Clustered Distributed Data Storage Repairing Multiple Failures
Abstract
:1. Introduction
- (1)
- We first study the trade-off between the storage and repair bandwidth for clustered distributed storage systems for multiple failures with zero cross-cluster bandwidth using a conventional maximum-flow, min-cut analysis over an information flow graph;
- (2)
- We calculate the parameter values for two extreme points on the trade-off curve, namely the minimum storage clustered collaborative repair (MSCCR) point and the minimum bandwidth clustered collaborative repair (MBCCR) point;
- (3)
- We analyze the repair bandwidth performance using different system parameters at the MSCCR and MBCCR points;
- (4)
- We also provide explicit constructions to optimize the two extreme points on the trade-off curve, which implies that our constructions are optimal in terms of the repair bandwidth.
2. Related Works
2.1. Collaborative Regenerating Codes
2.2. Clustered Storage Codes
3. The System Model
4. Trade-Off Between the Storage Capacity and Repair Bandwidth
5. Two Extreme Points
6. Bandwidth Analysis
6.1. The MSCCR Point
6.2. The MBCCR Point
7. Code Constructions
7.1. Minimum Bandwidth Clustered Collaborative Repair (MBCCR) Codes
7.2. Minimum Storage Clustered Collaborative Repair (MSCCR) Codes
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B. The Parameters for the MSCCR Point and the MBCCR Point
Appendix B.1. Parameters for the MSCCR Point
Appendix B.2. Parameters for the MBCCR Point
References
- Ghemawat, S.; Gobioff, H.; Leung, S.T. The Google File System. ACM Sigops Oper. Syst. Rev. 2003, 37, 29–43. [Google Scholar] [CrossRef]
- Muralidhar, S.; Lloyd, W.; Roy, S.; Hill, C.; Lin, E.; Liu, W.; Pan, S.; Shankar, S.; Sivakumar, V.; Tang, L.; et al. f4: Facebook’s Warm BLOB Storage System. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), Broomfield, CO, USA, 6–8 October 2014; pp. 383–398. [Google Scholar]
- Bhagwan, R.; Tati, K.; Cheng, Y.C.; Savage, S.; Voelker, G.M. Total Recall: System Support for Automated Availability Management. In Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 04), San Francisco, CA, USA, 29–31 March 2004. [Google Scholar]
- Dimakis, A.G.; Godfrey, P.B.; Wu, Y.; Wainwright, M.J.; Ramchandran, K. Network Coding for Distributed Storage Systems. IEEE Trans. Inf. Theory 2010, 56, 4539–4551. [Google Scholar] [CrossRef]
- Kermarrec, A.M.; Le Scouarnec, N.; Straub, G. Repairing Multiple Failures with Coordinated and Adaptive Regenerating Codes. In Proceedings of the 2011 International Symposium on Networking Coding, Beijing, China, 25–27 July 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, Y.; Wang, X.; Zhan, C.; Li, P. Cooperative Recovery of Distributed Storage Systems from Multiple Losses with Network Coding. IEEE J. Sel. Areas Commun. 2010, 28, 268–276. [Google Scholar] [CrossRef]
- Shum, K.W.; Hu, Y. Cooperative Regenerating Codes. IEEE Trans. Inf. Theory 2013, 59, 7229–7258. [Google Scholar] [CrossRef]
- Ahmad, F.; Chakradhar, S.T.; Raghunathan, A.; Vijaykumar, T.N. ShuffleWatcher: Shuffle-aware Scheduling in Multi-tenant MapReduce Clusters. In Proceedings of the 2014 USENIX Annual Technical Conference (USENIX ATC 14), Philadelphia, PA, USA, 19–20 June 2014; pp. 1–13. [Google Scholar]
- Benson, T.; Akella, A.; Maltz, D.A. Network traffic characteristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, New York, NY, USA, 1–30 November 2010; pp. 267–280. [Google Scholar] [CrossRef]
- Vahdat, A.; Al-Fares, M.; Farrington, N.; Mysore, R.N.; Porter, G.; Radhakrishnan, S. Scale-Out Networking in the Data Center. IEEE Micro 2010, 30, 29–41. [Google Scholar] [CrossRef]
- Gastón, B.; Pujol, J.; Villanueva, M. A Realistic Distributed Storage System That Minimizes Data Storage and Repair Bandwidth. In Proceedings of the 2013 Data Compression Conference, Snowbird, UH, USA, 20–22 March 2013; p. 491. [Google Scholar] [CrossRef]
- Pernas, J.; Yuen, C.; Gastón, B.; Pujol, J. Non-homogeneous two-rack model for distributed storage systems. In Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013; pp. 1237–1241. [Google Scholar] [CrossRef]
