Topic Editors

School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China
School of Civil Engineering, Chongqing University, Chongqing 400045, China
School of Civil and Environmental Engineering, Ningbo University, Ningbo 315000, China
Dr. Fengjiang Qin
School of Civil Engineering, Chongqing University, Chongqing 400044, China
School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China

Applications of Non-destructive Testing Technologies in Materials or Engineering

Abstract submission deadline
closed (31 March 2024)
Manuscript submission deadline
closed (31 May 2024)
Viewed by
22083

Topic Information

Dear Colleagues,

Non-destructive testing (NDT) technology for materials has become a research hotspot in many fields, such as civil engineering, machinery engineering, aviation engineering, and marine engineering. NDT refers to the technique of testing materials through non-destructive means to diagnose whether there are defects or cracks in the material. NDT is significant for ensuring the safe operation of structures and includes various methods, such as machine vision, penetration, magnetic powder, eddy current, ultrasonic, X-ray, acoustic emission, infrared thermal imaging, static and dynamic testing, etc. NDT techniques have great potential for development in terms of detection accuracy and detection range, but NDT for large and complex structures is still immature and requires further in-depth research.

The purpose of this Topic is to introduce the theoretical and experimental research progress of various NDT technologies, as well as the application examples of NDT in fields such as civil engineering, mechanical engineering, aviation engineering, and marine engineering. We sincerely invite all colleagues to contribute to this topic.

Prof. Dr. Qiuwei Yang
Dr. Zhigang Zhang
Dr. Hui Wang
Dr. Fengjiang Qin
Dr. Xi Peng
Topic Editors

 

Keywords

  • non-destructive testing
  • damage identification and diagnosis
  • structural health monitoring
  • smart materials and structures
  • machine vision
  • artificial intelligence diagnosis
  • mode updating
  • acoustic emission
  • magnetic particle inspection
  • infrared thermography

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.5 5.3 2011 17.8 Days CHF 2400
CivilEng
civileng
- 2.8 2020 35.5 Days CHF 1200
Energies
energies
3.0 6.2 2008 17.5 Days CHF 2600
Eng
eng
- 2.1 2020 28.3 Days CHF 1200
Materials
materials
3.1 5.8 2008 15.5 Days CHF 2600
Remote Sensing
remotesensing
4.2 8.3 2009 24.7 Days CHF 2700
Sensors
sensors
3.4 7.3 2001 16.8 Days CHF 2600

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (17 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
15 pages, 6409 KiB  
Article
Effects of Curing Conditions on Pore Structure of Ultra-High-Strength Shotcrete (UHSSC) Based on X-ray Computed Tomography
by Shijie Xiao, Jianyu Yang, Zelin Liu, Weijun Yang and Jiangang He
Materials 2024, 17(16), 4094; https://doi.org/10.3390/ma17164094 - 18 Aug 2024
Viewed by 590
Abstract
Shotcrete is widely used in mine and civil engineering as supporting structure. A new type of ultra-high-strength shotcrete (UHSSC) with viscosity-enhancing agent was taken as the research object in this paper. A microstructure model of UHSSC under different curing conditions (standard curing, natural [...] Read more.
Shotcrete is widely used in mine and civil engineering as supporting structure. A new type of ultra-high-strength shotcrete (UHSSC) with viscosity-enhancing agent was taken as the research object in this paper. A microstructure model of UHSSC under different curing conditions (standard curing, natural curing and film curing) was reconstructed using X-ray computed tomography (X-CT). The grey theory was used to analyze the correlation between pore characteristics and strength of UHSSC. The results showed that the porosity and the pore size of UHSSC were significantly reduced, the compressive strength was obviously improved by the new spraying process. The effects of curing conditions on the pore characteristics and compressive strength of UHSSC were obvious. Under natural curing, the hydration degree was the highest, the maximum pore size was the smallest, and the compressive strength was the highest, reaching 95.8 MPa, but the porosity was the highest. The curing condition had a certain influence on the sphericity distribution of UHSSC pores. Under film curing, the proportion of special-shaped pores (S < 0.4) was the largest and compressive strength was the smallest. There was a good correlation between pore characteristic parameters and the compressive strength of UHSSC under different curing conditions. In particular, the large pore size (D ≥ 5000 µm) and special-shaped pores (S < 0.4) had obvious effects on the strength of UHSSC, and the grey correlation coefficients were 0.8539 and 0.8080, respectively. Additionally, the pore direction of UHSSC had obvious directionality, and the anisotropy of UHSSC may be more prominent than poured specimen. The results will lay a foundation for the study of its mechanical properties and durability. Full article
Show Figures

