Encapsulation of Vitamin C by Glycerol-Derived Dendrimers, Their Interaction with Biomimetic Models of Stratum corneum and Their Cytotoxicity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Encapsulation of Vitamin C
2.2. Cytotoxicity of Dendrimers
2.3. Interaction with Biomimetic Models of Stratum Corneum
2.3.1. Study on the Lipid Monolayer Model
2.3.2. Study on the Liposome Model
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of Glycerol Derived Dendrimers
3.3. Encapsulation Procedure
3.4. NMR T1 and T2 Measurement
3.5. Cytotoxicity Assays
3.6. Study on Lipid Monolayer Models by Langmuir Film Balance Technique
3.7. Formulation of Fluorescent Probe-Encapsulated Liposomes
3.8. Formulation of Laurdan-Stained Liposomes
3.9. Liposomes Characterization: Size and Quantification
3.9.1. Size Determination—DLS Measurement
3.9.2. Morphology Characterization—Cryo-TEM
3.9.3. Lipid Concentration Quantification—NMR Spectroscopy
3.10. Leakage Assays
3.11. Fluidity Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PAMAM | Poly(AmidoAmine) |
GD-PAMAM | GlyceroDendrimer-Poly(AmidoAmine) |
GD-PPI | GlyceroDendrimer-Poly(Propylene Imine) |
Dendrimer name-n | Dendrimer-generation number |
Et3N | Triethylamine |
MeOH | Methanol |
EtOH | Ethanol |
AcOEt | Ethyl acetate |
Vit C | Vitamin C |
Vit C@GD-PAMAM-3 | GlyceroDendrimer-Poly(AmidoAmine) with encapsulated Vitamin C |
NMR | Nuclear magnetic resonance spectroscopy |
D20 | Deuterium oxide |
CD3OD | Methanol deuterium |
WST1 | Tetrazolium salt |
TMSP | 3-(Trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt |
SC | Stratum corneum |
PBS | phosphate-buffered saline |
NaH2PO4·H2O | Sodium dihydrogen phosphate monohydrate |
Na2HPO4 | Disodium hydrogen phosphate |
NaCl | Sodium chloride |
HEPES | Hydroxyethyl-piperazineethane-sulfonic acid buffer |
NaOH | Sodium hydroxide |
kDa | KiloDaltons |
C24Cer2 | N-Lignoceroyl-D sphingosine |
Chol | Cholest-5-en-3-ol |
C24FA | Lignoceric acid |
ΔΠ | Variation of the surface pressure at equilibrium |
ΔΠ0 | Maximum surface pressure variation |
Πi | Initial surface pressure |
MIP | Maximum insertion pressure |
dΠ0 | The differential surface pressure variation |
HPTS | 8-hydroxypyrene-1,3,6-trisulfonic acid |
DPX | p-xylene bis pyrimidium bromide |
ΔGP | Variation of the generalized polarization |
References
- Briolay, T.; Petithomme, T.; Fouet, M.; Nguyen-Pham, N.; Blanquart, C.; Boisgerault, N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol. Cancer 2021, 20, 55. [Google Scholar] [CrossRef] [PubMed]
- Stecanella, L.A.; Bitencourt, A.P.R.; Vaz, G.R.; Quarta, E.; Silva, J.O.C., Jr.; Rossi, A. Glycyrrhizic Acid and Its Hydrolyzed Metabolite 18β-Glycyrrhetinic Acid as Specific Ligands for Targeting Nanosystems in the Treatment of Liver Cancer. Pharmaceutics 2021, 13, 1792. [Google Scholar] [CrossRef] [PubMed]
- Rečnik, L.M.; Cantelli, C.; Fersing, C.; Gongora, C.; Pouget, J.P.; Lisowski, V. Synthesis and in vitro antitumour activity of carboplatin analoguescontaining functional handles compatible for conjugation to drug delivery systems. Bioorg. Med. Chem. Lett. 2020, 30, 127527–127531. [Google Scholar] [CrossRef] [PubMed]
- Perez-Surio, A.F.; Alcacera-Lopez, M.A. Drug Vectoring Systems to Target Drug Delivery Using Nanotechnologies. Curr. Nanomed. 2018, 8, 39–44. [Google Scholar] [CrossRef]
