A Low-Noble-Metal Ru@CoMn2O4 Spinel Catalyst for the Efficient Oxidation of Propane
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Performance
2.2. Physical Characteristics
2.3. Surface Chemical Properties
2.4. Reaction Mechanism
3. Experiment
3.1. Catalyst Preparation
3.2. Catalyst Activity Test
3.3. Material Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shan, C.P.; Wang, Y.C.; Li, J.B.; Zhao, Q.; Han, R.; Liu, C.X.; Liu, Q.L. Recent Advances of VOCs Catalytic Oxidation over Spinel Oxides: Catalyst Design and Reaction Mechanism. Environ. Sci. Technol. 2023, 476, 146550. [Google Scholar] [CrossRef]
- He, J.; Zheng, F.; Zhou, Y.; Li, X.; Wang, Y.; Xiao, J.; Li, Y.; Chen, D.; Lu, J. Catalytic oxidation of VOCs over 3D@2D Pd/CoMn2O4 nanosheets supported on hollow Al2O3 microspheres. J. Colloid Interface Sci. 2022, 613, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.Q.; Yan, J.R.; Jiang, M.X.; Dai, Q.G.; Wu, J.Y.; Ha, M.N.; Ke, Q.P.; Wang, X.Y.; Zhan, W.C. Phosphate-assisted synthesis of ultrathin and thermally stable alumina nanosheets as robust Pd support for catalytic combustion of propane. Appl. Catal. B Environ. 2021, 286, 119949. [Google Scholar] [CrossRef]
- Moreno-Roman, E.J.; Gonzalez-Cobos, J.; Guilhaume, N.; Gil, S. Toluene and 2-propanol mixture oxidation over Mn2O3 catalysts: Study of inhibition/promotion effects by in-situ DRIFTS. Chem. Eng. J. 2023, 470, 144114. [Google Scholar] [CrossRef]
- Zhang, H.H.; Dai, L.Y.; Feng, Y.; Xu, Y.H.; Liu, Y.X.; Guo, G.S.; Dai, H.X.; Wang, C.C.; Wang, C.; Hsi, H.C.; et al. A Resource utilization method for volatile organic compounds emission from the semiconductor industry: Selective catalytic oxidation of isopropanol to acetone over Au/alpha-Fe2O3 nanosheets. Appl. Catal. B Environ. 2020, 275, 119011. [Google Scholar] [CrossRef]
- Song, S.Q.; Wu, X.; Lu, C.H.; Wen, M.C.; Le, Z.G.; Jiang, S.J. Solid strong base K-Pt/NaY zeolite nano-catalytic system for completed elimination of formaldehyde at room temperature. Appl. Surf. Sci. 2018, 442, 195–203. [Google Scholar] [CrossRef]
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z.P. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef] [PubMed]
- Jian, Y.F.; Tian, M.J.; He, C.; Xiong, J.C.; Jiang, Z.Y.; Jin, H.; Zheng, L.R.; Albilali, R.; Shi, J.W. Efficient propane low-temperature destruction by Co3O4 crystal facets engineering: Unveiling the decisive role of lattice and oxygen defects and surface acid-base pairs. Appl. Catal. B Environ. 2021, 283, 119657. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.J.; Zhu, X.C.; Yang, Y.; Hu, W.S.; Zhao, H.T.; Qu, R.Y.; Zheng, C.H.; Gao, X. Low temperature catalytic oxidation of propane over cobalt-cerium spinel oxides catalysts. Appl. Surf. Sci. 2019, 479, 1132–1140. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Z.P.; Brosnahan, J.T.; Zhang, S.; Guo, Y.L.; Guo, Y.; Wang, L.; Wang, Y.S.; Zhan, W.C. Ru/CeO2 Catalyst with Optimized CeO2 Support Morphology and Surface Facets for Propane Combustion. Environ. Sci. Technol. 2019, 53, 5349–5358. [Google Scholar] [CrossRef]
