Green Synthesis of Encapsulated Copper Nanoparticles Using a Hydroalcoholic Extract of Moringa oleifera Leaves and Assessment of Their Antioxidant and Antimicrobial Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Analysis of the M. oleifera Leaves Extract
2.2. Characterization
2.2.1. Size and Morphology of the Synthesized Copper Nanoparticles
2.2.2. Fourier-Transform Infrared (FTIR) Spectroscopy of the M. oleifera Leaves Extract and the Synthesized Copper Nanoparticles
2.2.3. Ultraviolet-Visible Light (UV-Vis) Spectroscopy of the M. oleifera Leaves Extract and the Synthesized Copper Nanoparticles
2.3. Antioxidant Activity of the M. oleifera Leaves Extract and the Synthesized Copper Nanoparticles
2.4. Anti-Bacterial Activity of the M. oleifera Leaves Extract and the Synthesized Copper Nanoparticles
2.5. Anti-Fungal Activity of the M. oleifera Leaves Extract and the Synthesized Copper Nanoparticles
3. Materials and Methods
3.1. Preparation of the M. oleifera Leaves Extract
3.2. Synthesis of the Copper Nanoparticles
3.3. Characterization of the Size and Morphology of the Synthesized Copper Nanoparticles
3.4. Phytochemical Analysis of the M. oleifera Leaves Extract
3.5. Antioxidant Activity
3.5.1. DPPH Assay (Antioxidant Activity Percentage—AA%)
3.5.2. Phosphomolybdenum Assay (Total Antioxidant Capacity—TAC)
3.6. Anti-Bacterial Activity using Resazurin Microtiter Assay
3.7. Anti-Fungal Activity Using Resazurin Microtiter Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rathi, B.S.; Bodhankar, S.L.; Baheti, A.M. Evaluation of aqueous leaves extract of Moringa oleifera Linn for wound healing in albino rats. Indian J. Exp. Biol. 2006, 44, 898–901. [Google Scholar] [PubMed]
- Ogbe, A.O.; Affiku, J.P. Proximate study, mineral and anti-nutrient composition of Moringa oleifera leaves harvested from Lafia, Nigeria: Potential benefits in poultry nutrition and health. JMBFS 2011, 1, 296–308. [Google Scholar]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, D.J.; Stratford, M.; Gasson, M.J.; Ueckert, J.; Bos, A.; Narbad, A. Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J. App. Microbiol. 2004, 97, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, S.; Maheshwaran, S.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Rethavathi, J.; Das, P.E.; Poltronieri, P. Anti-bacterial and anti-fungal activity of xanthones obtained via semi-synthetic modification of α-mangostin from Garcinia mangostana. Molecules 2017, 22, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suwantong, O.; Pankongadisak, P.; Deachathai, S.; Supaphol, P. Electrospun poly(l-lactic acid) fiber mats containing crude Garcinia mangostana extracts for use as wound dressings. Polym. Bull. 2014, 71, 925–949. [Google Scholar] [CrossRef]
- Lakouraj, M.M.; Rahpaima, G.; Mohseni, M. Synthesis, characterization, metal sorption, and biological activities of organosoluble and thermally stable azoxanthone-based polyester. Polym. Adv. Tech. 2015, 26, 234–244. [Google Scholar] [CrossRef]
- Mun, S.H.; Joung, D.K.; Kim, Y.S.; Kang, O.H.; Kim, S.B.; Seo, Y.S.; Kwon, D.Y. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 2013, 20, 714–718. [Google Scholar] [CrossRef]
- Dogra, N.; Choudhary, R.; Kohli, P.; Haddock, J.D.; Makwana, S.; Horev, B.; Vinokur, Y.; Droby, S.; Rodov, V. Polydiacetylene nanovesicles as carriers of natural phenylpropanoids for creating antimicrobial food-contact surfaces. J. Agr. Food Chem. 2015, 63, 2557–2565. [Google Scholar] [CrossRef]
- Ravichandran, M.; Hettiarachchy, N.S.; Ganesh, V.; Ricke, S.C.; Singh, S. Enhancement of antimicrobial activities of naturally occurring phenolic compounds by nanoscale delivery against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium in broth and chicken meat system. J. Food Safety 2011, 31, 462–471. [Google Scholar] [CrossRef]
