Modeling and Analysis of Social Phenomena: Challenges and Possible Research Directions
Abstract
:Funding
Data Availability Statement
Conflicts of Interest
References
- Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009, 81, 591–646. [Google Scholar] [CrossRef] [Green Version]
- Galam, S.; Gefen, Y.; Shapir, Y. Sociophysics: A new approach of sociological collective behaviour. I. mean behaviour description of a strike. J. Math. Sociol. 1982, 9, 1–13. [Google Scholar] [CrossRef]
- Holley, R.; Liggett, T.M. Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter Model. Ann. Probab. 1975, 3, 643–663. [Google Scholar] [CrossRef]
- Redner, S. Reality-inspired voter models: A mini-review. Comptes Rendus Phys. 2019, 20, 275–292. [Google Scholar] [CrossRef] [Green Version]
- Galam, S. Minority opinion spreading in random geometry. Eur. Phys. J. B 2002, 25, 403–406. [Google Scholar] [CrossRef] [Green Version]
- Krapivsky, P.L.; Redner, S. Dynamics of Majority Rule in Two-State Interacting Spin Systems. Phys. Rev. Lett. 2003, 90, 238701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sznajd-Weron, K.; Sznajd, J. Opinion evolution in closed community. Int. J. Mod. Phys. C 2000, 11, 1157–1165. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, D.; Sousa, A.O.; De Oliveira, S.M. Generalization to square lattice of Sznajd sociophysics model. Int. J. Mod. Phys. C 2000, 11, 1239–1245. [Google Scholar] [CrossRef]
- Mäs, M.; Flache, A. Differentiation without Distancing. Explaining Bi-Polarization of Opinions without Negative Influence. PLoS ONE 2013, 8, e74516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Rocca, C.E.; Braunstein, L.A.; Vazquez, F. The influence of persuasion in opinion formation and polarization. EPL (Europhys. Lett.) 2014, 106, 40004. [Google Scholar] [CrossRef] [Green Version]
- Deffuant, G.; Neau, D.; Amblard, F.; Weisbuch, G. Mixing beliefs among interacting agents. Adv. Complex Syst. 2000, 3, 87–98. [Google Scholar] [CrossRef]
- Hegselmann, R.; Krause, U. Opinion Dynamics and Bounded Confidence, Models, Analysis and Simulation. J. Artif. Soc. Soc. Simul. 2002, 5, 2. [Google Scholar]
- Lorenz, J. Continuous opinion dynamics under bounded confidence: A survey. Int. J. Mod. Phys. C 2007, 18, 1819–1838. [Google Scholar] [CrossRef] [Green Version]
- Degroot, M.H. Reaching a Consensus. J. Am. Stat. Assoc. 1974, 69, 118–121. [Google Scholar] [CrossRef]
- Anderson, B.; Ye, M. Recent Advances in the Modelling and Analysis of Opinion Dynamics on Influence Networks. Int. J. Autom. Comput. 2019, 16, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Schweitzer, F. Sociophysics. Phys. Today 2018, 71, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, S.; Macy, M.; Redner, S. Statistical Mechanics and Social Sciences I. J. Stat. Phys. 2013, 151, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Flache, A.; Mäs, M.; Feliciani, T.; Chattoe-Brown, E.; Deffuant, G.; Huet, S.; Lorenz, J. Models of Social Influence: Towards the Next Frontiers. J. Artif. Soc. Soc. Simul. 2017, 20, 2. [Google Scholar] [CrossRef] [Green Version]
- Sîrbu, A.; Loreto, V.; Servedio, V.; Tria, F. Opinion Dynamics: Models, Extensions and External Effects; Springer: Berlin, Germany, 2017; pp. 363–401. [Google Scholar] [CrossRef] [Green Version]
- Sobkowicz, P. Modelling Opinion Formation with Physics Tools: Call for Closer Link with Reality. J. Artif. Soc. Soc. Simul. 2009, 12, 1–11. [Google Scholar]
- Fernandez Peralta, A.; Kertész, J.; Iñiguez, G. Opinion dynamics in social networks: From models to data. arXiv 2022, arXiv:2201.01322. [Google Scholar]
- Chacoma, A.; Zanette, D.H. Opinion Formation by Social Influence: From Experiments to Modeling. PLoS ONE 2015, 10, e0140406. [Google Scholar] [CrossRef]
- Lazer, D.; Pentland, A.; Adamic, L.; Aral, S.; Barabási, A.L.; Brewer, D.; Christakis, N.; Contractor, N.; Fowler, J.; Gutmann, M.; et al. Computational Social Science. Science 2009, 323, 721–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garas, A.; Garcia, D.; Skowron, M.; Schweitzer, F. Emotional persistence in online chatting communities. Sci. Rep. 2012, 2, 118–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, J.; Gonçalves, B.; Ramasco, J.J.; Cattuto, C. Dynamical Classes of Collective Attention in Twitter. In Proceedings of the 21st International Conference on World Wide Web, Lyon, France, 16–20 April 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 251–260. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, S.; Castellano, C. Scaling and Universality in Proportional Elections. Phys. Rev. Lett. 2007, 99, 138701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San Miguel, M.; Toral, R. Introduction to the chaos focus issue on the dynamics of social systems. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 120401. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vazquez, F. Modeling and Analysis of Social Phenomena: Challenges and Possible Research Directions. Entropy 2022, 24, 491. https://doi.org/10.3390/e24040491
Vazquez F. Modeling and Analysis of Social Phenomena: Challenges and Possible Research Directions. Entropy. 2022; 24(4):491. https://doi.org/10.3390/e24040491
Chicago/Turabian StyleVazquez, Federico. 2022. "Modeling and Analysis of Social Phenomena: Challenges and Possible Research Directions" Entropy 24, no. 4: 491. https://doi.org/10.3390/e24040491