Isolation and Identification of Chemical Compounds from Agaricus blazei Murrill and Their In Vitro Antifungal Activities
Abstract
:1. Introduction
2. Results
2.1. Identification of Compounds 1–6
2.2. Antifungal Activity of Compounds 1–6
2.3. Discussion
3. Materials and Methods
3.1. Reagents and Instruments
3.2. Separation and Purification
3.3. Antibacterial Activity Determination
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pérez-Gómez, L.; Pérez-Martínez, A.T.; Matheeussen, A.; Pieters, L.; Mendez, D.; Quirós-Molina, Y.; Trujillo, R.; Tuenter, E.; Cos, P. Phytochemical characterization and antifungal potential of leaf extracts of Mosiera bullata. Nat. Prod. Res. 2023, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Phan, N.K.N.; Huynh, T.K.C.; Nguyen, H.P.; Le, Q.T.; Nguyen, T.C.T.; Ngo, K.K.H.; Nguyen, T.H.A.; Ton, K.A.; Thai, K.M.; Hoang, T.K.D. Exploration of Remarkably Potential Multitarget-Directed N-Alkylated-2-(substituted phenyl)-1-benzimidazole Derivatives as Antiproliferative, Antifungal, and Antibacterial Agents. ACS Omega 2023, 8, 28733–28748. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; El-Seedi, H.; Xu, B. Critical review on chemical compositions and health-promoting effects of mushroom Agaricus blazei Murill. Curr. Res. Food Sci. 2022, 5, 2190–2203. [Google Scholar] [CrossRef]
- Pan, Z.C.; Zhang, Y.Z.; Liang, Z.Q.; Wang, Y.; Zeng, N.K. Extraction, Characterization, and In Vitro Hypoglycemic Activity of a Neutral Polysaccharide from the New Medicinal Mushroom Cantharellus yunnanensis (Agaricomycetes). Int. J. Med. Mushrooms 2023, 25, 19–31. [Google Scholar] [CrossRef]
- Peng, B.; Huang, W.-H.; Zhao, J.; Liu, H.-G. Chemical constituents from Ilex hainanensis. Zhong Yao Cai 2012, 35, 1251–1254. [Google Scholar] [PubMed]
- Fujimiya, Y.; Suzuki, Y.; Oshiman, K.I.; Kobori, H.; Moriguchi, K.; Nakashima, H.; Matumoto, Y.; Takahara, S.; Ebina, T.; Katakura, R. Selective tumoricidal effect of soluble proteoglucan extracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activation and apoptosis. Cancer Immunol. Immunother. 1998, 46, 147–159. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, T.; Zhao, J.; Gan, B.; Feng, R.; Miao, R. Polysaccharides Derived from Mushrooms in Immune and Antitumor Activity: A Review. Int. J. Med. Mushrooms 2023, 25, 1–17. [Google Scholar] [CrossRef]
- Dinçer, E.; Işık, H.; Hepokur, C.; Tutar, U.; Çelik, C. Cytotoxic, Antioxidant, Antibiofilm, and Antimicrobial Activities of Mushroom Species from Turkey. Int. J. Med. Mushrooms 2023, 25, 75–86. [Google Scholar] [CrossRef]
- Arunachalam, K.; Sasidharan, S.P.; Yang, X. A concise review of mushrooms antiviral and immunomodulatory properties that may combat against COVID-19. Food Chem. Adv. 2022, 1, 100023. [Google Scholar] [CrossRef]
- Qu, X.Y.; Gu, Q.Q.; Cui, C.B.; Fang, Y.C.; Liu, H.B.; Zhu, T.J.; Zhu, W.M. Structural identification and antitumor activity of secondary metabolites of marine-derived actinomycete 3295. Chin. J. Mar. Drugs 2004, 23, 1–4. [Google Scholar]
