Applying the Bayesian Stackelberg Active Deception Game for Securing Infrastructure Networks
Abstract
:1. Introduction
2. Bayesian Stackelberg Active Deception Game Considering Multiple Types of Attackers
2.1. Motivation of Bayesian Stackelberg Active Deception Game
2.2. Stackelberg Active Deception Game
2.2.1. Method for Constructing the False Network Information
2.2.2. Cost Model
2.2.3. Strategies
2.3. Bayesian Stackelberg Active Deception Game
3. Solving the Active Deception Game Considering Multiple Types of Attackers
4. Experiments in Scale-Free Network
4.1. Game Equilibrium of Active Deception Defense Game
4.2. Game Equilibrium of Bayesian Active Deception Defense Game
4.3. Sensitiveness Analysis
5. Conclusions and Discussions
Author Contributions
Funding
Conflicts of Interest
References
- Ezell, B.C.; Bennett, S.P.; Von Winterfeldt, D.; Sokolowski, J.; Collins, A.J. Probabilistic risk analysis and terrorism risk. Risk Anal. Int. J. 2010, 30, 575–589. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.G.; Cox, L.A., Jr. How probabilistic risk assessment can mislead terrorism risk analysts. Risk Anal. Int. J. 2011, 31, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Golany, B.; Kaplan, E.H.; Marmur, A.; Rothblum, U.G. Nature plays with dice–terrorists do not: Allocating resources to counter strategic versus probabilistic risks. Eur. J. Oper. Res. 2009, 192, 198–208. [Google Scholar] [CrossRef]
- Hall, J.R., Jr. The elephant in the room is called game theory. Risk Anal. Int. J. 2009, 29, 1061. [Google Scholar]
- Feng, Q.; Cai, H.; Chen, Z.; Zhao, X.; Chen, Y. Using game theory to optimize allocation of defensive resources to protect multiple chemical facilities in a city against terrorist attacks. J. Loss Prev. Process Ind. 2016, 43, 614–628. [Google Scholar] [CrossRef]
- Zhang, L.; Reniers, G. A game-theoretical model to improve process plant protection from terrorist attacks. Risk Anal. 2016, 36, 2285–2297. [Google Scholar] [CrossRef] [PubMed]
- Nochenson, A.; Heimann, C.L. Simulation and game-theoretic analysis of an attacker-defender game. In Proceedings of the International Conference on Decision and Game Theory for Security, Budapest, Hungary, 5–6 November 2012. [Google Scholar]
- Guan, P.; He, M.; Zhuang, J.; Hora, S.C. Modeling a multitarget attacker–defender game with budget constraints. Decis. Anal. 2017, 14, 87–107. [Google Scholar] [CrossRef]
- Scaparra, M.P.; Church, R.L. A bilevel mixed-integer program for critical infrastructure protection planning. Comput. Oper. Res. 2008, 35, 1905–1923. [Google Scholar] [CrossRef]
- Arce, D.G.; Kovenock, D.; Roberson, B. Weakest-link attacker-defender games with multiple attack technologies. Nav. Res. Logist. (NRL) 2012, 59, 457–469. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Basar, T. Game-theoretic methods for robustness, security, and resilience of cyberphysical control systems: Games-in-games principle for optimal cross-layer resilient control systems. IEEE Control Syst. Mag. 2015, 35, 46–65. [Google Scholar]
- Ouyang, M. A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks. Eur. J. Oper. Res. 2017, 262, 1072–1084. [Google Scholar] [CrossRef]
- Bao, S.; Zhang, C.; Ouyang, M.; Miao, L. An integrated tri-level model for enhancing the resilience of facilities against intentional attacks. Ann. Oper. Res. 2017, 1–31. [Google Scholar] [CrossRef]
- Zhang, L.; Reniers, G. Applying a Bayesian Stackelberg game for securing a chemical plant. J. Loss Prev. Process Ind. 2018, 51, 72–83. [Google Scholar] [CrossRef]
- Rezazadeh, A.; Zhang, L.; Reniers, G.; Khakzad, N.; Cozzani, V. Optimal patrol scheduling of hazardous pipelines using game theory. Process Saf. Environ. Prot. 2017, 109, 242–256. [Google Scholar] [CrossRef]