- Deka Dey, A.; Bigham, A.; Esmaeili, Y.; Ashrafizadeh, M.; Moghaddam, F.D.; Cheng Tan, S.; Yousefiasl, S.; Sharma, S.; Cláudia Paiva-Santos, A.; Maleki, A.; et al. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Le Saux, S.; Aubert-Pouëssel, A.; Mohamed, K.E.; Martineau, P.; Guglielmi, L.; Devoisselle, J.M.; Legrand, P.; Chopineau, J.; Morille, M. Interest of extracellular vesicles in regards to lipid nanoparticle based systems for intracellular protein delivery. Adv. Drug Deliv. Rev. 2021, 176, 113837. [Google Scholar] [CrossRef] [PubMed]
- Hajebi, S.; Yousefiasl, S.; Iahimmanesh, I.; Dahim, A.; Ahmadi, S.; Kadumudi, F.B.; Rahgozar, N.; Amani, S.; Kumar, A.; Kamrani, E.; et al. Genetically engineered viral vectors and organic-based non-viral nanocarriers for drug delivery applications. Adv. Healthc. Mater. 2022, 11, e2201583. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, M.; Shahavi, M.H.; Heidari, G.; Kumar, A.; Nodehi, M.; Moghaddam, F.D.; Mohammadi, M.; Nikfarjam, N.; Sharifi, E.; Makvandi, P.; et al. Ionic liquid-mediated synthesis of metal nanostructures: Potential application in cancer diagnosis and therapy. J. Ion. Liq. 2022, 2, 100033–100049. [Google Scholar] [CrossRef]
- De, A.D.; Kumar, A.; Yousefias, S.; Moghaddam, F.D.; Rahimmanesh, I.; Samandari, M.; Jamwal, S.; Maleki, A.; Mohammadi, A.; Rabiee, N.; et al. miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: Biogenesis, mechanisms, and delivery nanocarriers. Bioengineering and Translational Medicine. Bioeng. Transl. Med. 2022, e10343. [Google Scholar] [CrossRef]
- Peña-Juárez, M.C.; Guadarrama-Escobar, O.R.; Escobar-Chávez, J.J. Transdermal Delivery Systems for Biomolecules. J. Pharm. Innov. 2022, 17, 319–332. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, X. Gold nanoparticles for skin drug delivery. Int. J. Pharm. 2022, 625, 122122–122135. [Google Scholar] [CrossRef]
- Reis, D.R.; Ambrosi, A.; Luccio, M.D. Encapsulated essential oils: A perspective in food preservation. Future Foods 2022, 5, 100126–100140. [Google Scholar] [CrossRef]
- Okagu, O.D.; Wang, B.; Udenigwe, C.C. Food proteins as biomaterial for delivery functions. Food Chem. Funct. Anal. 2021, 27, 97–126. [Google Scholar]
- Zhang, J.; Hassane Hamadou, A.; Chen, C.; Xu, B. Encapsulation of phenolic compounds within food-grade carriers and delivery systems by pH-driven method: A systematic review. Crit. Rev. Food Sci. Nutr. 2021, 3, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Richart, P.; Simonnet, J.T. Nanocapsules: The carrier of choice for lipophilic cosmetic molecules. Pharma Prat. 2003, 13, 3–4+6–7. [Google Scholar]
- Munnier, E.; Munnier, E.; Al Assaad, A.; David, S.; Mahut, F.; Vayer, M.; Van Gheluwe, L.; Yvergnaux, F.; Sinturel, C.; Soucé, M.; et al. Homogeneous distribution of fatty ester-based active cosmetic ingredients in hydrophilic thin films by means of nanodispersion. Int. J. Cosmet. Sci. 2020, 42, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Nery, É.M.; Martinez, R.M.; Velasco, M.V.R.; Baby, A.R. A short review of alternative ingredients and technologies of inorganic UV filters. J. Cosmet. Dermatol. 2021, 20, 1061–1065. [Google Scholar] [CrossRef]
- Dubeya, S.K.; Dey, A.; Singhvi, G.; Manohar Pandey, M.; Singh, V.; Kesharwani, P. Emerging trends of nanotechnology in advanced cosmetics. Colloids Surf. B Biointerfaces 2022, 214, 112440–112458. [Google Scholar] [CrossRef]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Baker, H.; Hall, M.; Dewald, J.; Kallos, G.; Martin, S.; Roeck, J.; Smith, P. Dendritic macromolecules: Synthesis of starburst dendrimers. Macromolecules 1986, 19, 2466–2468. [Google Scholar] [CrossRef]
