Schrödinger’s Ballot: Quantum Information and the Violation of Arrow’s Impossibility Theorem
Abstract
:1. Introduction
2. Background
2.1. Classical Voting System
2.2. Quantum Voting System
- For all quantum ballot profiles ρ and all pairs of candidates , if for each voter , then .
- For all quantum ballot profiles ρ and all pairs of candidates , if for each voter , then .
- For all quantum ballot profiles ρ and and all pairs of candidates , if for each voter , then implies that .
- For all quantum ballot profiles and all pairs of candidates , if for each voter , then implies that .
- For all quantum ballot profiles and all pairs of candidates , iff .
- For all quantum ballot profiles and all pairs of candidates , iff .
3. Quantum Condorcet Voting and Arrow’s Impossibility Theorem
- 1.
- Calculates the Condorcet score of each candidate according to . The Condorcet score of a candidate is the number of winning in pairwise comparison with other candidates. That is, for a candidate x, his Condorcet score is where R is the classical ballot profile corresponding to .
- 2.
- Generate a weak order ⪰ over all candidates according to their Condorcet score. That is, iff .
- 3.
- Complete the weak order. That is, generate the set in which each is a linear order that extends ⪰ and contains all extensions of ⪰.
- 4.
- Transform the linear order into a quantum state. That is, for we create a quantum state , where each is the basis ballot that corresponds to .
- 5.
- Give the minority a shot. For any candidate pair which is encoded by at least one , We spread an amount of weight across the subspace. That is, is changed to , where ranges over all candidate pairs that are encoded by at least one . The parameter δ is required to satisfy that .
- 6.
- Enforce unanimity. For any candidate pair which is encoded by all the , we project onto the subspace. That is, is changed to , where ranges over all candidate pairs that are encoded by all the .
4. Related Work
4.1. Security of Quantum Voting
4.2. Probabilistic Social Choice
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Basics of Quantum Information
- 1.
- complex vector space, that is,
- 2.
- with a (positive-definite) scalar product such that for all and
- (a)
- (b)
- (c)
- iff
- (d)
References
- Neff, C.A. A verifiable secret shuffle and its application to e-voting. In Proceedings of the 8th ACM Conference on Computer and Communications Security (CCS 2001), Philadelphia, PA, USA, 6–8 November 2001; Reiter, M.K., Samarati, P., Eds.; ACM: New York, NY, USA, 2001; pp. 116–125. [Google Scholar] [CrossRef] [Green Version]
- Chaum, D. Secret-ballot receipts: True voter-verifiable elections. IEEE Secur. Priv. 2004, 2, 38–47. [Google Scholar] [CrossRef]
- Hillery, M.; Ziman, M.; Bužek, V.; Bieliková, M. Towards quantum-based privacy and voting. Phys. Lett. A 2006, 349, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Vaccaro, J.A.; Spring, J.; Chefles, A. Quantum protocols for anonymous voting and surveying. Phys. Rev. A 2007, 75, 012333. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zeng, G. Quantum anonymous voting systems based on entangled state. Opt. Rev. 2008, 15, 219–223. [Google Scholar] [CrossRef]
- Horoshko, D.; Kilin, S. Quantum anonymous voting with anonymity check. Phys. Lett. A 2011, 375, 1172–1175. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zeng, G. Anonymous quantum network voting scheme. Opt. Rev. 2012, 19, 121–124. [Google Scholar] [CrossRef]
- Jiang, L.; He, G.; Nie, D.; Xiong, J.; Zeng, G. Quantum anonymous voting for continuous variables. Phys. Rev. A 2012, 85, 042309. [Google Scholar] [CrossRef]
- Tian, J.H.; Zhang, J.Z.; Li, Y.P. A Voting Protocol Based on the Controlled Quantum Operation Teleportation. Int. J. Theor. Phys. 2016, 55, 2303–2310. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, C.; Gao, F.; Qi, H.; Wen, Q. Self-tallying quantum anonymous voting. Phys. Rev. A 2016, 94, 022333. [Google Scholar] [CrossRef] [Green Version]
- Rad, S.R.; Shirinkalam, E.; Smets, S. A Logical Analysis of Quantum Voting Protocols. Int. J. Theor. Phys. 2017, 56, 3991–4003. [Google Scholar] [CrossRef]
- Thapliyal, K.; Sharma, R.D.; Pathak, A. Protocols for quantum binary voting. Int. J. Quantum Inf. 2017, 15, 1750007. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Q.; Kulicki, P.; Sopek, M. A Simple Voting Protocol on Quantum Blockchain. Int. J. Theor. Phys. 2019, 58, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Bao, N.; Yunger Halpern, N. Quantum voting and violation of Arrow’s impossibility theorem. Phys. Rev. A 2017, 95, 062306. [Google Scholar] [CrossRef] [Green Version]
- Zwicker, W.S. Handbook of Computational Social Choice; Chapter Introduction to the Theory of Voting; Cambridge University Press: Cambridge, UK, 2006; pp. 23–56. [Google Scholar]
- Pacuit, E. Voting Methods. In The Stanford Encyclopedia of Philosophy, 2019th ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2019. [Google Scholar]
- Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; Procaccia, A.D. (Eds.) Handbook of Computational Social Choice; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Arrow, K.J. Social Choice and Individual Values; John Wiley and Sons: Hoboken, NJ, USA, 1951. [Google Scholar]
- Sun, X.; Kulicki, P.; Sopek, M.; He, F. A Still Simple Multi-candidate Voting Protocol on Quantum Blockchain. Submitted to Quantum Information Processing.