- Rong, P.X.; He, X.Q.; Ayyash, M.; Liu, Y.; Wu, D.T.; Geng, F.; Li, H.B.; Ng, B.S.; Liu, H.Y.; Gan, R.Y. Untargeted metabolomics analysis of non-volatile metabolites and dynamic changes of antioxidant capacity in Douchi with edible mushroom by-products. Food Chem. 2023, 431, 137066. [Google Scholar] [CrossRef] [PubMed]
- Marzi, M.; Farjam, M.; Kazeminejad, Z.; Shiroudi, A.; Kouhpayeh, A.; Zarenezhad, E. A Recent Overview of 1,2,3-Triazole-Containing Hybrids as Novel Antifungal Agents: Focusing on Synthesis, Mechanism of Action, and Structure-Activity Relationship (SAR). J. Chem. 2022, 2022, 7884316. [Google Scholar] [CrossRef]
- Demirpolat, A.; Akman, F.; Kazachenko, A.S. An Experimental and Theoretical Study on Essential Oil of Aethionema sancakense: Characterization, Molecular Properties and RDG Analysis. Molecules 2022, 27, 6129. [Google Scholar] [CrossRef]
- Mizuno, T. Medicinal Properties and Clinical Effects of Culinary-Medicinal Mushroom Agaricus blazei Murrill (Agaricomycetideae) (Review). Int. J. Med. Mushrooms 2002, 4, 14. [Google Scholar] [CrossRef]
- Carneiro, A.A.; Ferreira, I.C.; Dueñas, M.; Barros, L.; Da Silva, R.; Gomes, E.; Santos-Buelga, C. Chemical composition and antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes. Food Chem. 2013, 138, 2168–2173. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Li, F.; Jia, S.; Ren, H.; Gong, G.; Wang, Y.; Lv, Z.; Liu, Y. Drying effects on the antioxidant properties of polysaccharides obtained from Agaricus blazei Murrill. Carbohydr. Polym. 2014, 103, 414–417. [Google Scholar] [CrossRef]
- Chen, T.; Li, K.; Xu, J.; He, X.; Chen, F.; Jiang, Z. Nutritional composition of Brazilian mushroom from Fujian. J. Edible Mushrooms 1999, 06, 55–58. [Google Scholar]
- Sun, P.; Wei, H.; Yang, K.; Wu, X.; He, G. Isolation, purification and physicochemical properties of Agaricus blazei polysaccharides. Chin. Tradit. Herb. Drug 2006, 37, 190–192. [Google Scholar]
- Gao, H.; Gu, W.Y. Quantitative determination of ergosterol in Agaricus brasiliensis by triple-wavelength spectrophotometry. Chin. J. Anal. Chem. 2007, 35, 586–588. [Google Scholar]
- Takaku, T.; Kimura, Y.; Okuda, H. Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action. J. Nutr. 2001, 131, 1409–1413. [Google Scholar] [CrossRef]
- Tsai, S.Y.; Tsai, H.L.; Mau, J.L. Non-volatile taste components of Agaricus blazei, Agrocybe cylindracea and Boletus edulis. Food Chem. 2008, 107, 977–983. [Google Scholar] [CrossRef]
- Schepetkin Igor, A.; Quinn Mark, T. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharm. 2006, 6, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Yeh, M.Y.; Shang, H.S.; Lu, H.F.; Chou, J.; Yeh, C.; Chang, J.B.; Hung, H.F.; Kuo, W.L.; Wu, L.Y.; Chung, J.G. Chitosan oligosaccharides in combination with Agaricus blazei Murill extract reduces hepatoma formation in mice with severe combined immunodeficiency. Mol. Med. Rep. 2015, 12, 133–140. [Google Scholar] [CrossRef]
- Ohno, N.; Furukawa, M.; Miura, N.N.; Adachi, Y.; Motoi, M.; Yadomae, T. Antitumor b-Glucan from the Cultured Fruit Body of Agaricus blazei. Biol. Pharm. Bull. 2001, 24, 820–828. [Google Scholar] [CrossRef]