- Tomalia, D.A. The dendritic state. Mater. Today 2005, 8, 34–46. [Google Scholar] [CrossRef]
- Newkome, G.R.; Yao, Z.-Q.; Baker, G.R.; Gupta, V.K. Cascade molecules: A new approach to micelles. J. Org. Chem. 1985, 9, 2003–2004. [Google Scholar] [CrossRef]
- Abbasi, E.; Aval, F.S.; Akbarzadeh, A.; Milani, M.; Tayefi Nasrabadi, H.; Woo Joo, S.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014, 9, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Klajnert, B.; Bryszewska, M. Dendrimers: Properties and applications. Acta Biochim. Pol. 2001, 48, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa-Gopalan, S.; Yarema, K.J. Dendrimers in Cancer Treatment and Diagnosis. In Nanotechnologies for the Life Sciences; Wiley: New York, NY, USA, 2007; Volume 1, pp. 1–43. [Google Scholar]
- Menot, B.; Stopinski, J.; Martinez, A.; Oudart, J.B.; Maquart, F.X.; Bouquillon, S. Synthesis of surface-modified PAMAMs and PPIs for encapsulation purposes: Influence of the decoration on their sizes and toxicity. Tetrahedron 2015, 71, 3439–3446. [Google Scholar] [CrossRef]
- Balieu, S.; Cadiou, C.; Martinez, A.; Nuzillard, J.-M.; Oudart, J.-B.; Maquart, F.-X.; Chuburu, F.; Bouquillon, S. Encapsulation of contrast imaging agents by polypropyleneimine-based dendrimers. J. Biomed. Mater. Res. Part A 2013, 101A, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Balieu, S.; El Zein, A.; de Sousa, R.; Jérôme, F.; Tatiboueet, A.; Gatard, S.; Pouilloux, Y.; Barrault, J.; Rollin, P.; Bouquillon, S. One-step surface decoration of poly(propyleneimines) PPIs with the glyceryl moiety: New way for recycling homogeneous dendrimer-based catalysts. Adv. Synth. Catal. 2010, 352, 1826–1833. [Google Scholar] [CrossRef]
- Maes, C.; Menot, B.; Hayouni, S.; Martinez, A.; Fauconnier, M.L.; Bouquillon, S. Preparation of new glycerol-based dendrimers and studies on their behavior towards essential oils encapsulation. ACS Omega 2022, 12, 10277–10291. [Google Scholar] [CrossRef]
- Maes, C.; Brostaux, Y.; Bouquillon, S.; Fauconnier, M.L. Use of New Glycerol-Based Dendrimers for Essential Oils Encapsulation: Optimization of Stirring Time and Rate Using a Plackett—Burman Design and a Surface Response Methodology. Foods 2021, 10, 207. [Google Scholar] [CrossRef]
- Souda, T.; Sugiura, T.; Kennoki, M.; Matsuba, M. Copolymer Having Carbosiloxane Dendrimer Structure, And Composition, Cosmetic Ingredient, Coating Forming Agent, And Cosmetic Containing Same. U.S. Patent Application No 17/600,307, 7 July 2022. [Google Scholar]
- Guzman, L.; Castro, R.; Saffie, C.; Mandujano, P. Nanohealing Agent for The Care of Wounds. Alba Profesionales Patent WO 2020/232561 Al, 2020. [Google Scholar]
- Astruc, D.; Ruiz, J.; Boisselier, E. Encapsulation of vitamin c into water soluble dendrimers. U.S. Patent Application No 12/863,877, 27 January 2011. [Google Scholar]
- Chauhan, A.S. Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol. Ann. N. Y. Acad. Sci. 2015, 1348, 134–140. [Google Scholar] [CrossRef]
- Madaan, K.; Lather, V.; Pandita, D. Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid. Drug Deliv. 2016, 23, 54–62. [Google Scholar] [CrossRef]
- Pehlivan, F.E. Vitamin C: An Antioxidant Agent. IntechOpen 2017, 2, 23–35. Available online: https://www.intechopen.com/chapters/56013 (accessed on 9 July 2022).