- Intriligator, M.D. A Probabilistic Model of Social Choice. Rev. Econ. Stud. 1973, 40, 553–560. [Google Scholar] [CrossRef]
- Fishburn, P.C. A Probabilistic Model of Social Choice: Comment. Rev. Econ. Stud. 1975, 42, 297–301. [Google Scholar] [CrossRef]
- Sen, A. The Impossibility of a Paretian Liberal. J. Political Econ. 1970, 78, 152–157. [Google Scholar] [CrossRef]
- Muller, E.; Satterthwaite, M.A. The equivalence of strong positive association and strategy-proofness. J. Econ. Theory 1977, 14, 412–418. [Google Scholar] [CrossRef]
- Gibbard, A. Manipulation of Voting Schemes: A General Result. Econometrica 1973, 41, 587–601. [Google Scholar] [CrossRef]
- Troquard, N.; van der Hoek, W.; Wooldridge, M.J. Reasoning About Social Choice Functions. J. Philos. Log. 2011, 40, 473–498. [Google Scholar] [CrossRef] [Green Version]
- Ågotnes, T.; van der Hoek, W.; Wooldridge, M.J. On the logic of preference and judgment aggregation. Auton. Agents Multi-Agent Syst. 2011, 22, 4–30. [Google Scholar] [CrossRef]
- Ciná, G.; Endriss, U. Proving classical theorems of social choice theory in modal logic. Auton. Agents Multi-Agent Syst. 2016, 30, 963–989. [Google Scholar] [CrossRef] [Green Version]
- Parmann, E.; Ågotnes, T. Reasoning about strategic voting in modal logic quickly becomes undecidable. J. Log. Comput. 2021. [Google Scholar] [CrossRef]
- Abramsky, S. Arrow’s Theorem by Arrow Theory. In Logic Without Borders: Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics: 5; De Gruyter: Berlin, Germany, 2015. [Google Scholar]
- Abramsky, S.; Coecke, B. A Categorical Semantics of Quantum Protocols. In Proceedings of the 19th IEEE Symposium on Logic in Computer Science (LICS 2004), Turku, Finland, 14–17 July 2004; IEEE Computer Society: Washington, DC, USA, 2004; pp. 415–425. [Google Scholar] [CrossRef] [Green Version]
- Yanofsky, N.; Mannucci, M. Quantum Computing for Computer Scientists; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Scherer, W. Mathematics of Quantum Computing: An Introduction; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Watrous, J. The Theory of Quantum Information; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; He, F.; Sopek, M.; Guo, M. Schrödinger’s Ballot: Quantum Information and the Violation of Arrow’s Impossibility Theorem. Entropy 2021, 23, 1083. https://doi.org/10.3390/e23081083
Sun X, He F, Sopek M, Guo M. Schrödinger’s Ballot: Quantum Information and the Violation of Arrow’s Impossibility Theorem. Entropy. 2021; 23(8):1083. https://doi.org/10.3390/e23081083
Chicago/Turabian StyleSun, Xin, Feifei He, Mirek Sopek, and Meiyun Guo. 2021. "Schrödinger’s Ballot: Quantum Information and the Violation of Arrow’s Impossibility Theorem" Entropy 23, no. 8: 1083. https://doi.org/10.3390/e23081083
APA StyleSun, X., He, F., Sopek, M., & Guo, M. (2021). Schrödinger’s Ballot: Quantum Information and the Violation of Arrow’s Impossibility Theorem. Entropy, 23(8), 1083. https://doi.org/10.3390/e23081083