Figure 1

14 pages, 3044 KiB  
Article
Eddy Current-Based Identification and Depth Investigation of Microdefects in Steel Filaments
by Kim Sang Tran, Bijan Shirinzadeh and Julian Smith
Sensors 2024, 24(16), 5101; https://doi.org/10.3390/s24165101 - 6 Aug 2024
Viewed by 602
Abstract
In the field of quality control, the critical challenge of analyzing microdefects in steel filament holds significant importance. This is particularly vital, as steel filaments serve as reinforced fibers in the use and applications within various component manufacturing industries. This paper addresses the [...] Read more.
In the field of quality control, the critical challenge of analyzing microdefects in steel filament holds significant importance. This is particularly vital, as steel filaments serve as reinforced fibers in the use and applications within various component manufacturing industries. This paper addresses the crucial requirement of identifying and investigating microdefects in steel filaments. Eddy current signals are used for the identification of microdefects, and an in-depth investigation is conducted. The core objective is to establish the relationship between the depth of defects and the signals detected through the eddy current sensing principle. The threshold of the eddy current instrument was set at 10%, corresponding to a created depth of 20 µm, to identify defective specimens. A total of 30 defective samples were analyzed, and the phase angles between the experimental and theoretical results were compared. The depths of defects ranged from 20 to 60 µm, with one sample having a depth exceeding 75 µm. The calculated threshold of 10.18% closely aligns with the set threshold of 10%, with a difference of only 1.77%. The resulting root mean square error (RMSE) was found to be 10.53 degrees, equivalent to 3.49 µm for the difference in depth and phase between measured results and estimated results. This underscores the methodology’s accuracy and its applicability across diverse manufacturing industries. Full article
Show Figures

Figure 1

16 pages, 5406 KiB  
Article
Research on In-Plane Thermal Conductivity Detection of Fuel Cell Bipolar Plates Based on Laser Thermography
by Yang Li, Dexin Hou, Feng Li, Lianghui Huang, Zhihua Huang, Yuehuan Zhang, Yongping Zheng, Leipeng Song, Bingqiang Huang, Zhengshun Fei and Xinjian Xiang
Sensors 2024, 24(13), 4206; https://doi.org/10.3390/s24134206 - 28 Jun 2024
Viewed by 711
Abstract
The thermal properties of bipolar plates, being key elements of polymer electrolyte membrane fuel cells, significantly affect their heat conduction and management. This study employed an innovative approach known as a heat flow loop integral method to experimentally assess the in-plane thermal conductivity [...] Read more.
The thermal properties of bipolar plates, being key elements of polymer electrolyte membrane fuel cells, significantly affect their heat conduction and management. This study employed an innovative approach known as a heat flow loop integral method to experimentally assess the in-plane thermal conductivity of graphite bipolar plates, addressing the constraints of traditional methods that have strict demands for thermal stimulation, boundary or initial conditions, and sample size. This method employs infrared thermal imaging to gather information from the surface temperature field of the sample, which is induced by laser stimulation. An enclosed test loop on the infrared image of the sample’s surface, situated between the heat source and the sample’s boundary, is utilized to calculate the in-plane heat flow density by integrating the temperature at the sampling locations on the loop and the in-plane thermal conductivity can be determined based on Fourier’s law of heat conduction. The numerical simulation analysis of the graphite models and the experimental tests with aluminum have confirmed the precision and practicality of this method. The results of 1060 aluminum and 6061 aluminum samples, each 1 and 2 mm in thickness, show a deviation between the reference and actual measurements of the in-plane thermal conductivity within 4.3% and repeatability within 2.7%. Using the loop integral method, the in-plane thermal conductivities of three graphite bipolar plates with thicknesses of 0.5 mm, 1 mm, and 1.5 mm were tested, resulting in 311.98 W(m·K)−1, 314.41 W(m·K)−1, and 323.48 W(m·K)−1, with repeatabilities of 0.9%, 3.0%, and 2.0%, respectively. A comparison with the reference value from the simulation model for graphite bipolar plates with the same thickness showed a deviation of 4.7%. The test results for three different thicknesses of graphite bipolar plates show a repeatability of 2.6%, indicating the high consistency and reliability of this measurement method. Consequently, as a supplement to existing technology, this method can achieve a rapid and nondestructive measurement of materials such as graphite bipolar plates’ in-plane thermal conductivity. Full article
Show Figures