- Bertollo, A.G.; Mingoti, M.E.D.; Plissari, M.E.; Betti, G.; Junior, W.A.R.; Luzardo, A.R.; Ignácio, Z.M. Agaricus blazei Murrill mushroom: A review on the prevention and treatment of cancer. Pharmacol. Res. Mod. Chin. Med. 2022, 2, 100032. [Google Scholar] [CrossRef]
- Sorimachi, K.; Ikehara, Y.; Maezato, G.; Okubo, A.; Yamazaki, S.; Akimoto, K.; Niwa, A. Inhibition by Agaricus blazei Murill fractions of cytopathic effect induced by western equine encephalitis (WEE) virus on VERO cells in vitro. Biosci. Biotechnol. Biochem. 2001, 65, 1645–1647. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, N.; Wang, H.; Yan, H. Chemically Sulfated Polysaccharides from Agaricus blazei Murill: Synthesis, Characterization and Anti-HIV Activity. Chem. Biodivers. 2021, 18, e2100338. [Google Scholar] [CrossRef]
- Wei, Q.; Zhan, Y.; Chen, B.; Xie, B.; Fang, T.; Ravishankar, S.; Jiang, Y. Assessment of antioxidant and antidiabetic properties of Agaricus blazei Murill extracts. Food Sci. Nutr. 2019, 8, 332–339. [Google Scholar] [CrossRef]
- Al-Dbass, A.M.; Al-Daihan, S.K.; Bhat, R.S. Agaricus blazei Murill as an efficient hepatoprotective and antioxidant agent against CCl4-induced liver injury in rats. Saudi J. Biol. Sci. 2012, 19, 303–309. [Google Scholar] [CrossRef]
- Yu, L.; Yang, S.; Sun, L.; Jiang, Y.F.; Zhu, L.Y. Effects of selenium-enriched Agaricus blazei Murill on liver metabolic dysfunction in mice, a comparison with selenium-deficient Agaricus blazei Murill and sodium selenite. Biol. Trace Elem. Res. 2014, 160, 79–84. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.T.; Sun, L.; Shen, L. Anti-Inflammatory Activity of Water-Soluble Polysaccharide of Agaricus blazei Murill on Ovariectomized Osteopenic Rats. Evid.-Based Complement. Altern. Med. 2013, 2013, 164817. [Google Scholar] [CrossRef] [PubMed]
- Hetland, G.; Tangen, J.-M.; Mahmood, F.; Mirlashari, M.R.; Nissen-Meyer, L.S.H.; Nentwich, I.; Therkelsen, S.P.; Tjønnfjord, G.E.; Johnson, E. Antitumor, Anti-inflammatory and Antiallergic Effects of Agaricus blazei Mushroom Extract and the Related Medicinal Basidiomycetes Mushrooms, Hericium erinaceus and Grifola frondosa: A Review of Preclinical and Clinical Studies. Nutrients 2020, 12, 1339. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, B. New insights into molecular mechanisms of “Cold or Hot” nature of food: When East meets West. Food Res. Int. 2021, 144, 110361. [Google Scholar] [CrossRef]
- Cui, L.; Sun, Y.; Xu, H.; Xu, H.; Cong, H.; Liu, J. A polysaccharide isolated from Agaricus blazei Murill (ABP--AW1) as a potential Th1 immunity-stimulating adjuvant. Oncol. Lett. 2013, 6, 1039–1044. [Google Scholar] [CrossRef]
- Tangen, J.M.; Holien, T.; Mirlashari, M.R.; Misund, K.; Hetland, G. Cytotoxic Effect on Human Myeloma Cells and Leukemic Cells by the Agaricus blazei Murill Based Mushroom Extract, Andosan™. Biomed. Res. Int. 2017, 2017, 2059825. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.M.; Park, H.Y.; Chun, S.C.; Kim, J.J.; Ahmad, A. New glycosidic and other constituents from hulls of Oryza sativa. Chem. Nat. Compd. 2007, 43, 417–421. [Google Scholar] [CrossRef]
