The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater
Abstract
:1. Introduction
2. Heavy Metal-Contaminated Water
3. Technology for Heavy Metal Removal
3.1. Electrochemical Methods
3.2. Biological Method
3.3. Membrane Filtration
3.4. Coagulation and Flocculation
3.5. Advanced Oxidation Processes
3.6. Hybrid Methods
3.7. Adsorption
4. The Influencing Parameters of Heavy Metal Adsorption
4.1. Initial pH
4.2. Initial Metal Concentration
4.3. Adsorbent Dose
4.4. Contact Time
4.5. Temperature
5. Adsorption Preparation
5.1. Adsorption Isotherm and Kinetic Models
5.1.1. Adsorption Isotherm
- Freundlich Isotherm Model
- Langmuir Isotherm Model
- Dubinin-Radushkevich Isotherm Model
- Tempkin Isotherm Model
- Elovich Isotherm Model
5.1.2. Adsorption Kinetic Modelling
- Pseudo-first and Second Order
- Intra-particle Diffusion
- Liquid Film Diffusion
6. Algae or Seaweed-Based Bio-Adsorbents for Sequestering Heavy Metals
6.1. Lead Metal Ions
6.2. Chromium Metal Ions
6.3. Nickel Metal Ions
6.4. Cobalt Metal Ions
6.5. Cadmium Metal Ions
6.6. Arsenic Metal Ions
6.7. Mercury Metal Ions
6.8. Zinc Metal Ions
6.9. Multi-Metals Removal
7. Regeneration and Disposal of Saturated Bio-Adsorbents
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhattacharjee, C.; Dutta, S.; Saxena, V.K. A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent. Environ. Adv. 2020, 2, 100007. [Google Scholar] [CrossRef]
- Mishra, S.; Cheng, L.; Maiti, A. The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: A comprehensive review. J. Environ. Chem. Eng. 2021, 9, 104901. [Google Scholar] [CrossRef]
- Martini, S.; Roni, K.A. The existing technology and the application of digital artificial intelligent in the wastewater treatment area: A review paper. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; p. 012013. [Google Scholar]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Int. J. Environ. Anal. Chem. 2020, 102, 342–379. [Google Scholar] [CrossRef]
- Kerur, S.S.; Bandekar, S.; Hanagadakar, M.S.; Nandi, S.S.; Ratnamala, G.M.; Hegde, P.G. Removal of hexavalent Chromium-Industry treated water and Wastewater: A review. Mater. Today Proc. 2021, 42, 1112–1121. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J. Anal. Appl. Pyrolysis 2021, 155, 105081. [Google Scholar] [CrossRef]
- Bilal, M.; Ihsanullah, I.; Younas, M.; Ul Hassan Shah, M. Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review. Sep. Purif. Technol. 2021, 278, 119510. [Google Scholar] [CrossRef]
- Tamjidi, S.; Esmaeili, H. Chemically modified CaO/Fe3O4 nanocomposite by sodium dodecyl sulfate for Cr(III) removal from water. Chem. Eng. Technol. 2019, 42, 607–616. [Google Scholar] [CrossRef]
- El Gheriany, I.A.; El Saqa, F.A.; Amer, A.A.E.R.; Hussein, M. Oil spill sorption capacity of raw and thermally modified orange peel waste. Alex. Eng. J. 2020, 59, 925–932. [Google Scholar] [CrossRef]
- Afroze, S.; Sen, T.K. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 2018, 229, 225. [Google Scholar] [CrossRef]
- Foday, E.H., Jr.; Bo, B.; Xu, X. Removal of Toxic Heavy Metals from Contaminated Aqueous Solutions Using Seaweeds: A Review. Sustainability 2021, 13, 12311. [Google Scholar] [CrossRef]
- Gümüş, N.E.; Aşıkkutlu, B.; Keskinkaya, H.B.; Akköz, C. Comparison of heavy metal absorption of some algae isolated from Altınapa Dam Lake (Konya). J. Anatol. Environ. Anim. Sci. 2021, 1, 50–56. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Parisa, T.A.; Islam, N.; Kusumo, F.; Inayat, A.; Le, V.G.; Badruddin, I.A.; Khan, T.M.Y.; Ong, H.C. Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere 2022, 286, 131656. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Chen, J.P. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 2014, 160, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Antuña-Nieto, C.; Rodríguez, E.; Lopez-Anton, M.A.; García, R.; Martínez-Tarazona, M.R. Noble metal-based sorbents: A way to avoid new waste after mercury removal. J. Hazard. Mater. 2020, 400, 123168. [Google Scholar] [CrossRef] [PubMed]
