Sahlep (Dactylorhiza osmanica): Phytochemical Analyses by LC-HRMS, Molecular Docking, Antioxidant Activity, and Enzyme Inhibition Profiles
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Materials
4.3. Lyophilized Water Extract
4.4. Radical Scavenging Methods
4.5. Reducing Activity Methods
4.6. Total Phenolic and Flavonoid Concentration
4.7. Enzyme Inhibition Assay
4.8. LC-HRMS Analysis
4.8.1. Preparation of Samples and Conditions for LC-HRMS Analysis
4.8.2. LC-HRMS Procedure and Optimization of HPLC Methods
4.8.3. Method Validation
4.9. Molecular Docking Studies
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Aliyazicioğlu, R.; Korkmaz, N.; Akkaya, Ş.; Şener, S.O. Investigation of antioxidant, antimicrobial and tyrosinase inhibitory activities in aerial parts of Dactylorhiza osmanica. Fırat Med. J. 2018, 23, 50–57. [Google Scholar]
- Dalar, A.; Guo, Y.; Esim, N.; Bengu, A.S.; Konczak, I. Health attributes of an endemic orchid from Eastern Anatolia, Dactylorhiza chuhensis Renz&Taub.-In vitro investigations. J. Herb. Med. 2015, 5, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Jahromi, K.H.; Pourahmad, M.; Abedi, H.A.; Karimi, M.; Kargar Jahromi, Z. Protective effects of salep against isoniazid liver toxicity in wistar rats. J. Tradit. Complement. Med. 2018, 8, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Singh, B.; Kewlani, P.; Belwal, T.; Bhatt, I.D.; Nandi, S.K.; Bisht, A.K. Process optimization and bioactive compounds quantification from Dactylorhiza hatagirea tuber for alleviating glycemic and oxidative stress. J. Appl. Res. Med. Aromat. Plant. 2022, 26, 100352. [Google Scholar] [CrossRef]
- Kiziltas, H.; Ekin, S.; Yildiz, D.; Pinar, S.M. Evaluation of antioxidant properties, trace element and mineral composition of Dactylorhiza umbrosa (Kar. & Kir.) Nevski (Orchidaceae). J. Instit. Sci. Technol. 2019, 9, 2148–2156. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidants and antioxidant methods-An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baghiani, A.; Boussoualim, N.; Trabsa, H.; Aouachria, S.; Arrar, L. In vivo free radical scavenging, antihemolytic activity and antibacterial effects of Anchusa azurea extracts. Int. J. Med. Sci. 2013, 46, 1113–1118. [Google Scholar]
- Durmaz, L.; Erturk, A.; Akyuz, M.; Polat Kose, L.; Uc, E.M.; Bingol, Z.; Saglamtas, R.; Alwasel, S.; Gulcin, I. Screening of carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase enzymes inhibition effects and antioxidant activity of coumestrol. Molecules 2022, 27, 3091. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Hristo, V.N.; Iliana, I.I. 8th Conference on medicinal and aromatic plants of southeast European countries. Z. Fur Arznei-Gewurzpflanzen 2014, 19, 293–299. [Google Scholar]
- Gupta, D. Methods for determination of antioxidant capacity: A review. Int. J. Pharm. Sci. Res. 2015, 6, 546–566. [Google Scholar] [CrossRef]
- Polat Kose, L.; Gulcin, I. Evaluation of the antioxidant and antiradical properties of some phyto and mammalian lignans. Molecules 2021, 26, 7099. [Google Scholar] [CrossRef] [PubMed]
- Langari, S.; Salehi, E.A. Evaluation of the antioxidant capacity of different extracts of Astragalus glaucacanthus. J. Appl. Environ. Biol. Sci. 2015, 4, 14–17. [Google Scholar]
- Soltanian, S.; Sheikhbahaei, M.; Mirtadzadini, M.; Kalantari Khandani, B. Evaluation of anticancer, antioxidant and antibacterial properties of methanol extract of three Acantholimon Boiss. species. Avicenna J. Phytomed. 2022, 10, 641–652. [Google Scholar]
