Fair Numerical Algorithm of Coset Cardinality Spectrum for Distributed Arithmetic Coding
Abstract
:1. Introduction
2. Review on DAC and CCS
3. Original Numerical Algorithms
3.1. Rounding Numerical Algorithm
3.2. Linear Numerical Algorithm
- If , then . If , then .
- If , then . If , then .
- If and , then . If and , then .
4. Fair Numerical Algorithm
4.1. Calculation of
- : It is easy to know .
- : In general, we haveEspecially, if , then
- : In general, we haveLet us consider three special cases:
- —
- If and , then
- —
- If and , then
- —
- If and , then
4.2. Calculation of
- : It is easy to know .
- : In general, we haveEspecially, if , then
- : In general, we haveLet us consider three special cases:
- —
- If and , then
- —
- If and , then
- —
- If and , then
4.3. Discussion
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Slepian, D.; Wolf, J.K. Noiseless coding of correlated information sources. IEEE Trans. Inf. Theory 1973, 19, 471–480. [Google Scholar] [CrossRef]
- Berger, T. Multiterminal source coding. In The Information Theory Approach to Communications; Longo, G., Ed.; Springer: New York, NY, USA, 1977. [Google Scholar]
- Wyner, A.; Ziv, J. The rate-distortion function for source coding with side information at the decoder. IEEE Trans. Inf. Theory 1976, 22, 1–10. [Google Scholar] [CrossRef]
- Wyner, A. The rate-distortion function for source coding with side information at the decoder-II: General sources. Inf. Control 1978, 38, 60–80. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, S.; Chou, J.; Ramchandran, K. Duality between source coding and channel coding and its extension to the side information case. IEEE Trans. Inf. Theory 2003, 49, 1181–1203. [Google Scholar] [CrossRef]
- Chen, J.; He, D.-K.; Jagmohan, A. On the duality between Slepian-Wolf coding and channel coding under mismatched decoding. IEEE Trans. Inf. Theory 2009, 55, 4006–4018. [Google Scholar] [CrossRef]
- Chen, J.; He, D.-K.; Jagmohan, A.; Lastras-Montano, L.A.; Yang, E.-H. On the linear codebook-level duality between Slepian-Wolf coding and channel coding. IEEE Trans. Inf. Theory 2009, 55, 5575–5590. [Google Scholar] [CrossRef]
- Chen, J.; He, D.-K.; Jagmohan, A. The equivalence between Slepian-Wolf coding and channel coding under density evolution. IEEE Trans. Commun. 2009, 57, 2534–2540. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; He, D.-K.; Jagmohan, A.; Lastras-Montano, L.A. On the reliability function of variable-rate Slepian-Wolf coding. Entropy 2017, 19, 389. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Frias, J.; Zhao, Y. Compression of correlated binary sources using turbo codes. IEEE Commun. Lett. 2001, 5, 417–419. [Google Scholar] [CrossRef]
- Liveris, A.; Xiong, Z.; Georghiades, C. Compression of binary sources with side information at the decoder using LDPC codes. IEEE Commun. Lett. 2002, 6, 440–442. [Google Scholar] [CrossRef]
- Bilkent, E. Polar coding for the Slepian-Wolf problem based on monotone chain rules. In Proceedings of the IEEE International Symposium on Information Theory and Its Applications (ISITA2012), Honolulu, HI, USA, 28–31 October 2012; pp. 566–570. [Google Scholar]
- Rissanen, J. Generalized Kraft inequality and arithmetic coding. IBM J. Res. Dev. 1976, 20, 198–203. [Google Scholar] [CrossRef]
- Witten, I.; Neal, R.; Cleary, J. Arithmetic coding for data compression. Commun. ACM 1987, 30, 520–540. [Google Scholar] [CrossRef]
- Boyd, C.; Cleary, J.; Irvine, S.; Rinsma-Melchert, I.; Witten, I. Integrating error detection into arithmetic coding. IEEE Trans. Commun. 1997, 45, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Anand, R.; Ramchandran, K.; Kozintsev, I.V. Continuous error detection (CED) for reliable communication. IEEE Trans. Commun. 2001, 49, 1540–1549. [Google Scholar] [CrossRef]
