Ti-V-C-Based Alloy with a FCC Lattice Structure for Hydrogen Storage
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schlapbach, L.; Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Buckley, C.E.; Chen, P.; van Hassel, B.A.; Hirscher, M. Hydrogen-based Energy Storage (IEA-HIA Task 32). Appl. Phys. A 2016, 122, 141. [Google Scholar] [CrossRef]
- Mohtadi, R.; Orimo, S.-I. The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2016, 2, 16091. [Google Scholar] [CrossRef]
- Wang, H.; Lin, H.J.; Cai, W.T.; Ouyang, L.Z.; Zhu, M. Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems—A review of recent progress. J. Alloys Compd. 2016, 658, 280–300. [Google Scholar] [CrossRef]
- Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D.J. High capacity hydrogen storage materials: Attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 2010, 39, 656–675. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; He, L.; Lin, H.; Li, H.W. Progress and Trends in Magnesium-Based Materials for Energy-Storage Research: A Review. Energy Technol. 2018, 6, 445–458. [Google Scholar] [CrossRef]
- Ono, S.; Nomura, K.; Ikeda, Y. The Reaction of Hydrogen with Alloys of Vanadium and Titanium. J. Less-Common Met. 1980, 72, 159–165. [Google Scholar] [CrossRef]
- Matsuda, J.; Akiba, E. Lattice defects in V-Ti BCC alloys before and after hydrogenation. J. Alloys Compd. 2013, 581, 369–372. [Google Scholar] [CrossRef]
- Kim, H.; Sakaki, K.; Nakamura, Y. Improving the Cyclic Stability of V-Ti-Mn BCC Alloys Using Interstitial Elements. Mater. Trans. 2014, 55, 1144–1148. [Google Scholar] [CrossRef]
- Suwarno, S.; Solberg, J.K.; Krogh, B.; Raaen, S.; Yartys, V.A. High temperature hydrogenation of Ti-V alloys: The effect of cycling and carbon monoxide on the bulk and surface properties. Int. J. Hydrogen Energy 2016, 41, 1699–1710. [Google Scholar] [CrossRef]
- Banerjee, S.; Kumar, A.; Ruz, P.; Sengupta, P. Influence of Laves phase on microstructure and hydrogen storage properties of Ti-Cr-V based alloy. Int. J. Hydrogen Energy 2016, 41, 18130–18140. [Google Scholar] [CrossRef]
- Zhu, J.B.; Ma, L.Q.; Liang, F.; Wang, L.M. Effect of Sc substitution on hydrogen storage properties of Ti-V-Cr-Mn alloys. Int. J. Hydrogen Energy 2015, 40, 6860–6865. [Google Scholar] [CrossRef]
- Qiu, S.J.; Huang, J.L.; Chu, H.L.; Zou, Y.J.; Xiang, C.L.; Zhang, H.Z.; Xu, F.; Sun, L.X.; Zhou, H.Y. Influence of boron introduction on structure and electrochemical hydrogen storage properties of Ti-V-based alloys. J. Alloys Compd. 2015, 648, 320–325. [Google Scholar] [CrossRef]
- Skryabina, N.; Fruchart, D.; Shelyapina, M.G.; Dolukhanyan, S.; Aleksanyan, A. Phase transformations in Ti–V hydrides. J. Alloys Compd. 2013, 580, S94–S97. [Google Scholar] [CrossRef]
- Li, J.D.; Li, B.; Shao, H.Y.; Li, W.; Lin, H.J. Catalysis and Downsizing in Mg-Based Hydrogen Storage Materials. Catalysts 2018, 8, 89. [Google Scholar] [CrossRef]
- Gao, Q.L.; Xia, G.L.; Yu, X.B. Confined NaAlH4 nanoparticles inside CeO2 hollow nanotubes towards enhanced hydrogen storage. Nanoscale 2017, 9, 14612–14619. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.H.; Ouyang, L.Z.; Liu, J.W.; Wang, H.; Shao, H.Y.; Zhu, M. Enhanced hydrogen generation by hydrolysis of Mg doped with flower-like MoS2 for fuel cell applications. J. Power Sources 2017, 365, 273–281. [Google Scholar] [CrossRef]
- Lin, J.; Cao, Z.Y.; Sun, L.S.; Liang, F.; Wang, L.M. Improved electrochemical performance of Ti1.4V0.6Ni hydrogen storage alloy in its composite with LiAlH4. J. Alloys Compd. 2017, 724, 1–7. [Google Scholar] [CrossRef]
- Yang, T.; Liang, C.Y.; Wang, X.H.; Wang, H.S.; Yuan, Z.M.; Yin, F.X.; Li, Q.; Zhang, Y.H. Effect of graphite (GR) content on microstructure and hydrogen storage properties of nanocrystalline Mg24Y3-Ni-GR composites. J. Alloys Compd. 2017, 726, 498–506. [Google Scholar] [CrossRef]
- Li, B.; Li, J.; Shao, H.; He, L. Mg-Based Hydrogen Absorbing Materials for Thermal Energy Storage—A Review. Appl. Sci. 2018, 8, 1375. [Google Scholar] [CrossRef]
- Shao, H.; Asano, K.; Enoki, H.; Akiba, E. Fabrication and hydrogen storage property study of nanostructured Mg-Ni-B ternary alloys. J. Alloys Compd. 2009, 479, 409–413. [Google Scholar] [CrossRef]