- Takım, K.; Yigin, A.; Koyuncu, I.; Kaya, R.; Gulcin, I. Anticancer, anticholinesterase and antidiabetic activities of Tunceli garlic (Allium tuncelianum)-Determining its phytochemical content by LC-MS/MS analysis. J. Food Meas. Charac. 2021, 15, 3323–3335. [Google Scholar] [CrossRef]
- Toplan, G.G.; Kurkçuoglu, M.; Göger, F.; Taskın, T.; Civas, A.; Iscan, G.; Ecevit-Genc, G.; Mat, A.; Baser, K.H.C. Phytochemical screening and biological evaluation of Salvia hydrangea Dc. ex Benth. growing in eastern Anatolia. S. Afr. J. Bot. 2020, 147, 799–807. [Google Scholar] [CrossRef]
- Bursal, E.; Taslimi, P.; Gören, A.; Gulcin, I. Assessments of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocat. Agric. Biotechnol. 2020, 28, 101711. [Google Scholar] [CrossRef]
- Bingol, Z.; Kızıltas, H.; Gören, A.C.; Polat Köse, L.; Topal, M.; Durmaz, L.; Alwasel, S.H.; Gulcin, I. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed (Convulvulus betonicifolia Miller subsp.)-profiling of phenolic compounds by LC-HRMS. Heliyon 2021, 7, e06986. [Google Scholar] [CrossRef]
- Kiziltas, H.; Bingol, Z.; Goren, A.C.; Pınar, S.M.; Alwasel, S.H.; Gulcin, I. LC-HRMS profiling of phytochemicals, antidiabetic, anticholinergic and antioxidant activities of evaporated ethanol extract of Astragalus brachycalyx FISCHER. J. Chem. Metrol. 2021, 15, 135–151. [Google Scholar] [CrossRef]
- Kotiloglu, D.; Acet, T.; Ozcan, K. Phytochemical profile and biological activity of a therapeutic orchid from Anatolia: Dactylorhiza romana subsp. georgica. J. Food Meas. Charac. 2020, 14, 3310–3318. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L.; Fang, T.; Yuan, B.; Lin, Q. Rb2 inhibits α-glucosidase and regulates glucose metabolism by activating AMPK pathways in HepG2 cells. J. Funct. Foods 2017, 28, 306–313. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr. 2013, 27, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Torres-Naranjo, M.; Suárez, A.; Gilardoni, G.; Cartuche, L.; Flores, P.; Morocho, V. Chemical constituents of Muehlenbeckia tamnifolia (Kunth) meisn (Polygonaceae) and its in vitro α-amilase and α-glucosidase inhibitory activities. Molecules 2016, 21, 1461. [Google Scholar] [CrossRef] [PubMed]
- Taslimi, P.; Koksal, E.; Goren, A.C.; Bursal, E.; Aras, A.; Kılıc, O.; Alwasel, S.; Gulcin, I. Anti-Alzheimer, antidiabetic and antioxidant potential of Satureja cuneifolia and analysis of its phenolic contents by LC-MS/MS. Arab. J. Chem. 2020, 13, 4528–4537. [Google Scholar] [CrossRef]
- Ouattara, N.; Meda, R.N.T.; Hilou, A.; Guenné, S.; Konaté, K.; Coulibaly, A.Y.; Kiendrébeogo, M.; Millogo, J.F.; Nacoulma, O.G. Anti-acetylcholinesterase and antioxidant activities and HPLC-MS analysis of polyphenol from extracts of Nelsonia canescens (Lam.) Spreng. Asian Pac. J. Trop. Dis. 2013, 3, 382–388. [Google Scholar] [CrossRef]
- Oztaskin, N.; Kaya, R.; Maras, A.; Sahin, E.; Gulcin, I.; Goksu, S. Synthesis and characterization of novel bromophenols: Determination of their anticholinergic, antidiabetic and antioxidant activities. Bioorg. Chem. 2019, 87, 91–102. [Google Scholar] [CrossRef]
- Eruygur, N.; Atas, M.; Tekin, M.; Taslimi, P.; Kocyigit, U.M.; Gulcin, I. In vitro antioxidant, antimicrobial, anticholinesterase and antidiabetic activities of Turkish endemic Achillea cucullata (Asteraceae) from ethanol extract. S. Afr. J. Bot. 2019, 120, 141–145. [Google Scholar] [CrossRef]
- Gulcin, I.; Buyukokuroglu, M.E.; Kufrevioglu, O.I. Metal chelating and hydrogen peroxide scavenging effects of melatonin. J. Pineal Res. 2003, 34, 278–281. [Google Scholar] [CrossRef]