- Di Natale, F.; Lancia, A.; Molino, A.; Di Natale, M.; Karatza, D.; Musmarra, D. Capture of mercury ions by natural and industrial materials. J. Hazard. Mater. 2006, 132, 220–225. [Google Scholar] [CrossRef]
- Rae, I.B.; Gibb, S.W.; Lu, S. Biosorption of Hg from aqueous solutions by crab carapace. J. Hazard. Mater. 2009, 164, 1601–1604. [Google Scholar] [CrossRef]
- Low, K.; Lee, C.; Liew, S. Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem. 2000, 36, 59–64. [Google Scholar] [CrossRef]
- Assi, M.A.; Hezmee, M.N.M.; Abd Wahid Haron, M.Y.M.; Sabri, M.A.R. The detrimental effects of lead on human and animal health. Vet. World 2016, 9, 660. [Google Scholar] [CrossRef]
- Mishra, P.; Patel, R. Removal of lead and zinc ions from water by low cost adsorbents. J. Hazard. Mater. 2009, 168, 319–325. [Google Scholar] [CrossRef]
- Wang, Y.; Tsang, D.C. Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents. J. Environ. Sci. 2013, 25, 2291–2298. [Google Scholar] [CrossRef]
- Timalsina, H.; Mainali, B.; Angove, M.J.; Komai, T.; Paudel, S.R. Potential modification of groundwater arsenic removal filter commonly used in Nepal: A review. Groundw. Sustain. Dev. 2021, 12, 100549. [Google Scholar] [CrossRef]
- Mondal, P.; Majumder, C.; Mohanty, B. Laboratory based approaches for arsenic remediation from contaminated water: Recent developments. J. Hazard. Mater. 2006, 137, 464–479. [Google Scholar] [CrossRef] [PubMed]
- Tavares, D.S.; Lopes, C.B.; Coelho, J.P.; Sánchez, M.E.; Garcia, A.I.; Duarte, A.C.; Otero, M.; Pereira, E. Removal of arsenic from aqueous solutions by sorption onto sewage sludge-based sorbent. Water Air Soil Pollut. 2012, 223, 2311–2321. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Igarashi, T.; Villacorte-Tabelin, M.; Park, I.; Opiso, E.M.; Ito, M.; Hiroyoshi, N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci. Total Environ. 2018, 645, 1522–1553. [Google Scholar] [CrossRef] [PubMed]
- Mi, F.-L.; Wu, S.-J.; Lin, F.-M. Adsorption of copper(II) ions by a chitosan–oxalate complex biosorbent. Int. J. Biol. Macromol. 2015, 72, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Lamb, D.; Naidu, R.; Bolan, N.S.; Yan, Y.; Ok, Y.S.; Rahman, M.M.; Choppala, G. Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci. Total Environ. 2018, 610–611, 1457–1466. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M.; Gupta, V.K. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind. Eng. Chem. Res. 2011, 50, 13589–13613. [Google Scholar] [CrossRef]
- Kazakis, N.; Kantiranis, N.; Kalaitzidou, K.; Kaprara, E.; Mitrakas, M.; Frei, R.; Vargemezis, G.; Vogiatzis, D.; Zouboulis, A.; Filippidis, A. Environmentally available hexavalent chromium in soils and sediments impacted by dispersed fly ash in Sarigkiol basin (Northern Greece). Environ. Pollut. 2018, 235, 632–641. [Google Scholar] [CrossRef]
- Es-sahbany, H.; Berradi, M.; Nkhili, S.; Hsissou, R.; Allaoui, M.; Loutfi, M.; Bassir, D.; Belfaquir, M.; El Youbi, M.S. Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. Mater. Today Proc. 2019, 13, 866–875. [Google Scholar] [CrossRef]
- Hannachi, Y.; Shapovalov, N.A.; Hannachi, A. Adsorption of nickel from aqueous solution by the use of low-cost adsorbents. Korean J. Chem. Eng. 2010, 27, 152–158. [Google Scholar] [CrossRef]
- Bibaj, E.; Lysigaki, K.; Nolan, J.; Seyedsalehi, M.; Deliyanni, E.; Mitropoulos, A.; Kyzas, G. Activated carbons from banana peels for the removal of nickel ions. Int. J. Environ. Sci. Technol. 2019, 16, 667–680. [Google Scholar] [CrossRef]
- Hawari, A.; Rawajfih, Z.; Nsour, N. Equilibrium and thermodynamic analysis of zinc ions adsorption by olive oil mill solid residues. J. Hazard. Mater. 2009, 168, 1284–1289. [Google Scholar] [CrossRef]