- Buxerauda, J.; Faure, S. La vitamine C. Actual. Pharm. 2021, 60, S24–S26. [Google Scholar] [CrossRef]
- Pullar, J.M.; Carr, A.C.; Vissers, M.C.M. The Roles of Vitamin C in Skin Health. Nutrients 2017, 9, 866. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.; Chen, S.; Corpe, C.; Dutta, A.; Dutta, S.K.; et al. Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention. J. Am. Coll. Nutr. 2003, 22, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Stevanovi’c, M.; Savi’c, J.; Jordovi’c, B.; Uskokovi’c, D. Fabrication, in vitro degradation and the release behaviours of poly(dl-lactide-co-glycolide) nanospheres containing ascorbic acid. Colloids Surf. B Biointerfaces 2007, 59, 215–223. [Google Scholar] [CrossRef]
- Boisselier, E.; Liang, L.; Dallo-Csiba, M.; Ruiz, J.; Astruc, D. Interactions and Encapsulation of Vitamins C, B3, and B6 with Dendrimers in Water. Chem. Eur. J. 2010, 16, 6056–6068. [Google Scholar] [CrossRef]
- Wołowiec, S.; Laskowski, M.; Laskowska, B.; Magoń, A.; Myśliwiec, B.; Pyda, M. Dermatological Application of PAMAM–Vitamin Bioconjugates and Host-Guest Complexes—Vitamin C Case Study. Stoichiom. Res.–Importance Quant. Biomed. 2012, 8, 195–210. [Google Scholar]
- Deleu, M.; Crowet, J.M.; Nasir, M.N.; Lins, L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. Biochim. Biophys. Acta 2014, 1838, 3171–3190. [Google Scholar] [CrossRef]
- Law, S.; Wertz, P.W.; Swartzendruber, D.C.; Squier, C.A. Regional variation in content, composition and organization of porcine epithelial barrier lipids revealed by thin-layer chromatography and transmission electron microscopy. Arch. Oral Biol. 1995, 40, 1085–1091. [Google Scholar] [CrossRef]
- Wertz, P.W.; van den Bergh, B. The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem. Phys. Lipids. 1998, 91, 85–96. [Google Scholar] [CrossRef]
- Hadjuk, J.P.; Olejniczak, E.T.; Fesik, S.W. One dimensional relaxation and diffusion edited NMR methods for screening compounds that bind to macromolecules. J. Am. Chem. Soc. 1997, 119, 12257–12261. [Google Scholar]
- Mutalik, S.; Nayak, U.Y.; Kalra, R.; Kumar, A.; Kulkarni, R.V.; Parekh, H.S. Sonophoresis-mediated permeation and retention of peptide dendrimers across human epidermis. Ski. Res. Technol. 2012, 18, 101–107. [Google Scholar] [CrossRef]
- Mutalik, S.; Shetty, P.K.; Kumar, A.; Kalra, R.; Parekh, H.S. Enhancement in deposition and permeation of 5-fluorouracil through human epidermis assisted by peptide dendrimers. Drug Deliv. 2014, 21, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Mutalik, S.; Parekh, H.S.; Anissimov, Y.G.; Grice, J.E.; Roberts, M.S. Iontophoresis-Mediated Transdermal Permeation of Peptide Dendrimers across Human Epidermis Skin. Pharmacol. Physiol. 2013, 26, 127–138. [Google Scholar]
- Manikkatha, J.; Hegdea, A.R.; Kalthurb, G.; Parekhc, H.S.; Mutalik, S. Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen. Int. J. Pharm. 2017, 521, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Borowskaa, K.; Wołowieca, S.; Rubajb, A.; Głowniakc, K.; Sieniawskac, E.; Radejd, S. Effect of polyamidoamine dendrimer G3 and G4 on skin permeation of 8-methoxypsoralene—In vivo study. Int. J. Pharm. 2012, 426, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Venuganti, V.V.; Perumal, O. Poly(Amidoamine) Dendrimers As Skin Penetration Enhancers: Influence Of Charge, Generation, And Concentration. J. Pharm. Sci. 2009, 98, 2345–2356. [Google Scholar] [CrossRef]
