A System-Independent Derivation of Preferential Attachment from the Principle of Least Effort
Abstract
:1. Introduction
2. Least Effort and Maximum Efficiency
3. From Least Effort to Preferential Attachment
4. Attachment Efficiency
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yule, G.U. A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. J. R. Stat. Soc. 1925, 88, 433–436. [Google Scholar]
- Simon, H.A. On a Class of Skew Distribution Functions. In Biometrika; Oxford University Press (OUP): Oxford, UK, 1955; Volume 42, pp. 425–440. [Google Scholar]
- Price, D. A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inform. Sci. 1976, 27, 292–306. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Krapivsky, P.L.; Redner, S.; Leyvraz, F. Connectivity of Growing Random Networks. Phys. Rev. Lett. 2000, 85, 4629–4632. [Google Scholar] [CrossRef] [PubMed]
- Krapivsky, P.L.; Krioukov, D. Scale-free networks as preasymptotic regimes of superlinear preferential attachment. Phys. Rev. E 2008, 78, 026114. [Google Scholar] [CrossRef] [PubMed]
- Zipf, G. Human Behavior and the Principle of Least Effort; Addison-Wesley: Cambridge, MA, USA, 1949. [Google Scholar]
- Pareto, V. Cours D’economie Politique; Librairie Droz: Geneva, Switzerland, 1898; Volume 6. [Google Scholar]
- Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-Law Distributions in Empirical Data. SIAM Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef]
- Pham, T.; Sheridan, P.; Shimodaira, H. PAFit: A Statistical Method for Measuring Preferential Attachment in Temporal Complex Networks. PLoS ONE 2015, 10, e0137796. [Google Scholar] [CrossRef] [PubMed]
- Small, M.; Li, Y.; Stemler, T.; Judd, K. Super-star networks: Growing optimal scale-free networks via likelihood. arXiv 2014, arXiv:1305.6429v3. [Google Scholar]
- Gao, F.; van der Vaart, A. Statistical Inference in Parametric Preferential Attachment Trees. arXiv 2022, arXiv:2111.00832v3. [Google Scholar]
- Wan, P.; Wang, T.; Davis, R.A.; Resnick, S.I. Fitting the linear preferential attachment model. Electron. J. Stat. 2017, 11, 3738. [Google Scholar] [CrossRef]
- Ferrero, G. L’inertie Mentale et la Loi du Moindre Effort. Philos. Rev. 1894, 3, 362, Erratum in Rev. Philos. Fr. L’etranger 1894, 37, 169. [Google Scholar]
- Wang, Q. Principle of least effort vs. Maximum efficiency: Deriving Zipf-Pareto’s laws, Chaos. Solitons Fractals 2021, 153, 111489. [Google Scholar] [CrossRef]
- El Kaabouchi, A.; Machu, F.; Cocks, J.; Wang, R.; Zhu, Y.; Wang, Q. Study of a measure of efficiency as a tool for applying the principle of least effort to the derivation of the Zipf and the Pareto laws. Adv. Complex Syst. 2021, 24, 2150013. [Google Scholar] [CrossRef]
- d’Souza, R.M.; Borgs, C.; Chayes, J.T.; Berger, N.; Kleinberg, R. Emergence of tempered preferential attachment from optimization. PNAS 2007, 104, 6112. [Google Scholar] [CrossRef] [Green Version]
- Marquet, P.A.; Quiñones, R.A.; Abades, S.; Labra, F.; Tognelli, M.; Arim, M.; Rivadeneira, M. Scaling and power-laws in ecological systems. J. Exp. Biol. 2005, 208, 1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorogovtsev, S.; Mendes, J. Evolution of Networks: From Biological Nets to the Internet and WWW; Oxford U. Press: New York, NY, USA, 2003. [Google Scholar]
- Kaabouchi, A.E.L.; Machu, F.; Cocks, J.; Wang, Q. Uniqueness of the Efficiency Functional for Deriving the Zipf and the Pareto Laws from the Principle of Least effort. Available online: https://hal.archives-ouvertes.fr/hal-03843384v1 (accessed on 1 November 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machu, F.X.; Wang, R.J.; Cheng, J.L.; Cocks, J.; Wang, Q.A. A System-Independent Derivation of Preferential Attachment from the Principle of Least Effort. Entropy 2023, 25, 305. https://doi.org/10.3390/e25020305
Machu FX, Wang RJ, Cheng JL, Cocks J, Wang QA. A System-Independent Derivation of Preferential Attachment from the Principle of Least Effort. Entropy. 2023; 25(2):305. https://doi.org/10.3390/e25020305
Chicago/Turabian StyleMachu, François Xavier, Ru Julie Wang, Jean Louis Cheng, Jeremy Cocks, and Qiuping Alexandre Wang. 2023. "A System-Independent Derivation of Preferential Attachment from the Principle of Least Effort" Entropy 25, no. 2: 305. https://doi.org/10.3390/e25020305