Figure 1

12 pages, 1737 KiB  
Article
A Wear Debris Signal Processing Method Based on Inductive Monitoring for Aero-Engine
by Heng Jiang, Hongfu Zuo, Zhirong Zhong and Jiachen Guo
Appl. Sci. 2024, 14(13), 5505; https://doi.org/10.3390/app14135505 - 25 Jun 2024
Viewed by 924
Abstract
In view of the high false alarm rate in the oil debris monitoring results of the triple-coil inductive sensor in the transmission lubrication system of the aero-engine, a new debris signal processing method based on inductive monitoring is proposed. A time domain analysis [...] Read more.
In view of the high false alarm rate in the oil debris monitoring results of the triple-coil inductive sensor in the transmission lubrication system of the aero-engine, a new debris signal processing method based on inductive monitoring is proposed. A time domain analysis is carried out first, and the signal energy is the most effective index to distinguish the debris signature from the noise signature. On this basis, signal energy values within a fixed-length sliding window is processed through the histogram. Finally, a threshold is set for the detection of the debris signature, which is based on the distribution of data within the histogram. This method is applied to the experimental data from a test run of an aero-engine, and the results show that all the debris is detected even if part of it appears during a change in the working condition of the aero-engine. Therefore, this method shows satisfactory results in debris detection accuracy and especially the inhibition of false alarms. It is also applicable for real-time monitoring due to the similarity between the movement of the sliding window and real-time data acquisition. In addition, it is applicable for various sensing principles, including but not limited to the inductive sensor signal, since the detection performance is only related to the signal itself. Full article
Show Figures

Figure 1

11 pages, 2650 KiB  
Article
Impact of Fat Content and Lactose Presence on Refractive Index in Different Types of Cow Milk
by Lorenza Hevia-Aymes, Rodrigo Cuevas-Tenango and Gesuri Morales-Luna
Appl. Sci. 2024, 14(11), 4529; https://doi.org/10.3390/app14114529 - 25 May 2024
Viewed by 668
Abstract
This study unveils an advanced methodology for characterizing various types of cow’s milk based on their optical properties, aiming to establish a straightforward yet comprehensive method. This study uses fundamental principles such as Snell’s Law and Fresnel coefficients to determine and demonstrate critical [...] Read more.
This study unveils an advanced methodology for characterizing various types of cow’s milk based on their optical properties, aiming to establish a straightforward yet comprehensive method. This study uses fundamental principles such as Snell’s Law and Fresnel coefficients to determine and demonstrate critical angles for total internal reflection and reflectance at p polarization. Notably, milk composition, particularly fat content, significantly and remarkably influences its refractive index, with higher fat content leading to elevated values. Additionally, the extinction coefficient, derived through the Beer–Lambert law, provides valuable and essential information regarding light absorption and scattering within the milk samples. The significance of this research relies upon its ability to comprehensively analyze various optical properties of milk, including critical angles, reflectance, and extinction coefficients. By doing so, it offers an exhaustive and detailed understanding of how milk responds to light across different wavelengths and angles of incidence. Moreover, the technique effectively distinguishes milk types based on their fat content and particle characteristics. This novel characterization technique holds promise for various applications within the dairy industry, such as milk quality control, classification, and adulteration detection, which is crucial for maintaining consumer trust and safety. Full article
Show Figures