- Akpor, O.B.; Ohiobor, G.O.; Olaolu, D. Heavy metal pollutants in wastewater effluents: Sources, effects and remediation. Adv. Biosci. Bioeng. 2014, 2, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Cheremisinoff, N.P. Handbook of Water and Wastewater Treatment Technologies; Butterworth-Heinemann: Oxford, UK, 2001. [Google Scholar]
- Agarwal, A.; Upadhyay, U.; Sreedhar, I.; Singh, S.A.; Patel, C.M. A review on valorization of biomass in heavy metal removal from wastewater. J. Water Process Eng. 2020, 38, 101602. [Google Scholar] [CrossRef]
- Trellu, C.; Mousset, E.; Pechaud, Y.; Huguenot, D.; van Hullebusch, E.D.; Esposito, G.; Oturan, M.A. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review. J. Hazard. Mater. 2016, 306, 149–174. [Google Scholar] [CrossRef]
- Xu, H.; Yang, B.; Liu, Y.; Li, F.; Song, X.; Cao, X.; Sand, W. Evolution of microbial populations and impacts of microbial activity in the anaerobic-oxic-settling-anaerobic process for simultaneous sludge reduction and dyeing wastewater treatment. J. Clean. Prod. 2021, 282, 124403. [Google Scholar] [CrossRef]
- Pang, Y.L.; Abdullah, A.Z. Current status of textile industry wastewater management and research progress in Malaysia: A review. Clean–Soil Air Water 2013, 41, 751–764. [Google Scholar] [CrossRef]
- Mishra, S.; Maiti, A. Biological methodologies for treatment of textile wastewater. In Environmental Processes and Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 77–107. [Google Scholar]
- Gómez-Ramírez, M.; Tenorio-Sánchez, S.A. Treatment of solid waste containing metals by biological methods. In Natural Resources Management and Biological Sciences; IntechOpen: London, UK, 2020. [Google Scholar]
- Venegas, M.; Leiva, A.M.; Reyes-Contreras, C.; Neumann, P.; Piña, B.; Vidal, G. Presence and fate of micropollutants during anaerobic digestion of sewage and their implications for the circular economy: A short review. J. Environ. Chem. Eng. 2021, 9, 104931. [Google Scholar] [CrossRef]
- Yang, C.; Xu, W.; Nan, Y.; Wang, Y.; Hu, Y.; Gao, C.; Chen, X. Fabrication and characterization of a high performance polyimide ultrafiltration membrane for dye removal. J. Coll. Interface Sci. 2020, 562, 589–597. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, B.; Yin, X.; Ma, H.; Hsiao, B.S. Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions. Sep. Purif. Technol. 2020, 233, 115976. [Google Scholar] [CrossRef]
- Saleh, T.A.; Gupta, V.K. Nanomaterial and Polymer Membranes: Synthesis, Characterization, and Applications; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Khan, I.A.; Lee, Y.S.; Kim, J.O. A comparison of variations in blocking mechanisms of membrane-fouling models for estimating flux during water treatment. Chemosphere 2020, 259, 127328. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci. Total Environ. 2020, 765, 142795. [Google Scholar] [CrossRef] [PubMed]
- Drinan, J.E.; Spellman, F. Water and Wastewater Treatment: A Guide for the Nonengineering Professional, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Kurniawan, T.A.; Chan, G.Y.; Lo, W.-H.; Babel, S. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Aljuboury, D.a.d.A.; Shaik, F. Assessment of TiO2/ZnO/H2O2 Photocatalyst to treat wastewater from oil refinery within visible light circumstances. S. Afr. J. Chem. Eng. 2021, 35, 69–77. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 1999, 53, 51–59. [Google Scholar] [CrossRef]
- Ochando-Pulido, J.M.; Victor-Ortega, M.D.; Hodaifa, G.; Martinez-Ferez, A. Physicochemical analysis and adequation of olive oil mill wastewater after advanced oxidation process for reclamation by pressure-driven membrane technology. Sci. Total Environ. 2015, 503–504, 113–121. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Esteban-García, B.; Agüera, A.; Sánchez-Pérez, J.A.; Manzano-Agugliaro, F. Wastewater treatment by advanced oxidation process and their worldwide research trends. Int. J. Environ. Res. Public Health 2020, 17, 170. [Google Scholar] [CrossRef] [Green Version]