- Sukhikh, S.; Noskova, S.; Ivanova, S.; Skrypnik, L.; Pungin, A.; Ulrikh, E.; Chupakhin, E.; Babich, O. Study of the properties of in vitro Dactylorhiza maculata (L.) Soó (Family orchidaceae) extracts. Plants 2021, 10, 1330. [Google Scholar] [CrossRef]
- MacDonald-Wicks, L.K.; Wood, L.G.; Garg, M.L. Methodology for the determination of biological antioxidant capacity in vitro: A review. J. Sci. Food Agric. 2006, 86, 2046–2056. [Google Scholar] [CrossRef]
- Maharramova, G.; Taslimi, P.; Sujayev, A.; Farzaliyev, F.; Durmaz, L.; Gulcin, I. Synthesis, characterization, antioxidant, antidiabetic, anticholinergic, and antiepileptic properties of novel N-substituted tetrahydropyrimidines based on phenylthiourea. J. Biochem. Mol. Toxicol. 2018, 32, e22221. [Google Scholar] [CrossRef] [PubMed]
- Cetin Cakmak, K.; Gulcin, I. Anticholinergic and antioxidant activities of usnic acid-An activity-structure insight. Toxicol. Rep. 2019, 6, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Oztaskın, N.; Taslimi, P.; Maras, A.; Goksu, S.; Gulcin, I. Novel antioxidant bromophenols with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. Bioorg. Chem. 2017, 74, 104–114. [Google Scholar] [CrossRef]
- Cumali, K.; Hasan, Ç.O.; Zuhal, T.; Goksel, K.; Kızıl, M. Astragalus diphtherites FENZL var. diphtherites ve Astragalus gymnalopecias RECH. FIL’ in gövde ve kök kısımlarından farklı çözücüler ile elde edilen özütlerin in vitro antioksidan ve antimikrobiyal özelliklerinin belirlenmesi. KSU J. Agric. Nat. 2018, 21, 157–166. [Google Scholar] [CrossRef]
- Tohma, H.; Gulcin, I.; Bursal, E.; Goren, A.C.; Alwasel, S.H.; Koksal, E. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Meas. Charac. 2017, 11, 556–566. [Google Scholar] [CrossRef]
- Talaz, O.; Gulcin, I.; Goksu, S.; Saracoglu, N. Antioxidant activity of 5,10-dihydroindeno[1,2-b]indoles containing substituents on dihydroindeno part. Bioorg. Med. Chem. 2009, 17, 6583–6589. [Google Scholar] [CrossRef]
- Jun, Y.M.; Kim, E.H.; Lim, J.J.; Kim, S.H.; Kim, S.H. Variation of phenolic compounds contents in cultivated Astragalus membranaceus phenolic compounds variation of phenolic compounds contents in cultivated astragalus membranaceus. Korean J. Med. Crop. Sci. 2012, 20, 4447–4453. [Google Scholar] [CrossRef] [Green Version]
- Bursal, E.; Aras, A.; Dogru, M.; Kilic, O. Phenolic content, antioxidant potentials of Saponaria prostrata endemi phenolic content, antioxidant potentials of Saponaria prostrata endemic plant. Int. J. Life Sci. Biotechnol. 2021, 5, 1–8. [Google Scholar] [CrossRef]
- Wong, C.; Li, H.; Cheng, K.; Chen, F. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem. 2006, 97, 705–711. [Google Scholar] [CrossRef]
- Tohma, H.; Koksal, E.; Kilic, O.; Alan, Y.; Yılmaz, M.A.; Gulcin, I.; Bursal, E.; Alwasel, S.H. RP-HPLC/MS/MS analysis of the phenolic compounds, antioxidant and antimicrobial activities of Salvia L. species. Antioxidants 2016, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Boz, H. Review p-coumaric acid in cereals: Presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Thecnol. 2015, 50, 2323–2328. [Google Scholar] [CrossRef]
- Boo, Y.C. p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants 2019, 8, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldaba-Muruato, R.L.; Ventura-Juarez, J.; Perez-Hernandez, A.M.; Hernandez-Morales, A.; Munoz-Ortega, M.H.; Martinez-Hernandez, S.L.; Alvarado-Sanchez, B.; Macias-Perez, J.R. Therapeutic perspectives of p-coumaric acid: Antinecrotic, anticholestatic and antiamoebic activities. World Acad. Sci. J. 2021, 3, 1–8. [Google Scholar] [CrossRef]