- Sohn, J.Y.; Choi, B.; Yoon, S.W.; Moon, J. Capacity of Clustered Distributed Storage. IEEE Trans. Inf. Theory 2019, 65, 81–107. [Google Scholar] [CrossRef]
- Sohn, J.; Choi, B.; Moon, J. A Class of MSR Codes for Clustered Distributed Storage. In Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 2366–2370. [Google Scholar] [CrossRef]
- Hu, Y.; Lee, P.P.C.; Zhang, X. Double Regenerating Codes for hierarchical data centers. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 245–249. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Zhang, M.; Lee, P.P.C.; Zhang, X.; Zhou, P.; Feng, D. Optimal repair layering for erasure-coded data centers: From theory to practice. ACM Trans. Storage (TOS) 2020, 13, 1–24. [Google Scholar] [CrossRef]
- Tebbi, M.A.; Chan, T.H.; Sung, C.W. A code design framework for multi-rack distributed storage. In Proceedings of the 2014 IEEE Information Theory Workshop (ITW 2014), Hobart, Australia, 2–5 November 2014; pp. 55–59. [Google Scholar] [CrossRef]
- Hou, H.; Lee, P.P.C.; Shum, K.W.; Hu, Y. Rack-Aware Regenerating Codes for Data Centers. IEEE Trans. Inf. Theory 2019, 65, 4730–4745. [Google Scholar] [CrossRef]
- Hou, H.; Lee, P.P.C. Generalized Rack-aware Regenerating Codes for Jointly Optimal Node and Rack Repairs. In Proceedings of the 2021 IEEE International Symposium on Information Theory (ISIT), Victoria, Australia, 12–20 July 2021; pp. 2191–2196. [Google Scholar] [CrossRef]
- Yu, B.; Jiang, Z.; Huang, Z.; Song, L.; Hou, H. Product-Matrix Construction of Minimum Storage Rack-aware Regenerating Codes. In Proceedings of the 2023 International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2–4 November 2023; pp. 287–292. [Google Scholar] [CrossRef]
- Chen, Z.; Barg, A. Explicit Constructions of MSR Codes for Clustered Distributed Storage: The Rack-Aware Storage Model. IEEE Trans. Inf. Theory 2020, 66, 886–899. [Google Scholar] [CrossRef]
- Hou, H.; Lee, P.P.C.; Han, Y.S. Minimum Storage Rack-Aware Regenerating Codes with Exact Repair and Small Sub-Packetization. In Proceedings of the 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA, USA, 21–26 June 2020; pp. 554–559. [Google Scholar] [CrossRef]
- Jin, L.; Luo, G.; Xing, C. Optimal Repairing Schemes for Reed Solomon Codes with Alphabet Sizes Linear in Lengths under the Rack Aware Model. arXiv 2019, arXiv:1911.08016. [Google Scholar]
- Bao, H.; Wang, Y.; Xu, F. An Adaptive Erasure Code for JointCloud Storage of Internet of Things Big Data. IEEE Internet Things J. 2020, 7, 1613–1624. [Google Scholar] [CrossRef]
- Shen, Z.; Shu, J.; Lee, P.P.C. Reconsidering Single Failure Recovery in Clustered File Systems. In Proceedings of the 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Toulouse, France, 28 June–1 July 2016; pp. 323–334. [Google Scholar] [CrossRef]
- Abdrashitov, V.; Prakash, N.; Médard, M. The storage vs repair bandwidth trade-off for multiple failures in clustered storage networks. In Proceedings of the 2017 IEEE Information Theory Workshop (ITW), Kaohsiung, Taiwan, 6–10 November 2017; pp. 46–50. [Google Scholar] [CrossRef]
- Gupta, S.; Lalitha, V. Rack-Aware Cooperative Regenerating Codes. In Proceedings of the 2020 International Symposium on Information Theory and Its Applications (ISITA), Virtual, 24–27 October 2020; pp. 264–268. [Google Scholar]
- Gupta, S.; Devi, B.R.; Lalitha, V. On Rack-Aware Cooperative Regenerating Codes and Epsilon-MSCR Codes. IEEE J. Sel. Areas Inf. Theory 2022, 3, 362–378. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Z. Rack-Aware Regenerating Codes with Multiple Erasure Tolerance. IEEE Trans. Commun. 2022, 70, 4316–4326. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, D.; Li, S.; Tang, X. Rack-Aware MSR Codes with Error Correction Capability for Multiple Erasure Tolerance. IEEE Trans. Inf. Theory 2023, 69, 6428–6442. [Google Scholar] [CrossRef]
