Facile Preparation of CuS Nanoparticles from the Interfaces of Hydrophobic Ionic Liquids and Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structural Characterization of CuS
2.2. Ultraviolet–Visible (UV/Vis) Spectra of CuS
2.3. Catalytic Activities
3. Materials and Methods
3.1. Materials
3.2. Preparation of Nano CuS
3.3. Measurement of Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, L.; Zhou, L.; Sun, C.; Gu, Y.; Wen, W.; Fang, X. Rose-like CuS microflowers and their enhanced visible-light photocatalytic performance. CrystEngComm 2018, 20, 6529–6537. [Google Scholar] [CrossRef]
- Riyaz, S.; Parveen, A.; Azam, A. Microstructural and optical properties of CuS nanoparticles prepared by sol-gel route. Perspect. Sci. 2016, 8, 632–635. [Google Scholar] [CrossRef]
- Saranya, M.; Santhosh, C.; Augustine, S.P.; Grace, A.N. Synthesis and characterisation of CuS nanomaterials using hydrothermal route. J. Exp. Nanosci. 2014, 9, 329–336. [Google Scholar] [CrossRef]
- Nethravathi, C.; Nath, R.R.; Rajamathi, J.T.; Rajamathi, M. Microwave-assisted synthesis of porous aggregates of CuS nanoparticles for sunlight photocatalysis. ACS Omega 2019, 4, 4825–4831. [Google Scholar] [CrossRef]
- Roy, P.; Srivastava, S.K. Nanostructured copper sulfides: synthesis, properties and applications. CrystEngComm 2015, 17, 7801–7815. [Google Scholar] [CrossRef]
- Tanveer, M.; Cao, C.; Aslam, I.; Ali, Z.; Idrees, F.; Khan, W.S.; Tahir, M.; Khalid, S.; Nabi, G.; Mahmood, A. Synthesis of CuS flowers exhibiting versatile photo-catalyst response. New J. Chem. 2015, 39, 1459–1468. [Google Scholar] [CrossRef]
- Wang, L. Synthetic methods of CuS nanoparticles and their applications for imaging and cancer therapy. RSC Adv. 2016, 6, 82596–82615. [Google Scholar] [CrossRef]
- He, W.; Jia, H.; Li, X.; Lei, Y.; Li, J.; Zhao, H.; Mi, L.; Zhang, L.; Zheng, Z. Understanding the formation of CuS concave superstructures with peroxidase-like activity. Nanoscale 2012, 4, 3501–3506. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, S.; Wang, Q.; Geng, B. A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst. CrystEngComm 2010, 12, 144–149. [Google Scholar] [CrossRef]
- Xu, C.; Wang, L.; Zou, D.; Ying, T. Ionic liquid-assisted synthesis of hierarchical CuS nanostructures at room temperature. Mater. Lett. 2008, 62, 3181–3184. [Google Scholar] [CrossRef]
- Mezgebe, M.M.; Ju, A.; Wei, G.; Macharia, D.K.; Guang, S.; Xu, H. Structure based optical properties and catalytic activities of hydrothermally prepared CuS nanostructures. Nanotechnology 2019, 30, 105704. [Google Scholar] [CrossRef]
- Nafees, M.; Ali, S.; Rasheed, K.; Idrees, S. The novel and economical way to synthesize CuS nanomaterial of different morphologies by aqueous medium employing microwaves irradiation. Appl. Nanosci. 2012, 2, 157–162. [Google Scholar] [CrossRef]
- Yao, K.; Zhao, C.; Sun, N.; Lu, W.; Zhang, Y.; Wang, H.; Wang, J. Freestanding CuS nanowalls: Ionic liquids assisted synthesis and prominent catalytic decomposition performance for ammonium perchlorate. CrystEngComm 2017, 19, 5048–5057. [Google Scholar] [CrossRef]
- Kim, Y.; Heyne, B.; Abouserie, A.; Pries, C.; Ippen, C.; Günter, C.; Taubert, A.; Wedel, A. CuS nanoplates from ionic liquid precursors—application in organic photovoltaic cells. J. Chem. Phys. 2018, 148, 193818. [Google Scholar] [CrossRef] [PubMed]
- Estrada, A.C.; Silva, F.M.; Soares, S.F.; Coutinho, J.A.P.; Trindade, T. An ionic liquid route to prepare copper sulfide nanocrystals aiming photocatalytic applications. RSC Adv. 2016, 6, 34521–34528. [Google Scholar] [CrossRef]
- Yao, K.; Lu, W.; Li, X.; Wang, J. Ionic liquids-modulated two-phase thermal synthesis of three-dimensional CuS nanostructures. J. Solid State Chem. 2012, 196, 557–564. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, B.; Koo, Y.M.; MacFarlane, D.R. Introduction: ionic liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef]
- Yavir, K.; Marcinkowski, Ł.; Marcinkowska, R.; Namieśnik, J.; Kloskowski, A. Analytical applications and physicochemical properties of ionic liquid-based hybrid materials: a review. Anal. Chim. Acta 2019, 1054, 1–16. [Google Scholar] [CrossRef]