- Martini, S.; Znad, H.T.; Ang, H.M. Photo-assisted fenton process for the treatment of canola oil effluent. In Chemeca 2014: Processing Excellence; Powering our Future, Engineers Australia: Barton, ACT, Australia, 2014; pp. 1519–1533. [Google Scholar]
- Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination 2011, 280, 1–13. [Google Scholar] [CrossRef]
- Barambu, N.U.; Bilad, M.R.; Bustam, M.A.; Kurnia, K.A.; Othman, M.H.D.; Nordin, N.A.H.M. Development of membrane material for oily wastewater treatment: A review. Ain Shams Eng. J. 2020, 12, 1361–1374. [Google Scholar] [CrossRef]
- Martini, S.; Yuliwati, E. Membrane Development and Its Hybrid Application for Oily Wastewater Treatment: A Review. J. Appl. Membr. Sci. Technol. 2020, 25, 57–71. [Google Scholar]
- Martini, S.; Ang, H.M. Hybrid TiO2/UV/PVDF ultrafiltration membrane for raw canola oil wastewater treatment. Desalination Water Treat. 2019, 148, 51–59. [Google Scholar] [CrossRef]
- Khalifa, O.; Banat, F.; Srinivasakannan, C.; AlMarzooqi, F.; Hasan, S.W. Ozonation-assisted electro-membrane hybrid reactor for oily wastewater treatment: A methodological approach and synergy effects. J. Clean. Prod. 2021, 289, 125764. [Google Scholar] [CrossRef]
- Medhat, A.; El-Maghrabi, H.H.; Abdelghany, A.; Abdel Menem, N.M.; Raynaud, P.; Moustafa, Y.M.; Elsayed, M.A.; Nada, A.A. Efficiently activated carbons from corn cob for methylene blue adsorption. Appl. Surf. Sci. Adv. 2021, 3, 100037. [Google Scholar] [CrossRef]
- Bilal, M.; Shah, J.A.; Ashfaq, T.; Gardazi, S.M.H.; Tahir, A.A.; Pervez, A.; Haroon, H.; Mahmood, Q. Waste biomass adsorbents for copper removal from industrial wastewater—A review. J. Hazard. Mater. 2013, 263, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J.; Yuan, Q.; Tang, H.; Yu, F.; Lv, X. A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water. RSC Adv. 2016, 6, 45041–45048. [Google Scholar] [CrossRef]
- Huang, K.; Xiu, Y.; Zhu, H. Removal of heavy metal ions from aqueous solution by chemically modified mangosteen pericarp. Desalination Water Treat. 2014, 52, 7108–7116. [Google Scholar] [CrossRef]
- Rosales, E.; Meijide, J.; Tavares, T.; Pazos, M.; Sanromán, M. Grapefruit peelings as a promising biosorbent for the removal of leather dyes and hexavalent chromium. Process Saf. Environ. Prot. 2016, 101, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Al Ketife, A.M.D.; Almomani, F.; Znad, H. Sustainable removal of copper from wastewater using chemically treated biosorbent: Characterization, mechanism and process kinetics. Env. Technol. Innovation. 2021, 23, 101555. [Google Scholar] [CrossRef]
- Veglio, F.; Beolchini, F. Removal of metals by biosorption: A review. Hydrometallurgy 1997, 44, 301–316. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Balasubramanian, R. Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J. Environ. Manag. 2015, 160, 283–296. [Google Scholar] [CrossRef]
- Martini, S.; Afroze, S. Current development of sorbents derived from plant and animal waste as green solution for treating polluted aqueous media. J. Teknol. 2021, 83, 175–191. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Vemula, K.R.; Chang, Y.-Y.; Yang, J.-K.; Karri, R.R.; Koduru, J.R. Process optimization and modeling of lead removal using iron oxide nanocomposites generated from bio-waste mass. Chemosphere 2020, 243, 125257. [Google Scholar] [CrossRef] [PubMed]
- Wahi, R.; Abdullah, L.C.; Mobarekeh, M.N.; Ngaini, Z.; Yaw, T.C.S. Utilization of esterified sago bark fibre waste for removal of oil from palm oil mill effluent. J. Environ. Chem. Eng. 2017, 5, 170–177. [Google Scholar] [CrossRef]
- Martini, S.; Afroze, S.; Roni, K.A. Modified eucalyptus bark as a sorbent for simultaneous removal of COD, oil, and Cr (III) from industrial wastewater. Alex. Eng. J. 2020, 59, 1637–1648. [Google Scholar] [CrossRef]