- Wang, J.; Guan, X. Rack-Aware Minimum-Storage Regenerating Codes with Optimal Access for Consecutive Node Failures. In Proceedings of the 2024 IEEE Information Theory Workshop (ITW), Shenzhen, China, 24–28 November 2024; pp. 259–264. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z. Low-access repair of Reed-Solomon codes in rack-aware storage. In Proceedings of the 2023 IEEE International Symposium on Information Theory (ISIT), Taipei, Taiwan, 25–30 June 2023; pp. 1142–1147. [Google Scholar] [CrossRef]
- Le Scouarnec, N. Exact scalar minimum storage coordinated regenerating codes. In Proceedings of the 2012 IEEE International Symposium on Information Theory Proceedings, Cambridge, MA, USA, 1–6 July 2012; pp. 1197–1201. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, Z. Exact cooperative regenerating codes with minimum-repair-bandwidth for distributed storage. In Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 400–404. [Google Scholar] [CrossRef]
- Jiekak, S.; Scouarnec, N.L. CROSS-MBCR: Exact minimum bandwidth coordinated regenerating codes. arXiv 2012, arXiv:1207.0854. [Google Scholar]
- Li, J.; Li, B. Cooperative repair with minimum-storage regenerating codes for distributed storage. In Proceedings of the IEEE INFOCOM 2014-IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014; pp. 316–324. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z. Scalar MSCR Codes via the Product Matrix Construction. IEEE Trans. Inf. Theory 2020, 66, 995–1006. [Google Scholar] [CrossRef]
- Ye, M.; Barg, A. Cooperative Repair: Constructions of Optimal MDS Codes for All Admissible Parameters. IEEE Trans. Inf. Theory 2019, 65, 1639–1656. [Google Scholar] [CrossRef]
- Ye, M. New Constructions of Cooperative MSR Codes: Reducing Node Size to exp(O(n)). IEEE Trans. Inf. Theory 2020, 66, 7457–7464. [Google Scholar] [CrossRef]
- Liu, S.; Oggier, F. On storage codes allowing partially collaborative repairs. In Proceedings of the 2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA, 29 June–4 July 2014; pp. 2440–2444. [Google Scholar] [CrossRef]
- Liu, S.; Shum, K.W.; Li, C. Exact-Repair Codes with Partial Collaboration in Distributed Storage Systems. IEEE Trans. Commun. 2020, 68, 4012–4021. [Google Scholar] [CrossRef]
- Liu, S.; Oggier, F.E. On applications of orbit codes to storage. Adv. Math. Commun. 2016, 10, 113–130. [Google Scholar] [CrossRef]
- Liu, S.; Oggier, F. Two storage code constructions allowing partially collaborative repairs. In Proceedings of the 2014 International Symposium on Information Theory and its Applications, Melbourne, Australia, 26–29 October 2014; pp. 378–382. [Google Scholar]
- Zorgui, M.; Wang, Z. Centralized Multi-Node Repair Regenerating Codes. IEEE Trans. Inf. Theory 2019, 65, 4180–4206. [Google Scholar] [CrossRef]
- Rawat, A.S.; Koyluoglu, O.O.; Vishwanath, S. Centralized Repair of Multiple Node Failures with Applications to Communication Efficient Secret Sharing. IEEE Trans. Inf. Theory 2018, 64, 7529–7550. [Google Scholar] [CrossRef]
- Gabidulin, E.M. Theory of Codes with Maximum Rank Distance. Probl. Inform. Transm. 1985, 21, 1–12. [Google Scholar]
- Roth, R. Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inf. Theory 1991, 37, 328–336. [Google Scholar] [CrossRef]
Symbol | Meaning |
---|---|
M | size of the object |
n | number of nodes storing data for one object |
L | number of clusters |
l | number of nodes in each cluster |
k | reconstruction degree |
t | number of failures which triggers a repair |
storage capacity per node | |
amount of data downloaded from each survival node | |
amount of data downloaded from each new node | |
total repair bandwidth per repair |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Ye, F.; Wu, Q. Clustered Distributed Data Storage Repairing Multiple Failures. Entropy 2025, 27, 313. https://doi.org/10.3390/e27030313
Liu S, Ye F, Wu Q. Clustered Distributed Data Storage Repairing Multiple Failures. Entropy. 2025; 27(3):313. https://doi.org/10.3390/e27030313
Chicago/Turabian StyleLiu, Shiqiu, Fangwei Ye, and Qihui Wu. 2025. "Clustered Distributed Data Storage Repairing Multiple Failures" Entropy 27, no. 3: 313. https://doi.org/10.3390/e27030313
APA StyleLiu, S., Ye, F., & Wu, Q. (2025). Clustered Distributed Data Storage Repairing Multiple Failures. Entropy, 27(3), 313. https://doi.org/10.3390/e27030313