Applications for Optical Biosensing and Time-Dependent Monitoring of Nanoparticle-Biofluid Interactions
by Silvia Schintke and Eleonora Frau
Appl. Sci. 2020, 10(24), 8969; https://doi.org/10.3390/app10248969 - 16 Dec 2020
Cited by 9 | Viewed by 2803
Abstract
This paper reviews dynamic light scattering (DLS) of gold nanoparticle-protein interactions for the model protein bovine serum albumin (BSA), as well as in complex biofluids, at the example of mouse serum. DLS data of nanorods of various aspect ratio, of proteins and of [...] Read more.
This paper reviews dynamic light scattering (DLS) of gold nanoparticle-protein interactions for the model protein bovine serum albumin (BSA), as well as in complex biofluids, at the example of mouse serum. DLS data of nanorods of various aspect ratio, of proteins and of mouse serum are discussed in terms of the analysis of their hydrodynamic radii, leading to the distinction of rotational and translational motion as well as to the detection of agglomerates. We address in particular advances obtained by modulated 3D cross correlation dynamic light scattering and recent progress using the CORENN algorithm for analysis of DLS data. Full article
(This article belongs to the Special Issue Advances on Dielectric Photonic Devices and Systems beyond Visible)
Show Figures

Figure 1

Back to TopTop