- Shao, H.; Felderhoff, M.; Schuth, F. Hydrogen storage properties of nanostructured MgH2/TiH2 composite prepared by ball milling under high hydrogen pressure. Int. J. Hydrogen Energy 2011, 36, 10828–10833. [Google Scholar] [CrossRef]
- Shao, H.Y.; Asano, K.; Enoki, H.; Akiba, E. Preparation and hydrogen storage properties of nanostructured Mg-Ni BCC alloys. J. Alloys Compd. 2009, 477, 301–306. [Google Scholar] [CrossRef]
- Shao, H.Y.; Matsuda, J.; Li, H.W.; Akiba, E.; Jain, A.; Ichikawa, T.; Kojima, Y. Phase and morphology evolution study of ball milled Mg-Co hydrogen storage alloys. Int. J. Hydrogen Energy 2013, 38, 7070–7076. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Li, B.; He, L.; Lin, H.; Li, H.-W.; Shao, H. Advanced sem and tem techniques applied in Mg-based hydrogen storage research. Scanning 2018, 2018, 6057496. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, J.; Shao, H.; Li, W.; Lin, H. Synthesis, Morphology, and Hydrogen Absorption Properties of TiVMn and TiCrMn Nanoalloys with a FCC Structure. Scanning 2018, 2018, 5906473. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Asano, K.; Enoki, H.; Akiba, E. Correlation study between hydrogen absorption property and lattice structure of Mg-based BCC alloys. Int. J. Hydrogen Energy 2008, 34, 2312–2318. [Google Scholar] [CrossRef]
- Shao, H.; Asano, K.; Enoki, H.; Akiba, E. Fabrication, hydrogen storage properties and mechanistic study of nanostructured Mg50Co50 body-centered cubic alloy. Scr. Mater. 2009, 60, 818–821. [Google Scholar] [CrossRef]
- Shao, H.; Xin, G.; Zheng, J.; Li, X.; Akiba, E. Nanotechnology in Mg-based materials for hydrogen storage. Nano Energy 2012, 1, 590–601. [Google Scholar] [CrossRef]
- Gringoz, A.; Glandut, N.; Valette, S. Electrochemical hydrogen storage in TiC0. 6, not in TiC0.9. Electrochem. Commun. 2009, 11, 2044–2047. [Google Scholar] [CrossRef]
- Ding, H.; Fan, X.; Li, C.; Liu, X.; Jiang, D.; Wang, C. First-principles study of hydrogen storage in non-stoichiometric TiCx. J. Alloys Compd. 2013, 551, 67–71. [Google Scholar] [CrossRef]
- Nguyen, J.; Glandut, N.; Jaoul, C.; Lefort, P. Hydrogen insertion in substoichiometric titanium carbide. Int. J. Hydrogen Energy 2015, 40, 8562–8570. [Google Scholar] [CrossRef]
- Nozaki, T.; Homma, H.; Hatano, Y. Pressure-Composition Isotherms of TiC1−x–H System at Elevated Temperatures. Mater. Trans. 2011, 52, 526–530. [Google Scholar] [CrossRef]
- Takahashi, J.; Kawakami, K.; Tarui, T. Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography. Scr. Mater. 2012, 67, 213–216. [Google Scholar] [CrossRef]
- Völkl, J.; Alefeld, G.; Nowick, A.; Burton, J. Diffusion in Solids; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Luo, Q.; Li, J.; Li, B.; Liu, B.; Shao, H.; Li, Q. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism. J. Magnes. Alloys 2019. [Google Scholar] [CrossRef]
- Song, M.Y. Hydriding kinetics of a mechanically alloyed mixture Mg–10wt% Ni. Int. J. Hydrogen Energy 2003, 28, 403–408. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Li, Q.; Chou, K.-C.; Xu, K.-D. Investigation on kinetics mechanism of hydrogen absorption in the La2Mg17-based composites. Int. J. Hydrogen Energy 2009, 34, 1951–1957. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; He, L.; Li, J.; Li, H.-W.; Lu, Z.; Shao, H. Ti-V-C-Based Alloy with a FCC Lattice Structure for Hydrogen Storage. Molecules 2019, 24, 552. https://doi.org/10.3390/molecules24030552
Li B, He L, Li J, Li H-W, Lu Z, Shao H. Ti-V-C-Based Alloy with a FCC Lattice Structure for Hydrogen Storage. Molecules. 2019; 24(3):552. https://doi.org/10.3390/molecules24030552
Chicago/Turabian StyleLi, Bo, Liqing He, Jianding Li, Hai-Wen Li, Zhouguang Lu, and Huaiyu Shao. 2019. "Ti-V-C-Based Alloy with a FCC Lattice Structure for Hydrogen Storage" Molecules 24, no. 3: 552. https://doi.org/10.3390/molecules24030552
APA StyleLi, B., He, L., Li, J., Li, H. -W., Lu, Z., & Shao, H. (2019). Ti-V-C-Based Alloy with a FCC Lattice Structure for Hydrogen Storage. Molecules, 24(3), 552. https://doi.org/10.3390/molecules24030552