- Conitzer, V.; Sandholm, T. Computing the optimal strategy to commit to. In Proceedings of the 7th ACM Conference on Electronic Commerce, Ann Arbor, MI, USA, 11–15 June 2006; ACM: New York, NY, USA, 2006; pp. 82–90. [Google Scholar]
- Pita, J.; Jain, M.; Marecki, J.; Ordóñez, F.; Portway, C.; Tambe, M.; Western, C.; Paruchuri, P.; Kraus, S. Deployed ARMOR protection: The application of a game theoretic model for security at the Los Angeles International Airport. In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems: Industrial Track, Estoril, Portugal, 12–16 May 2008; pp. 125–132. [Google Scholar]
- Tsai, J.; Kiekintveld, C.; Ordonez, F.; Tambe, M.; Rathi, S. IRIS—A tool for strategic security allocation in transportation networks. In Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, Budapest, Hungary, 10–15 May 2009; pp. 37–44. [Google Scholar]
- Zhuang, J.; Bier, V.M. Balancing terrorism and natural disasters–Defensive strategy with endogenous attacker effort. Oper. Res. 2007, 55, 976–991. [Google Scholar] [CrossRef]
- Paruchuri, P.; Pearce, J.P.; Marecki, J.; Tambe, M.; Ordonez, F.; Kraus, S. Playing games for security: An efficient exact algorithm for solving Bayesian Stackelberg games. In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems-Volume 2, Estoril, Portugal, 12–16 May 2008; pp. 895–902. [Google Scholar]
- Chi, K.T.; Liu, J.; Lau, F.C. A network perspective of the stock market. J. Empir. Financ. 2010, 17, 659–667. [Google Scholar]
- Xiao, Y.; Angulo, M.T.; Friedman, J.; Waldor, M.K.; Weiss, S.T.; Liu, Y.Y. Mapping the ecological networks of microbial communities. Nat. Commun. 2017, 8, 2042. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.G.; Guo, Q.; Zhang, Y.C. Collective iteration behavior for online social networks. Phys. A Stat. Mech. Its Appl. 2018, 499, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268. [Google Scholar] [CrossRef]
- Liu, C.; Du, Y.; Lei, J. A SOM-Based Membrane Optimization Algorithm for Community Detection. Entropy 2019, 21, 533. [Google Scholar] [CrossRef]
- Li, H.J.; Bu, Z.; Li, A.; Liu, Z.; Shi, Y. Fast and accurate mining the community structure: Integrating center locating and membership optimization. IEEE Trans. Knowl. Data Eng. 2016, 28, 2349–2362. [Google Scholar] [CrossRef]
- Kafle, I.; Bartaula, S.; Shirin, A.; Klickstein, I.; Das, P.; Sorrentino, F. Optimal control of networks in the presence of attackers and defenders. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 051103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.D.; Lao, S.Y.; Hou, L.L.; Bai, L. Edge orientation for optimizing controllability of complex networks. Phys. Rev. E 2014, 90, 042804. [Google Scholar] [CrossRef] [PubMed]
- Qiao, T.; Shan, W.; Yu, G.; Liu, C. A Novel Entropy-Based Centrality Approach for Identifying Vital Nodes in Weighted Networks. Entropy 2018, 20, 261. [Google Scholar] [CrossRef]
- Liu, J.G.; Wang, Z.Y.; Guo, Q.; Guo, L.; Chen, Q.; Ni, Y.Z. Identifying multiple influential spreaders via local structural similarity. EPL Europhys. Lett. 2017, 119, 18001. [Google Scholar] [CrossRef]
- Lü, L.; Pan, L.; Zhou, T.; Zhang, Y.C.; Stanley, H.E. Toward link predictability of complex networks. Proc. Natl. Acad. Sci. USA 2015, 112, 2325–2330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.W.; Zhang, W.Y.; Wang, B.H. Scaling of nearest neighbors’ connectivity distribution for scale-free networks. EPL Europhys. Lett. 2015, 111, 68002. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Li, Y.; Yang, C.; Wang, Z. Effects of external forcing on evolutionary games in complex networks. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 093108. [Google Scholar] [CrossRef]
- Li, X.; Jusup, M.; Wang, Z.; Li, H.; Shi, L.; Podobnik, B.; Stanley, H.E.; Havlin, S.; Boccaletti, S. Punishment diminishes the benefits of network reciprocity in social dilemma experiments. Proc. Natl. Acad. Sci. USA 2018, 115, 30–35. [Google Scholar] [CrossRef]