- Venuganti, V.V.; Sahdev, P.; Hildreth, M.; Guan, X.; Perumal, O. Structure-Skin Permeability Relationship of Dendrimers. Pharm. Res. 2011, 28, 2246–2260. [Google Scholar] [CrossRef]
- Fox, L.J.; Richardsonc, R.M.; Briscoe, W.H. PAMAM dendrimer-cell membrane interactions. Adv. Colloid Interface Sci. 2018, 257, 1–18. [Google Scholar] [CrossRef]
- Volz, P.; Schilrreff, P.; Brodwolf, R.; Wolff, C.; Stellmacher, J.; Balke, J.; Morilla, M.J.; Zoschke, C.; Schafer-Korting, M.; Alexiev, U. Pitfalls in using fluorescence tagging of nanomaterials: Tecto-dendrimers in skin tissue as investigated by Cluster-FLIM. Ann. N.Y. Acad. Sci. 2017, 1405, 202–214. [Google Scholar] [CrossRef]
- Eeman, M.; Berquand, A.; Dufrêne, Y.F.; Paquot, M.; Dufour, S.; Deleu, M. Penetration of surfactin into phospholipid monolayers: Nanoscale interfacial organization. Langmuir 2006, 22, 11337–11345. [Google Scholar] [CrossRef] [PubMed]
- Eeman, M.; Francius, G.; Dufrêne, Y.F.; Nott, K.; Paquot, M.; Deleu, M. Effect of Cholesterol and Fatty Acids on the Molecular Interactions of Fengycin with Stratum Corneum Mimicking Lipid Monolayers. Langmuir 2009, 25, 3029–3039. [Google Scholar] [CrossRef] [PubMed]
- Franche, A.; Fayeulle, A.; Lins, L.; Billamboz, M.; Pezron, I.; Deleu, M.; Léonard, E. Amphiphilic azobenzenes: Antibacterial activities and biophysical investigation of their interaction with bacterial membrane lipids. Bioorganic Chem. 2019, 94, 103399–103407. [Google Scholar] [CrossRef] [PubMed]
- Deboever, E.; Lins, L.; Marc, O.; de Clerck, C.; Deleu, M.; Fauconnier, M.L. Linolenic fatty acid hydroperoxide acts as biocide on plant pathogenic bacteria: Biophysical investigation of the mode of action. Bioorganic Chem. 2020, 100, 103877–103886. [Google Scholar]
- Schmidt, T.F.; Riske, K.A.; Caseli, L.; Salesse, C. Dengue fusion peptide in Langmuir monolayers: A binding parameter study. Biophys. Chem. 2021, 271, 106553–106561. [Google Scholar] [CrossRef]
- Boisselier, É.; Demers, É.; Cantin, L.; Salesse, C. How to gather useful and valuable information from protein binding measurements using Langmuir lipid monolayers. Adv. Colloid Interface Sci. 2017, 243, 60–76. [Google Scholar] [CrossRef]
- Eeman, M.; Deleu, M. From biological membranes to biomimetic model membranes. Biotechnol. Agron. Soc. Environ. 2010, 14, 691–708. [Google Scholar]
- Åkesson, A.; Moss Bendtsen, K.; Beherens, M.A.; Skov Pedersen, J.; Alfredsson, V.; Cárdenas Gómez, M. The effect of PAMAM G6 dendrimers on the structure of lipidvesicles. Phys. Chem. Chem. Phys. 2010, 12, 12267–12272. [Google Scholar] [CrossRef]
- Amaro, M.; Sachl, R.; Jurkiewicz, P.; Coutinho, A.; Prieto, M.; Ho, M. Time-Resolved Fluorescence in Lipid Bilayers: Selected Applications and Advantages over Steady State. Biophys. J. 2014, 107, 2751–2760. [Google Scholar] [CrossRef]