Figure 1

12 pages, 2453 KiB  
Article
Localization of Dual Partial Discharge in Transformer Windings Using Fabry–Pérot Optical Fiber Sensor Array
by Feng Liu, Jian Du, Yansheng Shi, Shuainan Zhang and Wei Wang
Energies 2024, 17(11), 2537; https://doi.org/10.3390/en17112537 - 24 May 2024
Cited by 3 | Viewed by 658
Abstract
The power transformer is one of the most critical core devices for energy exchange in power systems, and its safe and stable operation is directly related to the reliability of the power grid. Partial discharge is the main cause of insulation degradation and [...] Read more.
The power transformer is one of the most critical core devices for energy exchange in power systems, and its safe and stable operation is directly related to the reliability of the power grid. Partial discharge is the main cause of insulation degradation and failure of high-voltage electrical equipment. Online monitoring and accurate localization of partial discharge can provide information on the aging of power equipment, which is of great value for improving the safe operation and maintenance of the power grid. Internal dual partial discharge in transformer windings is a more complex type of fault. Since it is located inside the windings, the signal is attenuated and distorted, making it difficult for traditional monitoring methods to capture such partial discharge signal The Fabry–Perot optical fiber sensor is an ultrasonic detection method that can be built into the transformer interior. This sensor has high sensitivity and a small size, enabling flexible placement at different locations inside the transformer for precise partial discharge detection. Especially for the narrow space inside the high and low voltage windings, F–P sensors can form an array, utilizing the array’s directivity to locate the fault points. In this study, an ultrasonic detection system based on the F–P optical fiber sensor array was developed. The system utilizes a directional cross-localization algorithm based on the multiple signal classification (MUSIC) algorithm to accurately locate dual partial discharge sources. This partial discharge detection system was applied to a 35 kV single-phase transformer, enabling the localization of dual partial discharge sources within the high and low voltage windings. Combined with experimental results, this method exhibits high localization accuracy and is particularly suitable for detecting partial discharge phenomena that occur within or between transformer windings. Full article
Show Figures

Figure 1

19 pages, 4922 KiB  
Article
A Novel Nonlinear Magnetic Equivalent Circuit Model for Magnetic Flux Leakage System
by Okan Kara and Hasan Hüseyin Çelik
Appl. Sci. 2024, 14(10), 4071; https://doi.org/10.3390/app14104071 - 10 May 2024
Cited by 1 | Viewed by 1262
Abstract
To ensure efficient inspection using the magnetic flux leakage (MFL) method, generating a flux density near the saturation level within the tested material is essential. This requirement brings high flux density conditions in the system’s pole regions. Hence, leakage flux within the slot [...] Read more.
To ensure efficient inspection using the magnetic flux leakage (MFL) method, generating a flux density near the saturation level within the tested material is essential. This requirement brings high flux density conditions in the system’s pole regions. Hence, leakage flux within the slot is excessively triggered, leading to distortion of the defect signal. In this context, the system dimensions stand out as one of the most significant factors affecting the mentioned flux distributions. Therefore, various alternative solutions with different system dimensions arise in the design process of the MFL system. This study proposes a magnetic equivalent circuit (MEC) model to achieve optimal system design. The proposed MEC model is designed considering the nonlinear behavior of the material, leakage flux, and fringing effects. Verification results demonstrate that the MEC model consistently tracks the finite element analysis (FEA) results in calculating the flux densities. Furthermore, the relative errors in the flux density calculations of the tested material are at a maximum level of 10.2% and an average of 5.2% compared to the FEA. These findings indicate that the proposed MEC model can be effectively utilized in rapid prototyping and optimization procedures of MFL system design by providing fast solutions with reasonable accuracy. Full article
Show Figures

Figure 1

19 pages, 18734 KiB  
Article
An Improved Synchrosqueezing S-Transform and Its Application in a GPR Detection Task
by Hongqiang Xiong, Baizhou An, Boyang Sun and Jiayu Lu
Sensors 2024, 24(10), 2981; https://doi.org/10.3390/s24102981 - 8 May 2024
Viewed by 792
Abstract
The S-transform is a fundamental time–frequency (T-F) domain analysis method in ground penetrating radar (GPR) data processing and can be used for identifying targets, denoising, extracting thin layers, and high-resolution imaging. However, the S-transform spectrum experiences energy leakage near the instantaneous frequency. This [...] Read more.
The S-transform is a fundamental time–frequency (T-F) domain analysis method in ground penetrating radar (GPR) data processing and can be used for identifying targets, denoising, extracting thin layers, and high-resolution imaging. However, the S-transform spectrum experiences energy leakage near the instantaneous frequency. This phenomenon causes frequency components to erroneously spread over a wider range, impacting the accuracy and precision of GPR data processing. Synchrosqueezing is an effective method to prevent spectrum leakage. In this work, we introduce the synchrosqueezing generalized phase-shifting S-transform (SS-GPST). Initially, it resolves the compatibility issue between the S-transform and the synchrosqueezing strategy through phase-shifting. Subsequently, the SS-GPST accomplishes spectral energy focusing and resolution enhancement via a generalized parameter and synchrosqueezing. A synthetic signal test shows that the SS-GPST excels over other methods at focusing degree, spectral resolution, and signal reconstruction accuracy and speed. In actual GPR tunnel detection data processing, we assess the adaptability of the SS-GPST from three aspects: spectral energy distribution, thin layer identification, and data denoising. The results indicate: (1) compared to other methods, the SS-GPST accurately expresses spectral components with a strong focusing degree and fewer interference components; (2) high-frequency slices of the SS-GPST accurately detect the top and bottom interfaces of a 3.0–3.5 cm reinforcement protection layer; and (3) due to fewer interference components in the SS-GPST spectrum, reconstructing GPR profiles through the SS-GPST inverse transform is an efficient denoising technique. The SS-GPST demonstrates adaptability to different data processing purposes, offers high-resolution T-F spectra, and shows potential to supersede the S-transform. Full article
Show Figures