- Ekinci Akdemir, F.N.; Albayrak, M.; Çalik, M.; Bayir, Y.; Gulcin, I. The protective effects of p-coumaric acid on acute liver and kidney damages induced by cisplatin. Biomedicines 2017, 5, 18. [Google Scholar] [CrossRef]
- Ekinci Akdemir, F.N.; Gulcin, I.; Gursul, C.; Alwasel, S.H.; Bayir, Y. Effect of p-coumaric acid against oxidative stress induced by cisplatin in brain tissue of rats. J. Anim. Plant Sci. 2017, 27, 1560–1564. [Google Scholar]
- Taslimi, P.; Aslan, H.E.; Demir, Y.; Oztaskın, N.; Maras, A.; Gulcin, I.; Beydemir, S.; Goksu, S. Diarilmethanon, bromophenols and diarilmetan compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int. J. Biol. Macromol. 2018, 119, 857–863. [Google Scholar] [CrossRef]
- Gulcin, I.; Taslimi, P.; Aygun, A.; Sadeghian, N.; Bastem, E.; Kufrevioglu, O.I.; Turkan, F.; Sen, F. Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int. J. Biol. Macromol. 2018, 119, 741–746. [Google Scholar] [CrossRef]
- Alsawalha, M.; Al-subaei, A.M.; Al-jindan, R.Y.; Bolla, S.R.; Sen, D.; Balakrishna, J.P.; Ravi, P.K.; Shankar, S.; Gollapalli, R.; Veeraraghavan, V.P. Antidiabetic activities of dactylorhiza hatagirea leaf extract in 3T3—L1 cell line model. Pharmacog. Mag. 2019, 15, 212–217. [Google Scholar] [CrossRef]
- Burmaoglu, S.; Yılmaz, A.O.; Polat, M.F.; Kaya, R.; Gulcin, I.; Algul, O. Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase inhibitors. Bioorg. Chem. 2019, 85, 191–197. [Google Scholar] [CrossRef]
- Choudhury, H.; Pandey, M.; Hua, C.K.; Mun, C.S.; Jing, J.K.; Kong, L.; Ern, L.Y.; Ashraf, N.A.; Kit, S.W.; Yee, T.S.; et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Comp. Med. 2018, 8, 361–376. [Google Scholar] [CrossRef]
- Abbas-mohammadi, M.; Moridi, M.; Salehi, P.; Nejad, S.; Sonboli, A.; Kelso, C.; Skropeta, D. Acetylcholinesterase-inhibitory activity of Iranian plants: Combined HPLC/bioassay-guided fractionation, molecular networking and docking strategies for the dereplication of active compounds. J. Pharm. Biomed. Anal. 2018, 158, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Makarian, M.; Gonzalez, M.; Salvador, S.M.; Lorzadeh, S.; Hudson, P.K.; Pecic, S. Synthesis, kinetic evaluation and molecular docking studies of donepezil-based acetylcholinesterase inhibitors. J. Mol. Struct. 2022, 1247, 131425. [Google Scholar] [CrossRef] [PubMed]
- Burmaoglu, S.; Akın Kazancioglu, E.; Kazancioglu, M.Z.; Saglamtas, R.; Yalçın, G.; Gulcin, I.; Algül, O. Synthesis, molecular docking and some metabolic enzyme inhibition properties of biphenyl-substituted chalcone derivatives. J. Mol. Struct. 2022, 1254, 132358. [Google Scholar] [CrossRef]
- Kaya, Y.; Erçağ, A.; Zorlu, Y.; Demir, Y.; Gulcin, I. New Pd(II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: Synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes. J. Biol. Inorg. Chem. 2022, 27, 271–281. [Google Scholar] [CrossRef]
- Gülçin, I. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int. J. Food Sci. Nutr. 2005, 56, 491–499. [Google Scholar] [CrossRef]
- Gulcin, I.; Tel, A.Z.; Kirecci, E. Antioxidant, antimicrobial, antifungal and antiradical activities of Cyclotrichium niveum (Boiss.) Manden and Scheng. Int. J. Food Propert. 2008, 11, 450–471. [Google Scholar] [CrossRef]
- Koksal, E.; Gulcin, I. Antioxidant activity of cauliflower (Brassica oleracea L.). Turk. J. Agric. For. 2008, 32, 65–78. [Google Scholar]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 26, 1199–1200. [Google Scholar] [CrossRef]