- Horev, B.; Sela, S.; Vinokur, Y.; Gorbatsevich, E.; Pinto, R.; Rodov, V. The effects of active and passive modified atmosphere packaging on the survival of Salmonella enterica serotype Typhimurium on washed romaine lettuce leaves. Food Res. Int. 2012, 45, 1129–1132. [Google Scholar] [CrossRef]
- Fadida, T.; Kroupitski, Y.; Peiper, U.M.; Bendikov, T.; Sela, S.; Poverenov, E. Air-ozonolysis to generate contact active antimicrobial surfaces: Activation of polyethylene and polystyrene followed by covalent graft of quaternary ammonium salts. Colloids Surf. B Biointerfaces 2014, 122, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Meridor, D.; Gedanken, A. Preparation of enzyme nanoparticles and studying the catalytic activity of the immobilized nanoparticles on polyethylene films. Ultrason. Sonochem. 2013, 20, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials 2013, 6, 2295–2350. [Google Scholar] [CrossRef] [Green Version]
- Malka, E.; Perelshtein, I.; Lipovsky, A.; Shalom, Y.; Naparstek, L.; Perkas, N.; Patick, T.; Lubart, R.; Nitzan, Y.; Banin, E.; et al. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 2013, 9, 4069–4076. [Google Scholar] [CrossRef]
- Borase, H.P.; Salunke, B.K.; Salunkhe, R.B.; Patil, C.D.; Hallsworth, J.E.; Kim, B.S.; Patil, S.V. Plant extract: A promising bio-matrix for ecofriendly, controlled synthesis of silver nanoparticles. Appl. Biochem. Biotechnol. 2014, 17, 1–29. [Google Scholar] [CrossRef]
- Park, Y. A new paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. J. Korean Soc. Toxicol. Res. 2014, 30, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Mohanta, Y.K.; Panda, S.K.; Jayabalan, R.; Sharma, N.; Bastia, A.K.; Mohanta, T.K. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front. Mol. Biosci. 2017, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Madhavaraj, L.; Sethumadhavan, V.V.; Geun, H.G.; Mathur, N.K.; Si, W.K. Synthesis, characterization and evaluation of antimicrobial efficacy of silver nanoparticles using Paederia foetida leaf extract. Intern. Res. J. Biol. Sci. 2013, 15, 76–80. [Google Scholar]
- Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces 2010, 76, 50–56. [Google Scholar] [CrossRef]
- Parveen, A.; Roy, A.S.; Rao, S. Biosynthesis and characterization of silver nanoparticles from Cassia auriculata leaf extract and in vitro evaluation of antimicrobial activity. Intern. J. Appl. Biol. Pharmaceutical Technol. 2012, 3, 222–228. [Google Scholar]
- Dubey, S.P.; Lahtinen, M.; Särkkä, H.; Sillanpää, M. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf. B Biointerfaces 2010, 80, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Gavhane, A.J.; Padmanabhan, P.; Kamble, S.P.; Jangle, S.N. Synthesis of silver nanoparticles using the extracts of neem leaf and triphala and the evaluation of their antimicrobial activities. Int. J. Pharm. Biol. Sci. 2012, 3, 88–100. [Google Scholar]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Mohanta, Y.K.; Panda, S.K.; Biswas, K.; Tamang, A.; Bandyopadhyay, J.; De, D. Biogenic synthesis of silver nanoparticles from Cassia fistula (Linn.): In vitro assessment of their antioxidant, antimicrobial and cytotoxic activities. IET Nanobiotechnol. 2016, 10, 438–444. [Google Scholar] [CrossRef]
- Mariselvam, R.; Ranjitsingh, A.J.; Usha Raja Nanthini, A.; Kalirajan, K.; Padmalatha, C.; Mosae Selvakumar, P. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 537–541. [Google Scholar] [CrossRef]