Figure 1

29 pages, 13635 KiB  
Article
Dynamic Deflection Measurement on Stiff Bridges with High Piers by Preloaded Spring Method
by Yelu Wang, Yongjun Zhou, Xin Jiang, Yu Zhao and Huantao Zhang
Appl. Sci. 2024, 14(6), 2526; https://doi.org/10.3390/app14062526 - 17 Mar 2024
Viewed by 942
Abstract
The deflection dynamic load allowance (DLA) of stiff bridges with high piers requires sub-millimeter accuracy. New technologies such as the vision-based optical method and GNSS are not yet recognized for use in DLA measurements due to their smaller SNR. Presently, the scaffolding method [...] Read more.
The deflection dynamic load allowance (DLA) of stiff bridges with high piers requires sub-millimeter accuracy. New technologies such as the vision-based optical method and GNSS are not yet recognized for use in DLA measurements due to their smaller SNR. Presently, the scaffolding method is widely utilized for dynamic deflection measurements in dynamic load tests owing to the reliability of employing rigid contact. When scaffolding is not available, engineers have to resort to a suspension hammer system. However, the mass eccentricity of the hammer, stretched-wire length, and wind will decrease the measurement accuracy. To overcome these drawbacks of the suspension hammer method (SHM), a preloaded spring method (PSM) and the related stretched-wire-spring system (SWSS) are proposed in this paper. The dynamic deflection of the coupled vehicle-bridge-SWSS was obtained by vehicle-bridge interaction (VBI) analysis. The sensitivity parameters of the PSM were analyzed and optimized to minimize the measurement error. Indoor experiments and field dynamic load tests were conducted to validate the feasibility and accuracy of the PSM. Additionally, the differences in dynamic deflection measurements between the PSM and SHM in windy environments were compared. The results show that, in a windless environment, the DLAs of the PSM are affected by the spring stiffness, stretched-wire length, and stretched-wire section stiffness, independently of the preload force. When the wind speed is less than or equal to 8 m/s and the pier height is less than 30 m, the maximum deflection measurement error of the PSM is −2.53%, while that of the SHM is −15.87%. Due to its low cost and high accuracy, the proposed method has broad application prospects in the dynamic deflection measurement of stiff bridges with high piers. Full article
Show Figures

Figure 1

15 pages, 4813 KiB  
Review
Poisson’s Ratio of Glasses, Ceramics, and Crystals
by Seiji Kojima
Materials 2024, 17(2), 300; https://doi.org/10.3390/ma17020300 - 7 Jan 2024
Cited by 1 | Viewed by 2562
Abstract
Poisson’s ratio is the fundamental metric used to discuss the performance of any material when strained elastically. However, the methods of the determination of Poisson’s ratio are not yet discussed well. The first purpose of this paper is to introduce the five kinds [...] Read more.
Poisson’s ratio is the fundamental metric used to discuss the performance of any material when strained elastically. However, the methods of the determination of Poisson’s ratio are not yet discussed well. The first purpose of this paper is to introduce the five kinds of typical experimental methods to measure Poisson’s ratio of glasses, ceramics, and crystals. The second purpose is to discuss the experimental results on the variation of Poisson’s ratio by composition, temperature, and pressure reviewed for various glasses, ceramics, and crystals, which are not yet reviewed. For example, in oxide glasses, the number of bridging oxygen atoms per glass-forming cation provides a straightforward estimation of network crosslinking using Poisson’s ratio. In the structural-phase transition of crystals, Poisson’s ratio shows remarkable temperature-dependence in the vicinity of a phase-transition temperature. The mechanism of these variations is discussed from physical and chemical points of view. The first-principles calculation of Poisson’s ratio in the newly hypothesized compounds is also described, and its pressure-induced ductile–brittle transition is discussed. Full article
Show Figures