- Foroutan, R.; Esmaeili, H.; Abbasi, M.; Rezakazemi, M.; Mesbah, M. Adsorption behavior of Cu (II) and Co (II) using chemically modified marine algae. Environ. Technol. 2018, 39, 2792–2800. [Google Scholar] [CrossRef]
- Abedi, S.; Zavvar Mousavi, H.; Asghari, A. Investigation of heavy metal ions adsorption by magnetically modified aloe vera leaves ash based on equilibrium, kinetic and thermodynamic studies. Desalination Water Treat. 2016, 57, 13747–13759. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Ighalo, J.O. Biosorption of pollutants by plant leaves: An empirical review. J. Environ. Chem. Eng. 2019, 7, 10310. [Google Scholar] [CrossRef]
- Ezeonuegbu, B.A.; Machido, D.A.; Whong, C.M.Z.; Japhet, W.S.; Alexiou, A.; Elazab, S.T.; Qusty, N.; Yaro, C.A.; Batiha, G.E.-S. Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: Biosorption, equilibrium isotherms, kinetics and desorption studies. Biotechnol. Rep. 2021, 30, e00614. [Google Scholar] [CrossRef]
- Kumar, P.; Chauhan, M.S. Adsorption of chromium (VI) from the synthetic aqueous solution using chemically modified dried water hyacinth roots. J. Environ. Chem. Eng. 2019, 7, 103218. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, W.-J.; Zhang, N.M.; Li, Y.-S.; Jiang, H.; Sheng, G.-P. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresour. Technol. 2014, 169, 403–408. [Google Scholar] [CrossRef]
- Volesky, B. Biosorption and me. Water Res. 2007, 41, 4017–4029. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.A.; Katla, S.K.; Islam, M.T.; Hernandez-Viezcas, J.A.; Martinez, L.M.; Díaz-Moreno, C.A.; Lopez, J.; Singamaneni, S.R.; Banuelos, J.; Gardea-Torresdey, J. Adsorptive removal of methylene blue, tetracycline and Cr (VI) from water using sulfonated tea waste. Environ. Technol. Innov. 2018, 11, 23–40. [Google Scholar] [CrossRef]
- Dawood, S.; Sen, T.; Phan, C. Synthesis and Characterisation of Novel-Activated carbon from waste biomass pine cone and its application in the removal of congo red dye from aqueous solution by adsorption. Water Air Soil Pollut. 2014, 225, 1–16. [Google Scholar] [CrossRef]
- Dubinin, M.; Radushkevich, L. Evaluation of Microporous Material with a New Isotherm. Proc. USSR Acad. Sci. 1966, 55, 331–347. [Google Scholar]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Al Haddabi, M.; Vuthaluru, H.; Znad, H.; Ahmed, M. Attapulgite as potential adsorbent for dissolved organic carbon from oily water. CLEAN Soil Air Water 2015, 43, 1522–1530. [Google Scholar] [CrossRef]
- Nandi, B.K.; Goswami, A.; Purkait, M.K. Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. Appl. Clay Sci. 2009, 42, 583–590. [Google Scholar] [CrossRef]
- Sen, T.K.; Sarzali, M.V. Removal of cadmium metal ion (Cd2+) from its aqueous solution by aluminium oxide (Al2O3): A kinetic and equilibrium study. Chem. Eng. J. 2008, 142, 256–262. [Google Scholar] [CrossRef]
- El Shahawy, A.; Heikal, G. Organic pollutants removal from oily wastewater using clean technology economically, friendly biosorbent (Phragmites australis). Ecol. Eng. 2018, 122, 207–218. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Show, P.-L.; Lau, B.F.; Chang, J.-S.; Ling, T.C. New Prospects for Modified Algae in Heavy Metal Adsorption. Trends Biotechnol. 2019, 37, 1255–1268. [Google Scholar] [CrossRef]
- Abdullah Al-Dhabi, N.; Arasu, M.V. Biosorption of hazardous waste from the municipal wastewater by marine algal biomass. Environ. Res. 2022, 204, 112115. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, N.E.-A.; Hamouda, R.A.; Mousa, I.E.; Abdel-Hamid, M.S.; Rabei, N.H. Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions. Sci. Rep. 2018, 8, 13456. [Google Scholar] [CrossRef] [PubMed]
- Yalçın, S.; Özyürek, M. Biosorption potential of two brown seaweeds in the removal of chromium. Water Sci. Technol. 2018, 78, 2564–2576. [Google Scholar] [CrossRef] [PubMed]