- Du, Y.; Yin, Z.; Zhu, J.; Huang, X.; Wu, X.J.; Zeng, Z.; Yan, Q.; Zhang, H. A general method for the large-scale synthesis of uniform ultrathin metal sulfide nanocrystals. Nat. Commun. 2012, 3, 1177. [Google Scholar] [CrossRef]
- Meng, X.; Tian, G.; Chen, Y.; Zhai, R.; Zhou, J.; Shi, Y.; Cao, X.; Zhou, W.; Fu, H. Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties. CrystEngComm 2013, 15, 5144–5149. [Google Scholar] [CrossRef]
- Qian, J.; Zhao, Z.; Shen, Z.; Zhang, G.; Peng, Z.; Fu, X. A large scale of CuS nano-networks: catalyst-free morphologically controllable growth and their application as efficient photocatalysts. J. Mater. Res. 2015, 30, 3746–3756. [Google Scholar] [CrossRef]
- Sreelekha, N.; Subramanyam, K.; Reddy, D.A.; Murali, G.; Varma, K.R.; Vijayalakshmi, R.P. Efficient photocatalytic degradation of rhodamine-B by Fe doped CuS diluted magnetic semiconductor nanoparticles under the simulated sunlight irradiation. Solid State Sci. 2016, 62, 71–81. [Google Scholar] [CrossRef]
- Hu, H.; Wang, J.; Deng, C.; Niu, C.; Le, H. Microwave-assisted controllable synthesis of hierarchical CuS nanospheres displaying fast and efficient photocatalytic activities. J. Mater. Sci. 2018, 53, 14250–14261. [Google Scholar] [CrossRef]
- Al-Kahtani, A.A. Photocatalytic degradation of rhodamine B dye in wastewater using gelatin/CuS/PVA nanocomposites under solar light irradiation. J. Biomater. Nanobiotechnol. 2017, 8, 66–82. [Google Scholar] [CrossRef]
- Peng, S.; He, Y.; Er, M.; Sheng, Y.; Gu, Y.; Chen, H. Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy in vivo. Biomater. Sci. 2017, 5, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhou, J.; Zhuang, J.; Gao, H.; Huang, D.; Wang, L.; Wu, W.; Li, Q.; Yang, D.P.; Han, M.Y. Strong near-infrared absorbing and biocompatible CuS nanoparticles for rapid and efficient photothermal ablation of gram-positive and -negative bacteria. ACS Appl. Mater. Inter. 2017, 9, 36606–36614. [Google Scholar] [CrossRef]
- Nikinmaa, M. What causes aquatic contamination? In An Introduction to Aquatic Toxicology, 1st ed.; Nikinmaa, M., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 19–39. [Google Scholar]
- Štengl, V.; Králová, D. TiO2/ZnS/CdS nanocomposite for hydrogen evolution and orange II dye degradation. Int. J. Photoenergy 2011, 2011, 1–14. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Catalyst | Mass Ratio of RhB to Catalyst (mRhB/mCuS) | Degradation Time (min) | Irradiation Source | Degradation Efficiency (%, v/v) | Reference |
---|---|---|---|---|---|
Flower-like CuS hollow nanospheres | 10−2 | 40 | Xe lamp (150 W) | >90% | 20 |
CuS nanoneedles | 1.25 × 10−2 | 105 | Mercury lamp (500 W) | 91% | 21 |
CuS hierarchical microflowers | 6.0 × 10−2 | 55 | Natural light | 95% | 6 |
CuS nanospheres | 2.0 × 10−2 | 20 | Xe lamp (300 W) | About 100% | 23 |
CuS ball-flowers | 4.8 × 10−2 | 60 | Mercury lamp (300 W) | About 100% | 9 |
CuS nanoplates | 5.0 × 10−2 | 40 | Natural light | 90.8% | This work |
CuS nanospheres | 5.0 × 10−2 | 30 | Natural light | 90.2% | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Li, Y.; Han, X.; Wu, X.; Zhang, L.; Wang, Q. Facile Preparation of CuS Nanoparticles from the Interfaces of Hydrophobic Ionic Liquids and Water. Molecules 2019, 24, 3776. https://doi.org/10.3390/molecules24203776
Fan Y, Li Y, Han X, Wu X, Zhang L, Wang Q. Facile Preparation of CuS Nanoparticles from the Interfaces of Hydrophobic Ionic Liquids and Water. Molecules. 2019; 24(20):3776. https://doi.org/10.3390/molecules24203776
Chicago/Turabian StyleFan, Yunchang, Yingcun Li, Xiaojiang Han, Xiaojie Wu, Lina Zhang, and Qiang Wang. 2019. "Facile Preparation of CuS Nanoparticles from the Interfaces of Hydrophobic Ionic Liquids and Water" Molecules 24, no. 20: 3776. https://doi.org/10.3390/molecules24203776
APA StyleFan, Y., Li, Y., Han, X., Wu, X., Zhang, L., & Wang, Q. (2019). Facile Preparation of CuS Nanoparticles from the Interfaces of Hydrophobic Ionic Liquids and Water. Molecules, 24(20), 3776. https://doi.org/10.3390/molecules24203776