Figure 1

15 pages, 5738 KiB  
Article
A Non-Destructive Methodology for the Viscoelastic Characterization of Polymers: Toward the Identification of the Time–Temperature Superposition Shift Law
by Aleksandr Sakhnevych, Raffaele Maglione and Francesco Timpone
Sensors 2023, 23(22), 9213; https://doi.org/10.3390/s23229213 - 16 Nov 2023
Cited by 2 | Viewed by 1302
Abstract
Polymers find widespread applications in various industries, such as civil engineering, aerospace, and industrial machinery, contributing to vibration control, dampening, and insulation. To accurately design products that are able to predict their dynamic behavior in the virtual environment, it is essential to understand [...] Read more.
Polymers find widespread applications in various industries, such as civil engineering, aerospace, and industrial machinery, contributing to vibration control, dampening, and insulation. To accurately design products that are able to predict their dynamic behavior in the virtual environment, it is essential to understand and reproduce their viscoelastic properties via material physical modeling. While Dynamic Mechanical Analysis (DMA) has traditionally been used, innovative non-destructive techniques are emerging for characterizing components and monitoring their performance without deconstructing them. In this context, the Time–Temperature Superposition Principle (TTSP) represents a powerful empirical procedure to extend a polymer’s viscoelastic behavior across a wider frequency range. This study focuses on replicating an indentation test on viscoelastic materials using the non-destructive Viscoelasticity Evaluation System evolved (VESevo) tool. The primary objective is to derive a unique temperature–frequency relationship, referred to as a “shift law”, using characteristic curves from this non-invasive approach. Encouragingly, modifying the device setup enabled us to replicate, virtually, three tests under identical initial conditions but with varying indentation frequencies. This highlights the tool’s ability to conduct material testing across a range of frequencies. These findings set the stage for our upcoming experiment campaign, aiming to create an innovative shift algorithm from at least three distinct master curves at specific frequencies, offering a significant breakthrough in non-destructive polymer characterization with broad industrial potential. Full article
Show Figures

Figure 1

15 pages, 7694 KiB  
Article
Detection, Verification and Analysis of Micro Surface Defects in Steel Filament Using Eddy Current Principles, Scanning Electron Microscopy and Energy-Dispersive Spectroscopy
by Kim Sang Tran, Bijan Shirinzadeh, Armin Ehrampoosh, Pan Zhao and Yaoyao Shi
Sensors 2023, 23(21), 8873; https://doi.org/10.3390/s23218873 - 31 Oct 2023
Cited by 1 | Viewed by 1578
Abstract
In the current industrial revolution, advanced technologies and methods can be effectively utilized for the detection and verification of defects in high-speed steel filament production. This paper introduces an innovative methodology for the precise detection and verification of micro surface defects found in [...] Read more.
In the current industrial revolution, advanced technologies and methods can be effectively utilized for the detection and verification of defects in high-speed steel filament production. This paper introduces an innovative methodology for the precise detection and verification of micro surface defects found in steel filaments through the application of the Eddy current principle. Permanent magnets are employed to generate a magnetic field with a high frequency surrounding a coil of sensors positioned at the filament’s output end. The sensor’s capacity to detect defects is validated through a meticulous rewinding process, followed by a thorough analysis involving scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). Artificial defects were intentionally introduced into a sample, and their amplitudes were monitored to establish a threshold value. The amplitude signal of these created defect was identified at approximately 10% FSH, which corresponds to a crack depth of about 20 µm. In the experimental production of 182 samples covering 38 km, the defect ratio was notably high, standing at 26.37%. These defects appeared randomly along the length of the samples. The verification results underscore the exceptional precision achieved in the detection of micro surface defects within steel filaments. These defects were primarily characterized by longitudinal scratches and inclusions containing physical tungsten carbide. Full article
Show Figures