- Yigit, M.; Barut Celepci, D.; Taslimi, P.; Yigit, B.; Çetinkaya, B.; Özdemir, İ.; Aygün, M.; Gulçin, İ. Selenourea and thiourea derivatives of chiral and achiral enetetramines: Synthesis, characterization and enzyme inhibitory properties. Bioorg. Chem. 2022, 120, 105566. [Google Scholar] [CrossRef]
- Kızıltas, H.; Bingol, Z.; Goren, A.C.; Alwasel, S.H.; Gulcin, I. Anticholinergic, antidiabetic and antioxidant activities of Ferula orientalis L.-Analysis of its polyphenol contents by LC-HRMS. Rec. Nat. Prod. 2021, 15, 513–528. [Google Scholar] [CrossRef]
- Kiziltas, H. Determination of LC-HRMS profiling, antioxidant activity, cytotoxic effect and enzyme inhibitory properties of Satureja avromanica using in vitro and in silico methods. Process. Biochem. 2022, 116, 157–172. [Google Scholar] [CrossRef]
- Polat Kose, L.; Gulcin, I.; Goren, A.C.; Namiesnik, J.; Martinez-Ayala, A.L.; Gorinstein, S. LC-MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Ind. Crops Prod. 2015, 74, 712–721. [Google Scholar] [CrossRef]
- Dinis, T.C.P.; Madeira, V.M.C.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef]
- Artunc, T.; Menzek, A.; Taslimi, P.; Gulcin, I.; Kazaz, C.; Sahin, E. Synthesis and antioxidant activities of phenol derivatives from 1,6-bis(dimethoxyphenyl)hexane-1,6-dione. Bioorg. Chem. 2020, 100, 103884. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidant properties of resveratrol: A structure-activity insight. Innov. Food Sci. Emerg. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidant activity of eugenol-a structure and activity relationship study. J. Med. Food 2011, 14, 975–985. [Google Scholar] [CrossRef]
- Balaydın, H.T.; Gulcin, I.; Menzek, A.; Goksu, S.; Sahin, E. Synthesis and antioxidant properties of diphenylmethane derivative bromophenols including a natural product. J. Enzym. Inhib. Med. Chem. 2010, 25, 685–695. [Google Scholar] [CrossRef]
- Apak, R.; Calokerinos, A.; Gorinstein, S.; Segundo, M.A.; Hibbert, D.B.; Gulcin, I.; Demirci Cekic, S.; Guclu, K.; Ozyurek, M.; Esin Çelik, S.; et al. Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species. Pure Appl. Chem. 2022, 94, 87–144. [Google Scholar] [CrossRef]
- Polat Kose, L.; Gulcin, I. Inhibition effects of some lignans on carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes. Rec. Nat. Prod. 2017, 11, 558–561. [Google Scholar] [CrossRef]
- Kızıltas, H.; Bingol, Z.; Goren, A.C.; Polat Kose, L.; Durmaz, L.; Topal, F.; Alwasel, S.H.; Gulcin, I. LC-HRMS profiling, antidiabetic, anticholinergic and anti-oxidant activities of aerial parts of kınkor (Ferulago stelleta). Molecules 2021, 26, 2469. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Oktay, M.; Koksal, E.; Serbetci, H.; Beydemir, S.; Kufrevioglu, Ö.I. Antioxidant and radical scavenging activities of uric acid. Asian J. Chem. 2008, 20, 2079–2090. [Google Scholar]
- Turkan, F.; Atalar, M.N.; Aras, A.; Gulcin, I.; Bursal, E. ICP-MS and HPLC analyses, enzyme inhibition and antioxidant potential of Achillea schischkinii Sosn. Bioorg. Chem. 2020, 94, 103333. [Google Scholar] [CrossRef]
- Park, C.H.; Yeo, H.J.; Baskar, T.B.; Park, Y.E.; Park, J.S.; Lee, S.Y.; Park, S.U. In vitro antioxidant and antimicrobial properties of flower, leaf, and stem extracts of Korean mint. Antioxidants 2019, 8, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulcin, I.; Kufrevioglu, O.I.; Oktay, M.; Buyukokuroglu, M.E. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J. Ethnopharmacol. 2004, 90, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Erdemir, F.; Barut Celepci, D.; Aktas, A.; Taslimi, P.; Gok, Y.; Karabıyık, H.; Gulcin, I. 2-Hydroxyethyl substituted NHC precursors: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties. J. Mol. Struc. 2018, 1155, 797–806. [Google Scholar] [CrossRef]