- Balashanmugam, P.; Caral Dinesh, R.; Manivasagan, V.; Ramesh Babu, N.G.; Kalaichelvan, P.T. Extracellular biosynthesis of silver nanoparticles using Cassia fistula extract and in vitro antimicrobial studies. J. Pharm. Res. 2014, 8, 187–191. [Google Scholar]
- Majeed, A.; Ullah, W.; Anwar, A.W.; Shuaib, A.; Ilyas, U.; Khalid, P. Cost-effective biosynthesis of silver nanoparticles using different organs of plants and their antimicrobial applications: A review. Mater. Technol. 2016, 33, 313–320. [Google Scholar] [CrossRef]
- Sudha, V.B.; Ganesan, S.; Pazhani, G.P.; Ramamurthy, T.; Nair, G.B.; Venkatasubramanian, P. Storing drinking-water in copper pots kills contaminating diarrhoeagenic bacteria. J. Health Popul. Nutr. 2012, 30, 17–21. [Google Scholar] [CrossRef]
- Espírito-Santo, C.; Lam, E.W.; Elowsky, C.G.; Quaranta, D.; Domaille, D.W.; Chang, C.J.; Grass, G. Bacterial killing by dry metallic surfaces. App. Environ. Microbiol. 2011, 77, 794–802. [Google Scholar] [CrossRef] [Green Version]
- Din, M.I.; Rehan, R. Synthesis, characterization and applications of copper nanoparticles. Anal. Lett. 2017, 50, 50–62. [Google Scholar] [CrossRef]
- Shobha, G.; Moses, V.; Ananda, S. Biological synthesis of copper nanoparticles and its impact—A review. Int. J. Pharm. Sci. Invent. 2014, 3, 28–38. [Google Scholar]
- Roopalatha, U.C.; Nair, V.M. Phytochemical analysis of successive reextracts of the leaves of Moringa oleifera Lam. Int. J. Pharm. Pharm. Sci. 2013, 5, 629–634. [Google Scholar]
- Moyo, B.; Masika, P.J.; Hugo, A.; Muchenje, V. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Afr. J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar]
- Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind. Crop. Prod. 2015, 66, 246–254. [Google Scholar]
- Koşar, M.; Dorman, H.J.D.; Hiltunen, R. Effect of an acid treatment on the phytochemical and antioxidant characteristics of extracts from selected Lamiaceae species. Food Chem. 2005, 91, 525–533. [Google Scholar] [CrossRef]
- Lowry, O.H.; Roserbough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Monteiro, M.C.; de la Cruz, M.; Cantizani, J.; Moreno, C.; Tormo, J.R.; Mellado, E.; De Lucas, J.R.; Asensio, F.; Valiante, V.; Brakhage, A.A.; et al. A new approach to drug discovery: High-throughput screening of microbial natural extracts against Aspergillus fumigatus using resazurin. J. Biomol. Screen. 2012, 17, 542–549. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Hudman, D.A.; Sargentini, N.J. Resazurin-based assay for screening bacteria for radiation sensitivity. Springerplus 2013, 2, 55. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Functional Group | Test Method | M. oleifera Leaves Extract |
---|---|---|
Alkaloids | Dragendroff’s test | + |
Tannins | Ferric chloride test | + |
Flavonoids | Shinoda test | + |
Steroids | Salkowski reaction test | + |
Saponins | Foam test | + |
Polyphenols | Puncal-D test | + |
Glycosides | Conc. H2SO4 and heat | + |
Carbohydrates | Anthrone test | + |
Proteins | Ninhydrin test | + |
Amino acids | Millon’s test | + |
Sample | Total Phenolic Content (mg/g of Dried Leaves) |
---|---|
M. oleifera leaves extract (before synthesis) | 23.0 ± 0.3 |
M. oleifera leaves extract (after synthesis) | 17.0 ± 0.4 |
Sample | Amount (µg) | ||||
---|---|---|---|---|---|
100 | 200 | 300 | 400 | 500 | |
Ascorbic acid (standard) | 34.4 | 55.1 | 67.2 | 75.8 | 84.4 |
M. oleifera leaves extract | 55.1 | 58.6 | 63.7 | 65.5 | 65.5 |
Copper nanoparticles | 12.0 | 13.7 | 17.2 | 20.6 | 29.3 |
Sample | Concentration (µg/mL) Ascorbic Acid Equivalent | ||||
---|---|---|---|---|---|
50 | 100 | 150 | 200 | 250 | |
M. oleifera leaves extract | 32.5 | 65.0 | 102.5 | 132.5 | 172.5 |
Copper nanoparticles | 12.5 | 12.5 | 17.5 | 25.0 | 47.5 |
Bacterial Species | MIC (µg/mL) |