Figure 1

15 pages, 9847 KiB  
Article
A Micro-Topography Measurement and Compensation Method for the Key Component Surface Based on White-Light Interferometry
by Junying Chen, Boxuan Wang, Xiuyu Chen, Qingshan Jiang, Wei Feng, Zhilong Xu and Zhenye Zhao
Sensors 2023, 23(19), 8307; https://doi.org/10.3390/s23198307 - 8 Oct 2023
Cited by 1 | Viewed by 1443
Abstract
The grinding grooves of material removal machining and the residues of a machining tool on the key component surface cause surface stress concentration. Thus, it is critical to carry out precise measurements on the key component surface to evaluate the stress concentration. Based [...] Read more.
The grinding grooves of material removal machining and the residues of a machining tool on the key component surface cause surface stress concentration. Thus, it is critical to carry out precise measurements on the key component surface to evaluate the stress concentration. Based on white-light interferometry (WLI), we studied the measurement distortion caused by the reflected light from the steep side of the grinding groove being unable to return to the optical system for imaging. A threshold value was set to eliminate the distorted measurement points, and the cubic spline algorithm was used to interpolate the eliminated points for compensation. The compensation result agrees well with the atomic force microscope (AFM) measurement result. However, for residues on the surface, a practical method was established to obtain a microscopic 3D micro-topography point cloud and a super-depth-of-field fusion image simultaneously. Afterward, the semantic segmentation network U-net was adopted to identify the residues in the super-depth-of-field fusion image and achieved a recognition accuracy of 91.06% for residual identification. Residual feature information, including height, position, and size, was obtained by integrating the information from point clouds and super-depth-of-field fusion images. This work can provide foundational data to study surface stress concentration. Full article
Show Figures

Figure 1

15 pages, 3137 KiB  
Article
Verification of the Mode Decomposition Technique for Closely Distributed Modal Systems in the State Space Domain
by Jungtae Noh and Jae-Seung Hwang
Sensors 2023, 23(16), 7123; https://doi.org/10.3390/s23167123 - 11 Aug 2023
Viewed by 889
Abstract
This study aims to propose and validate the state space mode decomposition technique for precise mode separation of non-classical damping systems and closely distributed modal systems. To assess the reliability and applicability of this technique, a 40-story building with a tuned mass damper [...] Read more.
This study aims to propose and validate the state space mode decomposition technique for precise mode separation of non-classical damping systems and closely distributed modal systems. To assess the reliability and applicability of this technique, a 40-story building with a tuned mass damper is investigated, and acceleration responses measured by the building’s health monitoring system are used for the verification of the technique. The mode separation results reveal that the separated modal power spectrum becomes distorted at neighboring natural frequency ranges when the performance index only considers the concentration of power spectral energy at the target natural frequency. However, by introducing an augmented performance index that includes a constraint condition to account for distortion, more accurate mode decomposition can be achieved. Full article
Show Figures

Figure 1

26 pages, 6683 KiB  
Article
Nondestructive Evaluation of Thermal Barrier Coatings’ Porosity Based on Terahertz Multi-Feature Fusion and a Machine Learning Approach
by Rui Li, Dongdong Ye, Qiukun Zhang, Jianfei Xu and Jiabao Pan
Appl. Sci. 2023, 13(15), 8988; https://doi.org/10.3390/app13158988 - 5 Aug 2023
Cited by 3 | Viewed by 1896
Abstract
Thermal barrier coatings (TBCs) play a crucial role in safeguarding aero-engine blades from high-temperature environments and enhancing their performance and durability. Accurate evaluation of TBCs’ porosity is of paramount importance for aerospace material research. However, existing evaluation methods often involve destructive testing or [...] Read more.
Thermal barrier coatings (TBCs) play a crucial role in safeguarding aero-engine blades from high-temperature environments and enhancing their performance and durability. Accurate evaluation of TBCs’ porosity is of paramount importance for aerospace material research. However, existing evaluation methods often involve destructive testing or lack precision. In this study, we proposed a novel nondestructive evaluation method for TBCs’ porosity, utilizing terahertz time-domain spectroscopy (THz-TDS) and a machine learning approach. The primary objective was to achieve reliable and precise porosity evaluation without causing damage to the coatings. Multiple feature parameters were extracted from THz-TDS data to characterize porosity variations. Additionally, correlation analysis and p-value testing were employed to assess the significance and correlations among the feature parameters. Subsequently, the dung-beetle-optimizer-algorithm-optimized random forest (DBO-RF) regression model was applied to accurately predict the porosity. Model performance was evaluated using K-fold cross-validation. Experimental results demonstrated the effectiveness of our proposed method, with the DBO-RF model achieving high precision and robustness in porosity prediction. The model evaluation revealed a root-mean-square error of 1.802, mean absolute error of 1.549, mean absolute percentage error of 8.362, and average regression coefficient of 0.912. This study introduces a novel technique that presents a dependable nondestructive testing solution for the evaluation and prediction of TBCs’ porosity, effectively monitoring the service life of TBCs and determining their effectiveness. With its practical applicability in the aerospace industry, this method plays a vital role in the assessment and analysis of TBCs’ performance, driving progress in aerospace material research. Full article
Show Figures