- Xiao, Z.; Storms, R.; Tsang, A. A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 2006, 351, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Bursal, E.; Aras, A.; Kilic, O.; Taslimi, P.; Goren, A.C.; Gulcin, I. Phytochemical content, antioxidant activity and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase and α-glycosidase enzymes. J. Food Biochem. 2019, 43, e12776. [Google Scholar] [CrossRef] [PubMed]
- Arabaci, B.; Gulcin, I.; Alwasel, S. Capsaicin: A potent inhibitor of carbonic anhydrase isoenzymes. Molecules 2014, 19, 10103–10114. [Google Scholar] [CrossRef]
- Gulcin, I.; Alwasel, S.H. Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes 2022, 10, 132. [Google Scholar] [CrossRef]
- Hamad, H.O.; Alma, M.H.; Gulcin, I.; Yılmaz, M.A.; Karaogul, E. Evaluation of phenolic contents and bioactivity of root and nutgall extracts from Iraqian Quercus infectoria Olivier. Rec. Nat. Prod. 2017, 11, 205–210. [Google Scholar]
- Han, H.; Yılmaz, H.; Gulcin, I. Antioxidant activity of flaxseed (Linum usitatissimum L.) shell and analysis of its polyphenol contents by LC-MS/MS. Rec. Nat. Prod. 2018, 12, 397–402. [Google Scholar] [CrossRef]
- Gulcin, I.; Topal, F.; Cakmakcı, R.; Goren, A.C.; Bilsel, M.; Erdogan, U. Pomological features, nutritional quality, polyphenol content analysis and antioxidant properties of domesticated and three wild ecotype forms of raspberries (Rubus idaeus L.). J. Food Sci. 2011, 76, C585–C593. [Google Scholar] [CrossRef]
- Gulcin, I.; Goren, A.C.; Taslimi, P.; Alwasel, S.H.; Kilic, O.; Bursal, E. Anticholinergic, antidiabetic and antioxidant activities of Anatolian pennyroyal (Mentha pulegium)-Analysis of its polyphenol contents by LC-MS/MS. Biocat. Agric. Biotechnol. 2020, 23, 101441. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012, 55, 10282–10286. [Google Scholar] [CrossRef]
- Roig-Zamboni, V.; Cobucci-Ponzano, B.; Iacono, R.; Ferrara, M.C.; Germany, S.; Bourne, Y.; Parenti, G.; Moracci, M.; Sulzenbacher, G. Structure of human lysosomal acid α-glucosidase-A guide for the treatment of Pompe disease. Nature Commun. 2017, 8, 1111. [Google Scholar] [CrossRef] [Green Version]
- Maurus, R.; Begum, A.; Williams, L.K.; Fredriksen, J.R.; Zhang, R.; Withers, S.G.; Brayer, G.D. Alternative catalytic anions differentially modulate human α-amylase activity and specificity. Biochemistry 2008, 47, 3332–3344. [Google Scholar] [CrossRef]
- Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; et al. The protein data bank. Acta Crystallogr. D 2002, 58, 899–907. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. Software news and updates gabedit-A graphical user interface for computational chemistry softwares. J. Comp. Chem. 2009, 31, 456–461. [Google Scholar] [CrossRef]
Compounds | DPPH Scavenging | ABTS Scavenging | Fe2+ Chelating | |||
---|---|---|---|---|---|---|
IC50 | r2 | IC50 | r2 | IC50 | r2 | |
Ascorbic acid | 16.12 ± 0.003 | 0.9566 | 23.10 ± 0.001 | 0.9998 | 99.0 ± 0.036 | 0.9985 |
α-Tocopherol | 23.10 ± 0.032 | 0.9825 | 15.40 ± 0.003 | 0.9866 | 330.0 ± 0.017 | 0.9109 |
BHT | 31.50 ± 0.011 | 0.9754 | 26.65 ± 0.008 | 0.9717 | 14.75 ± 0.056 | 0.9646 |
EDOA | 86.63 ± 0.010 | 0.9894 | 10.19 ± 0.002 | 0.9819 | 5.63 ± 0.033 | 0.9294 |
EDOR | 115.50 ± 0.011 | 0.9794 | 19.80 ± 0.013 | 0.9564 | 46.20 ± 0.015 | 0.9000 |