- Albert, R.; Jeong, H.; Barabási, A.L. Error and attack tolerance of complex networks. Nature 2000, 406, 378. [Google Scholar] [CrossRef]
- Holme, P.; Kim, B.J.; Yoon, C.N.; Han, S.K. Attack vulnerability of complex networks. Phys. Rev. E 2002, 65, 056109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quayle, A.; Siddiqui, A.; Jones, S. Preferential network perturbation. Phys. A Stat. Mech. Its Appl. 2006, 371, 823–840. [Google Scholar] [CrossRef]
- Lloyd, A.L.; May, R.M. How viruses spread among computers and people. Science 2001, 292, 1316–1317. [Google Scholar] [CrossRef] [PubMed]
- Dezső, Z.; Barabási, A.L. Halting viruses in scale-free networks. Phys. Rev. E 2002, 65, 055103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, L.; Jun, W.; Yong, L.; Hong-Zhong, D.; Yue-Jin, T. Optimal attack strategy in random scale-free networks based on incomplete information. Chin. Phys. Lett. 2011, 28, 068902. [Google Scholar]
- Wu, J.; Tan, S.Y.; Liu, Z.; Tan, Y.J.; Lu, X. Enhancing structural robustness of scale-free networks by information disturbance. Sci. Rep. 2017, 7, 7559. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Tan, S.Y.; Deng, Y.; Wu, J. Attacker-defender game from a network science perspective. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 051102. [Google Scholar] [CrossRef]
- Li, Y.; Qiao, S.; Deng, Y.; Wu, J. Stackelberg game in critical infrastructures from a network science perspective. Phys. A Stat. Mech. Appl. 2019, 521, 705–714. [Google Scholar] [CrossRef]
- Zeng, C.; Ren, B.; Li, M.; Liu, H.; Chen, J. Stackelberg game under asymmetric information in critical infrastructure system: From a complex network perspective. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 083129. [Google Scholar] [CrossRef]
- Brown, G.; Carlyle, M.; Salmerón, J.; Wood, K. Defending critical infrastructure. Interfaces 2006, 36, 530–544. [Google Scholar] [CrossRef]
- Korzhyk, D.; Yin, Z.; Kiekintveld, C.; Conitzer, V.; Tambe, M. Stackelberg vs. Nash in security games: An extended investigation of interchangeability, equivalence, and uniqueness. J. Artif. Intell. Res. 2011, 41, 297–327. [Google Scholar] [CrossRef]
- Leitmann, G. On generalized Stackelberg strategies. J. Optim. Theory Appl. 1978, 26, 637–643. [Google Scholar] [CrossRef]
- Breton, M.; Alj, A.; Haurie, A. Sequential Stackelberg equilibria in two-person games. J. Optim. Theory Appl. 1988, 59, 71–97. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Kar, D.; Fang, F.; Delle, F.; Sintov, N.; Tambe, M. “A Game of Thrones”: When Human Behavior Models Compete in Repeated Stackelberg Security Games. In Proceedings of the International Conference on Autonomous Agents & Multiagent Systems, Istanbul, Turkey, 4–8 May 2015. [Google Scholar]
- Taylor, P.D.; Jonker, L.B. Evolutionary stable strategies and game dynamics. Math. Biosci. 1978, 40, 145–156. [Google Scholar] [CrossRef]
- Khouzani, M.; Malacaria, P. Information Theory in Game Theory; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, C.; Ren, B.; Liu, H.; Chen, J. Applying the Bayesian Stackelberg Active Deception Game for Securing Infrastructure Networks. Entropy 2019, 21, 909. https://doi.org/10.3390/e21090909
Zeng C, Ren B, Liu H, Chen J. Applying the Bayesian Stackelberg Active Deception Game for Securing Infrastructure Networks. Entropy. 2019; 21(9):909. https://doi.org/10.3390/e21090909
Chicago/Turabian StyleZeng, Chengyi, Baoan Ren, Hongfu Liu, and Jing Chen. 2019. "Applying the Bayesian Stackelberg Active Deception Game for Securing Infrastructure Networks" Entropy 21, no. 9: 909. https://doi.org/10.3390/e21090909
APA StyleZeng, C., Ren, B., Liu, H., & Chen, J. (2019). Applying the Bayesian Stackelberg Active Deception Game for Securing Infrastructure Networks. Entropy, 21(9), 909. https://doi.org/10.3390/e21090909