- Husien, S.; Labena, A.; El-Belely, E.; Mahmoud, H.M.; Hamouda, A.S. Adsorption studies of hexavalent chromium [Cr (VI)] on micro-scale biomass of Sargassum dentifolium, Seaweed. J. Environ. Chem. Eng. 2019, 7, 103444. [Google Scholar] [CrossRef]
- Moino, B.P.; Costa, C.S.; da Silva, M.G.; Vieira, M.G. Removal of nickel ions on residue of alginate extraction from Sargassum filipendula seaweed in packed bed. Can. J. Chem Eng. 2017, 95, 2120–2128. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, X.; Kumar, K.; Kunetz, T.; Zhang, Y.; Gross, M.; Wen, Z. Removing high concentration of nickel (II) ions from synthetic wastewater by an indigenous microalgae consortium with a Revolving Algal Biofilm (RAB) system. Algal Res. 2021, 59, 102464. [Google Scholar] [CrossRef]
- Raju, C.A.I.; Anitha, J.; Mahalakshmi Kalyani, R.; Satyanandam, K.; Jagadeesh, P. Sorption of cobalt using marine macro seaweed graciliariacorticatared algae powder. Mater. Today Proc. 2021, 44, 1816–1827. [Google Scholar] [CrossRef]
- Vafajoo, L.; Cheraghi, R.; Dabbagh, R.; McKay, G. Removal of cobalt (II) ions from aqueous solutions utilizing the pre-treated 2-Hypnea Valentiae algae: Equilibrium, thermodynamic, and dynamic studies. Chem. Eng. J. 2018, 331, 39–47. [Google Scholar] [CrossRef]
- Nishikawa, E.; da Silva, M.G.C.; Vieira, M.G.A. Cadmium biosorption by alginate extraction waste and process overview in Life Cycle Assessment context. J. Clean. Prod. 2018, 178, 166–175. [Google Scholar] [CrossRef]
- Vieira, B.R.; Pintor, A.M.; Boaventura, R.A.; Botelho, C.M.; Santos, S.C. Arsenic removal from water using iron-coated seaweeds. J. Environ. Manag. 2017, 192, 224–233. [Google Scholar] [CrossRef]
- Fabre, E.; Dias, M.; Costa, M.; Henriques, B.; Vale, C.; Lopes, C.B.; Pinheiro-Torres, J.; Silva, C.M.; Pereira, E. Negligible effect of potentially toxic elements and rare earth elements on mercury removal from contaminated waters by green, brown and red living marine macroalgae. Sci. Total Environ. 2020, 724, 138133. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, R.; Prasad, D.R.; Govindarajan, L.; Saravanakumar, K.; Prasad, B.N. Green alga-mediated treatment process for removal of zinc from synthetic solution and industrial effluent. Environ. Technol. 2017, 40, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, V.; Govindaradjane, S.; Rajasimman, M. Efficient adsorptive removal of Zinc by green marine macro alga Caulerpa scalpelliformis—Characterization, Optimization, Modeling, Isotherm, Kinetic, Thermodynamic, Desorption and Regeneration Studies. Surf. Interfaces 2021, 22, 100798. [Google Scholar] [CrossRef]
- Jayakumar, V.; Govindaradjane, S.; Rajamohan, N.; Rajasimman, M. Biosorption potential of brown algae, Sargassum polycystum, for the removal of toxic metals, cadmium and zinc. Environ. Sci. Pollut. Res. 2021, 1–14. [Google Scholar] [CrossRef]
- Costa, C.S.D.; Bertagnolli, C.; Boos, A.; da Silva, M.G.C.; Vieira, M.G.A. Application of a dealginated seaweed derivative for the simultaneous metal ions removal from real and synthetic effluents. J. Water Process Eng. 2020, 37, 101546. [Google Scholar] [CrossRef]
- El-Sheekh, M.; El-Sabagh, S.; Abou Elsoud, G.; Elbeltagy, A. Efficacy of immobilized biomass of the seaweeds Ulva lactuca and Ulva fasciata for cadmium biosorption. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 37–49. [Google Scholar] [CrossRef]
- Henriques, B.; Rocha, L.S.; Lopes, C.B.; Figueira, P.; Monteiro, R.J.; Duarte, A.D.C.; Pardal, M.; Pereira, E. Study on bioaccumulation and biosorption of mercury by living marine macroalgae: Prospecting for a new remediation biotechnology applied to saline waters. Chem. Eng. J. 2015, 281, 759–770. [Google Scholar] [CrossRef]
- Lata, S.; Singh, P.; Samadder, S. Regeneration of adsorbents and recovery of heavy metals: A review. Int. J. Environ. Sci. Technol. 2015, 12, 1461–1478. [Google Scholar] [CrossRef] [Green Version]