Compounds | Fe3+ Reducing * | Cu2+ Reducing * | Fe3+-TPTZ Reducing * | |||
---|---|---|---|---|---|---|
λ700 | r2 | λ450 | r2 | λ593 | r2 | |
Ascorbic acid (a) | 1.52 ± 0.028 b,c,d,e | 0.9970 | 1.07 ± 0.007 b,d,e | 0.9722 | 1.62 ± 0.015 b,d,e | 0.9930 |
α-Tocopherol (b) | 0.99 ± 0.007 e | 0.9942 | 0.79 ± 0.061 d,e | 0.9986 | 0.76 ± 0.075 d,e | 0.9867 |
BHT (c) | 1.27 ± 0.005 b,d,e | 0.9880 | 1.56 ± 0.089 a,b,d,e | 0.9978 | 0.91 ± 0.006 a,b,d,e | 0.9874 |
EDOA (d) | 0.99 ± 0.003 b,e | 0.9553 | 0.67 ± 0.019 | 0.9747 | 0.52 ± 0.005 | 0.9722 |
EDOR (e) | 0.83 ± 0.031 | 0.9423 | 0.72 ± 0.022 d | 0.9707 | 0.45 ± 0.006 d | 0.9673 |
Extracts | Total Phenolics | Total Flavonoids |
---|---|---|
EDOA | 12.73 ± 1.29 | 17.54 ± 1.85 |
EDOR | 9.09 ± 0.64 | 3.28 ± 0.12 |
Compounds | EDOA | EDOR |
---|---|---|
Ascorbic acid | 30.62 | 42.93 |
Chlorogenic acid | 7.31 | 3.21 |
Fumaric acid | 1542.92 | 822.95 |
Verbascoside | 0.95 | 1.61 |
Orientin | 0.15 | 5.78 |
Caffeic acid | 14.72 | 13.16 |
(+)-trans taxifolin | <LOD | <LOD |
Luteolin-7-rutinoside | 0.53 | <LOD |
Vanillic acid | 62.22 | 16.56 |
Naringin | <LOD | 0.00 |
Luteolin 7-glucoside | <LOD | 1.02 |
p-Coumaric acid | 541.49 | 559.22 |
Hesperidin | 0.29 | 0.39 |
Rutine | 3.87 | 2.97 |
Rosmarinic acid | 3.08 | 21.11 |
Hyperoside | 18.26 | 16.05 |
Dihydrokaempferol | 0.44 | 0.20 |
Apigenin 7-glucoside | <LOD | 0.03 |
Quercitrin | 29.31 | 6.05 |
Myricetin | <LOD | <LOD |
Quercetin | 0.95 | 1.11 |
Salicylic acid | <LOD | <LOD |
Naringenin | 8.63 | 3.32 |
Luteolin | 1.11 | 1.41 |
Nepetin | 0.69 | <LOD |
Apigenin | 0.71 | 0.35 |
Hispidulin | 4.49 | 4.46 |
Isosakuranetin | <LOD | <LOD |
Penduletin | <LOD | 0.59 |
Caffeic acid phenethyl ester | 1.77 | 0.15 |
Chrysin | 5.57 | 1.26 |
Acacetin | 4.59 | <LOD |
Emodin | <LOD | 0.02 |
Enzymes | EDOA | EDOR | Standards | ||
---|---|---|---|---|---|
IC50 | r2 | IC50 | r2 | IC50 | |
α-Glycosidase a | 1.098 | 0.9545 | 0.442 | 0.9498 | 22.80 |
α-Amylase a | 0.726 | 0.9860 | 0.415 | 0.9747 | 10.01 |
Acetylcholinesterase b | 1.809 | 0.9722 | 2.466 | 0.9826 | 0.124 |
Complex | Docking Scores (kcal/mol) | Types of Interactions | Interacting Residues |
---|---|---|---|
AChE(4EY7)–Vanillic acid | −6.8 | H-bonding π-π stacked π alkyl | Tyr-133, Gly-121 Trp-86 Tyr-124, Trp-86 |
AChE(4EY7)–Quercitrin | −8.8 | H-bonding C-H bonding π-π stacked | Gln-291, Arg-296, Glu-292, Trp-286 |
α-Glycosidase (5NN8)–Vanillic acid | −5.6 | H-bonding π alkyl π anion | Asp-616, Asp-404, His-674 Trp-516, Trp-613, Phe-649, His-674, Asp-518 |
α-Glycosidase (5NN8)–p-Coumaric acid | −6.5 | H-bonding π anion | Asp-404, Asp-518, Arg-600 |
α-Amylase (2QV4)–Vanillic acid | −5.6 | H-bonding π-π stacked, π anion π alkyl | Arg-195, His-299 Tyr-62, Asp-197 Ala-198, Leu-162 |
α-Amylase (2QV4)–p-Coumaric acid | −5.6 | H-bonding π-π stacked | Asp-300, Gln-63 Tyr-62 |
Compound | Molecular Formula | m/z | Ionization Mode | Linear Range | Linear Regression Equation | LOD/LOQ | R² |
---|---|---|---|---|---|---|---|
Ascorbic acid | C6H8O6 | 175.0248 | Negative | 0.5–10 | y = 0.00347x − 0.00137 | 0.39/1.29 | 0.9988 |
Chlorogenic acid | C16H18O9 | 353.0878 | Negative | 0.05–10 | y = 0.00817x + 0.000163 | 0.02/0.06 | 0.9994 |
Fumaric acid | C4H4O4 | 115.0037 | Negative | 0.1–10 | y = 0.00061x − 0.0000329 | 0.05/0.17 | 0.9991 |
Verbascoside | C29H36O15 | 623.1981 | Negative | 0.1–10 | y = 0.00758x + 0.000563 | 0.03/0.1 | 0.9995 |
Orientin | C21H20O11 | 447.0933 | Negative | 0.1–10 | y = 0.00757x + 0.000347 | 0.01/0.03 | 0.999 |
Caffeic acid | C9H8O4 | 179.0350 | Negative | 0.3–10 | y = 0.0304x + 0.00366 | 0.08/0.27 | 0.9993 |