- Grangetto, M.; Cosman, P.; Olmo, G. Joint source/channel coding and MAP decoding of arithmetic codes. IEEE Trans. Commun. 2005, 53, 1007–1016. [Google Scholar] [CrossRef]
- Malinowski, S.; Artigas, X.; Guillemot, C.; Torres, L. Distributed coding using punctured quasi-arithmetic codes for memory and memoryless sources. IEEE Trans. Signal Process. 2009, 57, 4154–4158. [Google Scholar] [CrossRef] [Green Version]
- Grangetto, M.; Magli, E.; Olmo, G. Distributed arithmetic coding. IEEE Commun. Lett. 2007, 11, 883–885. [Google Scholar] [CrossRef]
- Grangetto, M.; Magli, E.; Olmo, G. Distributed arithmetic coding for the Slepian-Wolf problem. IEEE Trans. Signal Process. 2009, 57, 2245–2257. [Google Scholar] [CrossRef]
- Artigas, X.; Malinowski, S.; Guillemot, C.; Torres, L. Overlapped quasi-arithmetic codes for distributed video coding. Proc. IEEE ICIP 2007, II, 9–12. [Google Scholar]
- Yang, N.; Fang, Y.; Wang, L.; Wang, Z.; Jiang, F. Approximation of initial coset cardinality spectrum of distributed arithmetic coding for uniform binary sources. IEEE Commun. Lett. 2022. in progress to appear. [Google Scholar] [CrossRef]
- Fang, Y.; Jeong, J. Distributed arithmetic coding for sources with hidden Markov correlation. arXiv 2008, arXiv:2101.02336. [Google Scholar]
- Fang, Y. Q-ary distributed arithmetic coding for uniform Q-ary sources. IEEE Trans. Inf. Theory. in progress to appear. [CrossRef]
- Zhou, J.; Wong, K.; Chen, J. Distributed block arithmetic coding for equiprobable sources. IEEE Sens. J. 2013, 13, 2750–2756. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, Y.; Kiringa, I. Non-binary distributed arithmetic coding. In Proceedings of the IEEE 14th Canadian Workshop Information Theory (CWIT), St. John’s, NL, Canada, 6–9 July 2015; pp. 5–8. [Google Scholar]
- Fang, Y. Distribution of distributed arithmetic codewords for equiprobable binary sources. IEEE Signal Process. Lett. 2009, 16, 1079–1082. [Google Scholar] [CrossRef]
- Fang, Y. DAC spectrum of binary sources with equally-likely symbols. IEEE Trans. Commun. 2013, 61, 1584–1594. [Google Scholar] [CrossRef]
- Fang, Y.; Stankovic, V.; Cheng, S.; Yang, E.-H. Analysis on tailed distributed arithmetic codes for uniform binary sources. IEEE Trans. Commun. 2016, 64, 4305–4319. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Stankovic, V. Codebook cardinality spectrum of distributed arithmetic coding for independent and identically-distributed binary sources. IEEE Trans. Inf. Theory 2020, 66, 6580–6596. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, L. Improved binary DAC codec with spectrum for equiprobable sources. IEEE Trans. Commun. 2014, 62, 256–268. [Google Scholar] [CrossRef]
- Fang, Y. Two applications of coset cardinality spectrum of distributed arithmetic coding. IEEE Trans. Inf. Theory 2021, 67, 8335–8350. [Google Scholar] [CrossRef]
- GitHub. Available online: https://github.com/fy79/dac_ccs_num (accessed on 15 December 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Yang, N. Fair Numerical Algorithm of Coset Cardinality Spectrum for Distributed Arithmetic Coding. Entropy 2023, 25, 437. https://doi.org/10.3390/e25030437
Fang Y, Yang N. Fair Numerical Algorithm of Coset Cardinality Spectrum for Distributed Arithmetic Coding. Entropy. 2023; 25(3):437. https://doi.org/10.3390/e25030437
Chicago/Turabian StyleFang, Yong, and Nan Yang. 2023. "Fair Numerical Algorithm of Coset Cardinality Spectrum for Distributed Arithmetic Coding" Entropy 25, no. 3: 437. https://doi.org/10.3390/e25030437
APA StyleFang, Y., & Yang, N. (2023). Fair Numerical Algorithm of Coset Cardinality Spectrum for Distributed Arithmetic Coding. Entropy, 25(3), 437. https://doi.org/10.3390/e25030437