- Hein, R.; Uzundal, C.B.; Hennig, A. Simple and rapid quantification of phospholipids for supramolecular membrane transport assays. Org. Biomol. Chem. 2016, 14, 2182–2185. [Google Scholar] [CrossRef]
- Smeralda, W.; Since, M.; Corvaisier, S.; Legay, R.; Voisin-Chiret, A.S.; Malzert-Freon, A. Microplate assay for lipophilicity determination using intrinsic fluorescence of drugs: Application to a promising anticancer lead, pyridoclax. Eur. J. Pharm. Sci. 2019, 131, 75–83. [Google Scholar] [CrossRef] [PubMed]
Entry | Vitamin C (mg) | Dendrimers (mg) | Function Numbers ‘N’ nbr | Encapsulated VitC (mg) | Encapsulated VitC (equiv) |
---|---|---|---|---|---|
1 | 82 | GD-PPI-2 35 | 14 | 20 | 6 |
2 | GD-PPI-3 36 | 30 | 24 | 14 | |
3 | GD-PPI-4 34 | 62 | 34 | 42 | |
4 | 85 | GD-PPI-4 35 | 62 | 33 | 39 |
5 | 90 | PPI-4 36 | 62 | 78 | 43 |
6 | 78 | GD-PAMAM-3 34 | 122 | 46 | 82 |
7 | 92 | PAMAM-3 36 | 122 | 57 | 62 |
pH | MIP (mN/m) | dΠ0 (mN/m) | ||
---|---|---|---|---|
GD-PAMAM-3 | VitC@GD-PAMAM-3 | GD-PAMAM-3 | VitC@GD-PAMAM-3 | |
pH 5.0 | 28.2 ± 7.3 | 22.9 ± 7.2 | 5.9 ± 0.5 | 9.6 ± 1.4 |
pH 6.0 | 19.5 ± 2.8 | 27.4 ± 5.1 | 6.7 ± 0.7 | 5.3 ± 0.6 |
pH 7.4 | 23.9 ± 4.7 | 28.6 ± 5.5 | 2.7 ± 0.7 | 2.6 ± 0.6 |
Dendrimers | Generation Number | Yields (%) | Terminal OH Moieties |
---|---|---|---|
GD-PAMAM | G0 | 70 | 8 |
G1 | 85 | 16 | |
G2 | 87 | 32 | |
G3 | 90 | 64 | |
GD-PPI | G1 | 80 | 8 |
G2 | 70 | 16 | |
G3 | 85 | 32 | |
G4 | 75 | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacha, K.; Chemotti, C.; Monboisse, J.-C.; Robert, A.; Furlan, A.L.; Smeralda, W.; Damblon, C.; Estager, J.; Brassart-Pasco, S.; Mbakidi, J.-P.; et al. Encapsulation of Vitamin C by Glycerol-Derived Dendrimers, Their Interaction with Biomimetic Models of Stratum corneum and Their Cytotoxicity. Molecules 2022, 27, 8022. https://doi.org/10.3390/molecules27228022
Bacha K, Chemotti C, Monboisse J-C, Robert A, Furlan AL, Smeralda W, Damblon C, Estager J, Brassart-Pasco S, Mbakidi J-P, et al. Encapsulation of Vitamin C by Glycerol-Derived Dendrimers, Their Interaction with Biomimetic Models of Stratum corneum and Their Cytotoxicity. Molecules. 2022; 27(22):8022. https://doi.org/10.3390/molecules27228022
Chicago/Turabian StyleBacha, Katia, Catherine Chemotti, Jean-Claude Monboisse, Anthony Robert, Aurélien L. Furlan, Willy Smeralda, Christian Damblon, Julien Estager, Sylvie Brassart-Pasco, Jean-Pierre Mbakidi, and et al. 2022. "Encapsulation of Vitamin C by Glycerol-Derived Dendrimers, Their Interaction with Biomimetic Models of Stratum corneum and Their Cytotoxicity" Molecules 27, no. 22: 8022. https://doi.org/10.3390/molecules27228022
APA StyleBacha, K., Chemotti, C., Monboisse, J. -C., Robert, A., Furlan, A. L., Smeralda, W., Damblon, C., Estager, J., Brassart-Pasco, S., Mbakidi, J. -P., Pršić, J., Bouquillon, S., & Deleu, M. (2022). Encapsulation of Vitamin C by Glycerol-Derived Dendrimers, Their Interaction with Biomimetic Models of Stratum corneum and Their Cytotoxicity. Molecules, 27(22), 8022. https://doi.org/10.3390/molecules27228022