(+)-trans taxifolin | C15H12O7 | 303.0510 | Negative | 0.3–10 | y = 0.0289x + 0.00537 | 0.01/0.03 | 0.9978 |
Luteolin-7-rutinoside | C27H30O15 | 593.1512 | Negative | 0.1–10 | y = 0.00879x + 0.000739 | 0.01/0.03 | 0.9988 |
Vanillic acid | C8H8O4 | 167.0350 | Negative | 0.3–10 | y = 0.00133x + 0.0003456 | 0.1/0.33 | 0.9997 |
Naringin | C27H32O14 | 579.1719 | Negative | 0.05–10 | y = 0.00576x − 0.000284 | 0.01/0.03 | 0.999 |
Luteolin 7-glycoside | C21H20O11 | 447.0933 | Negative | 0.1–7 | y = 0.0162x + 0.00226 | 0.01/0.03 | 0.9961 |
p-Coumaric acid | C9H8O3 | 163.0401 | Negative | 1 + 10 | y = 0.000324x − 0.0000641 | 0.32/1.02 | 0.9988 |
Hesperidin | C28H34O15 | 609.1825 | Negative | 0.05–10 | y = 0.00423x + 0.0000138 | 0.01/0.03 | 0.999 |
Rutin | C27H30O16 | 609.1461 | Negative | 0.05–10 | y = 0.00329x − 0.00005576 | 0.01/0.03 | 0.999 |
Rosmarinic acid | C18H16O8 | 359.0772 | Negative | 0.05–10 | y = 0.00717x − 0.0003067 | 0.01/0.03 | 0.999 |
Hyperoside | C21H20O12 | 463.0882 | Negative | 0.05–10 | y = 0.0072x − 0.00003096 | 0.01/0.03 | 1.000 |
Dihydrokaempferol | C15H12O6 | 287.0561 | Negative | 0.3–7 | y = 0.0756x + 0.0118 | 0.01/0.03 | 0.995 |
Apigenin 7-glucoside | C21H20O10 | 431.0984 | Negative | 0.3–7 | y = 0.0246x + 0.00306 | 0.01/0.03 | 0.996 |
Quercitrin | C21H20O11 | 447.0933 | Negative | 0.05–10 | y = 0.0179 + 0.0003331 | 0.01/0.03 | 0.999 |
Myricetin | C15H10O8 | 317.0303 | Negative | 0.1–10 | y = 0.0202x + 0.00165 | 0.01/0.03 | 0.9993 |
Quercetin | C15H10O7 | 301.0354 | Negative | 0.1–10 | y = 0.0509x + 0.00467 | 0.01/0.03 | 0.9978 |
Salicylic acid | C7H6O3 | 137.0244 | Negative | 0.3–10 | y = 0.0361x + 0.00245 | 0.01/0.03 | 0.9982 |
Naringenin | C15H12O5 | 271.0612 | Negative | 0.1–10 | y = 0.0281x + 0.00182 | 0.01/0.03 | 0.9995 |
Luteolin | C15H10O6 | 285.0405 | Negative | 0.1–10 | y = 0.117x + 0.00848 | 0.01/0.03 | 0.998 |
Nepetin | C16H12O7 | 315.0510 | Negative | 0.05–10 | y = 0.0853x + 0.00269 | 0.01/0.03 | 0.9992 |
Apigenin | C15H10O5 | 269.0456 | Negative | 0.3–10 | y = 0.104x + 0.0199 | 0.01/0.03 | 0.9998 |
Hispidulin | C16H12O6 | 301.0707 | Positive | 0.05–10 | y = 0.02614x + 0.0003114 | 0.01/0.03 | 0.9993 |
Isosakuranetin | C16H14O5 | 285.0769 | Negative | 0.05–10 | y = 0.0235x + 0.000561 | 0.01/0.03 | 0.999 |
Penduletin | C18H16O7 | 343.0823 | Negative | 0.3–10 | y = 0.0258x + 0.00253 | 0.01/0.03 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiziltas, H.; Goren, A.C.; Alwasel, S.H.; Gulcin, İ. Sahlep (Dactylorhiza osmanica): Phytochemical Analyses by LC-HRMS, Molecular Docking, Antioxidant Activity, and Enzyme Inhibition Profiles. Molecules 2022, 27, 6907. https://doi.org/10.3390/molecules27206907
Kiziltas H, Goren AC, Alwasel SH, Gulcin İ. Sahlep (Dactylorhiza osmanica): Phytochemical Analyses by LC-HRMS, Molecular Docking, Antioxidant Activity, and Enzyme Inhibition Profiles. Molecules. 2022; 27(20):6907. https://doi.org/10.3390/molecules27206907
Chicago/Turabian StyleKiziltas, Hatice, Ahmet Ceyhan Goren, Saleh H. Alwasel, and İlhami Gulcin. 2022. "Sahlep (Dactylorhiza osmanica): Phytochemical Analyses by LC-HRMS, Molecular Docking, Antioxidant Activity, and Enzyme Inhibition Profiles" Molecules 27, no. 20: 6907. https://doi.org/10.3390/molecules27206907
APA StyleKiziltas, H., Goren, A. C., Alwasel, S. H., & Gulcin, İ. (2022). Sahlep (Dactylorhiza osmanica): Phytochemical Analyses by LC-HRMS, Molecular Docking, Antioxidant Activity, and Enzyme Inhibition Profiles. Molecules, 27(20), 6907. https://doi.org/10.3390/molecules27206907