---|---|
M. oleifera leaves extract | |
Escherichia coli | 500 |
Klebsiella pneumoniae | 250 |
Staphylococcus aureus | 250 |
Enterococcus faecalis | 250 |
Copper nanoparticles | |
Escherichia coli | 500 |
Klebsiella pneumoniae | 500 |
Staphylococcus aureus | 500 |
Enterococcus faecalis | 250 |
No. | Bacterial Species | Growth of Bacteria | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (µg/mL) | 1000 (1) | 500 (2) | 250 (3) | 125 (4) | 62.5 (5) | 31.2 (6) | 15.6 (7) | 7.8 (8) | Streptomycin (10 µg/500 µL) | Negative Control | Nutrient Broth | |
M. oleifera leaves extract | ||||||||||||
1 | Escherichia coli | - | - | + | + | + | + | + | + | - | + | + |
2 | K. pneumoniae | - | - | - | + | + | + | + | + | - | + | + |
3 | S. aureus | - | - | - | + | + | + | + | + | - | + | + |
4 | E. faecalis | - | - | - | + | + | + | + | + | - | + | + |
Copper Nanoparticles | ||||||||||||
1 | E. coli | - | - | + | + | + | + | + | + | - | + | + |
2 | K. pneumoniae | - | - | + | + | + | + | + | + | - | + | + |
3 | S. aureus | - | - | + | + | + | + | + | + | - | + | + |
4 | E. faecalis | - | - | - | + | + | + | + | + | - | + | + |
Fungal Species | MIC (µg/mL) |
---|---|
M. oleifera leaves extract | |
Aspergillus niger | 62.5 |
Aspergillus flavus | 62.5 |
Candida albicans | 125 |
Candida glabrata | 250 |
Copper nanoparticles | |
Aspergillus niger | 125 |
Aspergillus flavus | 125 |
Candida albicans | 62.5 |
Candida glabrata | 31.2 |
No. | Fungal Species | Growth of Fungi | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (µg/mL) | 1000 (1) | 500 (2) | 250 (3) | 125 (4) | 62.5 (5) | 31.2 (6) | 15.6 (7) | 7.8 (8) | Ketoconazole (10 µg/500 µL) | Negative Control | Nutrient Broth | |
M. oleifera leaves extract | ||||||||||||
1 | A. niger | - | - | - | - | - | + | + | + | - | + | + |
2 | A. flavus | - | - | - | - | - | + | + | + | - | + | + |
3 | C. albicans | - | - | - | - | + | + | + | + | - | + | + |
4 | C. glabrata | - | - | - | + | + | + | + | + | - | + | + |
Copper Nanoparticles | ||||||||||||
1 | A. niger | - | - | - | - | + | + | + | + | - | + | + |
2 | A. flavus | - | - | - | - | + | + | + | + | - | + | + |
3 | Ca. albicans | - | - | - | - | - | + | + | + | - | + | + |
4 | C. glabrata | - | - | - | - | - | - | + | + | - | + | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, P.E.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Narasimhan, S.; Poltronieri, P. Green Synthesis of Encapsulated Copper Nanoparticles Using a Hydroalcoholic Extract of Moringa oleifera Leaves and Assessment of Their Antioxidant and Antimicrobial Activities. Molecules 2020, 25, 555. https://doi.org/10.3390/molecules25030555
Das PE, Abu-Yousef IA, Majdalawieh AF, Narasimhan S, Poltronieri P. Green Synthesis of Encapsulated Copper Nanoparticles Using a Hydroalcoholic Extract of Moringa oleifera Leaves and Assessment of Their Antioxidant and Antimicrobial Activities. Molecules. 2020; 25(3):555. https://doi.org/10.3390/molecules25030555
Chicago/Turabian StyleDas, Prince Edwin, Imad A. Abu-Yousef, Amin F. Majdalawieh, Srinivasan Narasimhan, and Palmiro Poltronieri. 2020. "Green Synthesis of Encapsulated Copper Nanoparticles Using a Hydroalcoholic Extract of Moringa oleifera Leaves and Assessment of Their Antioxidant and Antimicrobial Activities" Molecules 25, no. 3: 555. https://doi.org/10.3390/molecules25030555
APA StyleDas, P. E., Abu-Yousef, I. A., Majdalawieh, A. F., Narasimhan, S., & Poltronieri, P. (2020). Green Synthesis of Encapsulated Copper Nanoparticles Using a Hydroalcoholic Extract of Moringa oleifera Leaves and Assessment of Their Antioxidant and Antimicrobial Activities. Molecules, 25(3), 555. https://doi.org/10.3390/molecules25030555