Heavy Metals | Allowable Values (mg/L) | The Industrial Sources of Wastewater | Effect on Health | |
---|---|---|---|---|
WHO | EPA | |||
Mercury | 0.01 | 0.05 | Pharmaceutical, paper, pulp, ore, battery | Neurological diseases, paralysis, blindness |
Lead | 0.05 | - | Battery, pipe, ceramic, glass production | Brain damage, anaemia, anorexia |
Arsenic | 0.01 | 0.05 | Glass, mining, textile, paper, insecticides, phosphate fertilisers, mining, coal combustion | Lung and kidney cancer, liver tumour, nausea |
Copper | 1.0 | 0.25 | Fertilizer, paints, pigments, tannery, | Liver and lung cancer, insomnia, osteoporosis, heart disease, headaches, seizures |
Cadmium | 0.003 | 0.005 | Fertiliser, battery, power plants, mining, smelting, fuel combustion | lung cancer, kidney failure, bone lesions |
Chromium | 0.05 | 0.05 Cr(VI) 0.1 Cr(III) | Synthetic dyes, steel production, textile, ceramics | Lung cancer, haemorrhage, vomiting, severe diarrhoea |
Nickel | 0.015 | 0.2 | Battery, mining, coinage, electroplating, glass, paints | Lung cancer, dermatitis, chronic asthma, |
Zinc | 3.0 | 1.0 | Mining, steel fabrication, galvanisation, stabilisers, coal combustion | Gastrointestinal disorder, nausea, lethargy, neurological damage, loss of appetite |
Metal Ions | Adsorbent Material | Preparation/Activation Technique | Removal Efficiency (%)/Adsorption Capacity (mg/g) | Optimum Operating Conditions | Refs. |
---|---|---|---|---|---|
Lead | Seaweed Turbinaria ornata | Washing, drying (80 °C, 6 h), grinding (1–1.5 mm) | 99.80% | Metal concentration 99.8 mg/L, agitation speed 250 rpm, and adsorbent dose 16.2 g/L | [88] |
Marine alga Gelidium amansii | Washing, drying (70 °C, 72 h), grinding (125 µm), mixing with distilled water, incubating and stirring (room temperature, 30 min), and final drying (70 °C, 72 h) | 100% | Metal concentration 200 mg/L, temperature 45 °C, pH 4.5, adsorbent dose 1 g/L, contact time 60 min at static condition | [89] | |
Chromium | Brown alga (Cystoseira barbata and Cystoseira crinite) | Washing, drying (sunlight and oven (24 h, 60 °C), powdering (100–800 μm) | Cr(III): 70.70% (C. barbata), 73.34% (C. crinite) Cr (VI): 35% (C. barbata), 28% (C. crinite) | Cr(III): Metal concentration 100 ppm, contact time 120 min, pH 4.5, adsorbent dose 0.1 g/50 mL. Cr(VI): Metal concentration 100 ppm, contact time 24 h, adsorbent dose 100 mg/50 mL, pH 2.0). | [90] |
Brown algae Sargassum dentifolium | Washing, drying (50 °C, 24 h), grinding (0.3868 μm) | Cr(VI) 99.68% | Adsorbent dose 1.5 g/ 100 /mL, metal concentration 100 ppm, contact time flocculation state 1 h followed by 12 h static, pH 7.0, temperature 50 °C. | [91] | |
Nickel | seaweed Sargassum filipendula | Washing, drying (60 °C, 24 h), grinding (0.737 mm), extraction using formaldehyde and hydrochloric acid solutions, precipitation, redrying (60 °C, 24 h) | 45% | Flow rate (dynamic system) 0.5 mL/min, metal concentration 1.0 mmol/L, Temperature 25 °C | [92] |
Algae biomass | Microalgae cultivation in batch mode with the help of Basal medium containing chemicals such as KNO3, Na2HPO4·12H2O, MgSO4·7H2O, FeSO4·7H2O, and CaCl2·2H2O, for creating a revolving algal biofilm. maintaining the culture in which half of the culture medium being exchanged with new medium each week for more than four years | 95% | Metal concentration 100 mg/L, pH 7 | [93] | |
Cobalt | Red alage Gracilariacorticata | Washing, drying, grinding, sieving (53 µm, 75 µm, 105 µm, 125 µm and 152 µm) | 87.80% | Metal concentration 50 mg/L, pH 5, adsorbent dose 104 g/L, temperature 303 K or 29.85 °C | [94] |
Algae Hypnea Valentiae | Raw adsorbent: Washing, crushing, sieving (0.5–1mm), rewashing, drying (80 °C, 24 h). Modified adsorbent: All the above procedures followed by chemical impregnation (10% of formaldehyde, 1 h, room temperature, gentle mixing), filtering, rewashing, redrying (overnight, 60 °C) | Raw adsorbent 10.98 mg/g Modified adsorbent16.66 mg/g | Metal concentration 0.7 mg/L, temperature 30 °C, pH 6, adsorbent dose 2 g/L | [95] | |