- Otgonsugar, P.; Buyankhishig, B.; Undrakhbayar, T.; Bilguun, B.; Sasaki, K.; Davaapurev, B.O.; Batkhuu, J.; Byambajav, T.; Murata, T. Phytochemical investigation of aerial parts of Woodsia ilvensis and its plasmin-inhibitory activity in vitro. Phytochemistry 2023, 215, 113826. [Google Scholar] [CrossRef]
- Chebaro, Z.; Abdallah, R.; Badran, A.; Hamade, K.; Hijazi, A.; Maresca, M.; Mesmar, J.E.; Baydoun, E. Study of the antioxidant and anti-pancreatic cancer activities of Anchusa strigosa aqueous extracts obtained by maceration and ultrasonic extraction techniques. Front. Pharmacol. 2023, 14, 1201969. [Google Scholar] [CrossRef]
- Wheeler, J.J.; Domenichiello, A.F.; Jensen, J.R.; Keyes, G.S.; Maiden, K.M.; Davis, J.M.; Ramsden, C.E.; Mishra, S.K. Endogenous Derivatives of Linoleic Acid and their Stable Analogs Are Potential Pain Mediators. JID Innov. 2023, 3, 100177. [Google Scholar] [CrossRef]
- Jing, S.; Qu, Z.; Zhao, C.; Li, X.; Guo, L.; Liu, Z.; Zheng, Y.; Gao, W. Dihydroisocoumarins and Dihydroisoflavones from the Rhizomes of Dioscorea collettii with Cytotoxic Activity and Structural Revision of 2,2′-Oxybis(1,4-di-tert-butylbenzene). Molecules 2021, 26, 5381. [Google Scholar] [CrossRef]
- Okuyama, E.; Hasegawa, T.; Matsushita, T.; Fujimoto, H.; Ishibashi, M.; Yamazaki, M. Analgesic Components of Saposhnikovia Root (Saposhnikovia divaricata). Chem. Pharm. Bull. 2001, 49, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Kobata, K.; Wada, T.; Hayashi, Y.; Shibata, H. Volemolide, a Novel Norsterol from the Fungus Lactarius volemus. Biosci. Biotechnol. Biochem. 2014, 58, 1542–1544. [Google Scholar] [CrossRef]
- Gao, J.; Shen, J.; Yang, X.; Liu, J. The constituents of Russula ochroleuca Basidiomycetes. Acta Bot. Yunnanicam 2001, 23, 385–393. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, R.; Li, X.; Yi, P.; Wen, P.; Wang, S.; Liao, C.; Song, X.; Wu, H.; He, Z.; Li, C. Isolation and Identification of Chemical Compounds from Agaricus blazei Murrill and Their In Vitro Antifungal Activities. Molecules 2023, 28, 7321. https://doi.org/10.3390/molecules28217321
Yu R, Li X, Yi P, Wen P, Wang S, Liao C, Song X, Wu H, He Z, Li C. Isolation and Identification of Chemical Compounds from Agaricus blazei Murrill and Their In Vitro Antifungal Activities. Molecules. 2023; 28(21):7321. https://doi.org/10.3390/molecules28217321
Chicago/Turabian StyleYu, Ruirui, Xiaojian Li, Peng Yi, Ping Wen, Shuhong Wang, Chenghui Liao, Xun Song, Haiqiang Wu, Zhendan He, and Chenyang Li. 2023. "Isolation and Identification of Chemical Compounds from Agaricus blazei Murrill and Their In Vitro Antifungal Activities" Molecules 28, no. 21: 7321. https://doi.org/10.3390/molecules28217321
APA StyleYu, R., Li, X., Yi, P., Wen, P., Wang, S., Liao, C., Song, X., Wu, H., He, Z., & Li, C. (2023). Isolation and Identification of Chemical Compounds from Agaricus blazei Murrill and Their In Vitro Antifungal Activities. Molecules, 28(21), 7321. https://doi.org/10.3390/molecules28217321