Figure 1

13 pages, 7347 KiB  
Article
The Wrinkles Characterization in GFRP Composites by Infrared Active Thermography
by Adam Stawiarski, Małgorzata Chwał, Marek Barski and Marcin Augustyn
Materials 2023, 16(12), 4236; https://doi.org/10.3390/ma16124236 - 7 Jun 2023
Cited by 1 | Viewed by 1443
Abstract
An experimental study has been carried out to assess the effectiveness of infrared thermography in wrinkle detection in composite GFRP (Glass Fiber Reinforced Plastic) structures by infrared active thermography. Wrinkles in composite GFRP plates with different weave patterns (twill and satin) have been [...] Read more.
An experimental study has been carried out to assess the effectiveness of infrared thermography in wrinkle detection in composite GFRP (Glass Fiber Reinforced Plastic) structures by infrared active thermography. Wrinkles in composite GFRP plates with different weave patterns (twill and satin) have been manufactured with the use of the vacuum bagging method. The different localization of defects in laminates has been taken into account. Transmission and reflection measurement techniques of active thermography have been verified and compared. The section of a turbine blade with a vertical axis of rotation containing post-manufacturing wrinkles has been prepared to verify active thermography measurement techniques in the real structure. In the turbine blade section, the influence of a gelcoat surface on the effectiveness of thermography damage detection has also been taken into account. Straightforward thermal parameters applied in structural health monitoring systems allow an effective damage detection method to be built. The transmission IRT setup allows not only for damage detection and localization in composite structures but also for accurate damage identification. The reflection IRT setup is convenient for damage detection systems coupled with nondestructive testing software. In considered cases, the type of fabric weave has negligible influence on the quality of damage detection results. Full article
Show Figures

Figure 1

13 pages, 9387 KiB  
Technical Note
Feasibility of Using a 300 GHz Radar to Detect Fractures and Lithological Changes in Rocks
by Federico Sanjuan, Frédéric Fauquet, Bertrand Fasentieux, Patrick Mounaix and Jean-Paul Guillet
Remote Sens. 2023, 15(10), 2605; https://doi.org/10.3390/rs15102605 - 17 May 2023
Cited by 2 | Viewed by 1609
Abstract
The detection and quantification of fractures in rocks, as well as the detection of lithological changes, are of particular interest in scientific fields, such as construction materials, geotechnics, reservoirs and the diagnostics of dielectric composite materials and cultural heritage objects. Therefore, different methods [...] Read more.
The detection and quantification of fractures in rocks, as well as the detection of lithological changes, are of particular interest in scientific fields, such as construction materials, geotechnics, reservoirs and the diagnostics of dielectric composite materials and cultural heritage objects. Therefore, different methods and techniques have been developed and improved over the years to provide solutions, e.g., seismic, ground-penetrating radar and X-ray microtomography. However, there are always trade-offs, such as spatial resolution, investigated volume and rock penetration depth. At present, high-frequency radars (>60 GHz) are available on the market, which are compact in size and capable of imaging large areas in short periods of time. However, the few rock applications that have been carried out have not provided any information on whether these radars would be useful for detecting fractures and lithological changes in rocks. Therefore, in this work, we performed different experiments on construction and reservoir rocks using a frequency-modulated continuous wave radar working at 300 GHz to evaluate its viability in this type of application. The results showed that the radar quantified millimeter fractures at a 1 cm rock penetration depth with a sensitivity of 500 μm. Furthermore, lithological changes were identified, even when detecting interfaces generated by the artificial union of two samples from the same rock. Full article
Show Figures

Figure 1

Back to TopTop