Cadmi-um | Brown seaweed Sargassum filipendula | Washing, drying (60 °C, 24 h), milling, sieving (<1 mm). Alginate extraction using formaldehyde solution (0.4% w/w, 30 min), rinsing, mixing with HCl solution (0.1 moL/L, 2 h), followed by mixing with sodium carbonate solution (2% w/v, 5 h, 60 °C). Filtration to separate residue and the liquid phase with the solubilized alginate. Final washing with deionised water. Ethanol (1:1 v/v) for the alginate precipitation. Drying the residue and precipitated alginate (60 °C, 24 h), milling and sieving (0.737 mm) | 0.43 mmol/g | Metal concentration 2 mmol/L, temperature 303 K, pH 3.5 | [96] |
Arsenic | Brown seaweed Sargassum muticum | Washing, drying (60 °C), grinding (5 and 12 mm) rewashing, redrying in overn (60 °C), mixing with 0.1 mol/L of FeCl3 0.1 mol L−1 solution, stirring (200 rpm), precipitation using NaOH 10 mol/L for 24 h, filtration (pore size 2 mm), rewashing, redrying (60 °C) | ≈100% | Metal concentration 2.5 mg/L, pH 7, temperature 293 K | [97] |
Mercury | Macroalgae Ulva intestinalis, Ulva lactuca, Fucus spiralis, Fucus vesiculosus, Gracilaria sp., Osmundea pinnatifida. | Washing (tap water and synthetic seawater), maintaining macroalgae in aquarium with aerated seawater (a week, natural light approximately 12L:12D, room temperature 22 ± 2 °C), separation, freeze-drying | 95% 90% 85% 80% 90% 80% | Metal concentration 1 mol/dm3, contact time 72 h, room temperature, pH 8.5 | [98] |
Zinc | Green seaweed Ulva lactuca | Washing, drying in an oven (24 h at 60 °C), crushing for smaller particle size (0.7–1 mm) | 128 mg/g | Adsorbent dose 0.2 g/100 mL, contact time 6 h, agitation 150 rpm, temperature 31 ± 1 °C, pH 4.5 | [99] |
Green macro algae Caulerpa scalpelliformis | Washing, drying under sun light (24 h), drying in an oven (50 °C, 48 h), particle downsizing measured by zetasizer (1326 nm) | 83.3 mg/g | Adsorbent dose 1.5 g/L, contact time 1 h, agitation 150 rpm, temperature 30 °C, pH 5.7 | [100] | |
Multi-metals | Brown algae Sargassum polycystum | Washing, drying under (24 h), multiple drying in an oven (24 h) (50 °C, 12 h), grinding, sieving (496.5 nm) | Cadmium: 86.20 Zinc: 92.90%, | Cadmium: pH: 4.65, adsorbent dose 1.8 g/L, agitation speed 76 rpm Zinc: pH 5.7, adsorbent dose 1.2 g/L, agitation speed 125 rpm | [101] |
Seaweed Sargassum filipendula | Washing, drying in an oven (60 °C, 24 h), sieving to obtain the medium particle diameter 0.737 mm. Extraction procedure: mixing biomass with formaldehyde solution (0.4 % v/v, 30 min), and washing, and mixing with hydrochloric acid solution (0.1 mol/L, 2 h), contacting to carbonate solution (2% w/v, 60 °C, 5 h). Alginate separation by vacuum filtration and ethanol for precipitation (1:1 v/v), further drying and sieving | Chromium0.864 mol/g Zinc 0.302 mmol/g Nickel 0.347 mmol/g | Temperature 50 °C, total metal concentration 1 mmol/L (17.33 mg/L of Cr; 19.56 mg/L of Ni; and 21.79 mg/L of Zn) | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Znad, H.; Awual, M.R.; Martini, S. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Molecules 2022, 27, 1275. https://doi.org/10.3390/molecules27041275
Znad H, Awual MR, Martini S. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Molecules. 2022; 27(4):1275. https://doi.org/10.3390/molecules27041275
Chicago/Turabian StyleZnad, Hussein, Md. Rabiul Awual, and Sri Martini. 2022. "The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater" Molecules 27, no. 4: 1275. https://doi.org/10.3390/molecules27041275
APA StyleZnad, H., Awual, M. R., & Martini, S. (2022). The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Molecules, 27(4), 1275. https://doi.org/10.3390/molecules27041275