- Fu, Q.J.; Wang, S.; Wang, T.; Xing, D.F.; Yue, X.; Wang, M.Z.; Wang, S.D. Insights into the promotion mechanism of ceria-zirconia solid solution to ethane combustion over Pt-based catalysts. J. Catal. 2022, 405, 129–139. [Google Scholar] [CrossRef]
- Ding, Y.Q.; Wu, Q.Q.; Lin, B.; Guo, Y.L.; Guo, Y.; Wang, Y.S.; Wang, L.; Zhan, W.C. Superior catalytic activity of a Pd catalyst in methane combustion by fine-tuning the phase of ceria-zirconia support. Appl. Catal. B Environ. 2020, 266, 118631. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, S.; Zhang, L.; Lv, L.R.; Xu, D.K.; Liu, W.; Wang, S.D. Investigation of supported palladium catalysts for combustion of methane: The activation effect caused by SO2. Chem. Eng. J. 2020, 382, 122969. [Google Scholar] [CrossRef]
- Jiang, F.; Zeng, L.; Li, S.R.; Liu, G.; Wang, S.P.; Gong, J.L. Propane Dehydrogenation over Pt/TiO2-Al2O3 Catalysts. ACS Catal. 2015, 5, 438–447. [Google Scholar] [CrossRef]
- Okal, J.; Zawadzki, M. Combustion of propane over novel zinc aluminate-supported ruthenium catalysts. Appl. Catal. B Environ. 2011, 105, 182–190. [Google Scholar] [CrossRef]
- Honkala, K.; Hellman, A.; Remediakis, I.N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C.H.; Norskov, J.K. Ammonia synthesis from first-principles calculations. Science 2005, 307, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Grubbs, R.H. Olefin metathesis. Tetrahedron 2004, 60, 7117–7140. [Google Scholar] [CrossRef]
- Hosokawa, S.; Hayashi, Y.; Imamura, S.; Wada, K.; Inoue, M. Effect of the Preparation Conditions of Ru/CeO2 Catalysts for the Liquid Phase Oxidation of Benzyl Alcohol. Catal. Lett. 2009, 129, 394–399. [Google Scholar] [CrossRef]
- Aouad, S.; Abi-Aad, E.; Aboukais, A. Simultaneous oxidation of carbon black and volatile organic compounds over Ru/CeO2 catalysts. Appl. Catal. B Environ. 2009, 88, 249–256. [Google Scholar] [CrossRef]
- Kamiuchi, N.; Mitsui, T.; Muroyama, H.; Matsui, T.; Kikuchi, R.; Eguchi, K. Catalytic combustion of ethyl acetate and nano-structural changes of ruthenium catalysts supported on tin oxide. Appl. Catal. B Environ. 2010, 97, 120–126. [Google Scholar] [CrossRef]
- Liu, S.; Ni, D.; Li, H.-F.; Hui, K.N.; Ouyang, C.-Y.; Jun, S.C. Effect of cation substitution on the pseudocapacitive performance of spinel cobaltite MCo2O4 (M = Mn, Ni, Cu, and Co). J. Mater. Chem. A 2018, 6, 11044. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, C.; Huang, P.; Cheng, M.; Xie, Y. Regulating the Charge and Spin Ordering of Two-Dimensional Ultrathin Solids for Electrocatalytic Water Splitting. Chem 2018, 4, 1263–1283. [Google Scholar] [CrossRef]
- Faure, B.; Alphonse, P. Co–Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature. Appl. Catal. B Environ. 2016, 180, 715–725. [Google Scholar] [CrossRef]
- Zhang, W.; Díez-Ramírez, J.; Anguita, P.; Descorme, C.; Valverde, J.L.; Giroir-Fendler, A. Nanocrystalline Co3O4 catalysts for toluene and propane oxidation: Effect of the precipitation agent. Appl. Catal. B Environ. 2020, 273, 118894. [Google Scholar] [CrossRef]
- Peng, C.; Liu, H.; Chen, J.; Zhang, Y.; Zhu, L.; Wu, Q.; Zou, W.; Wang, J.; Fu, Z.; Lu, Y. Modulating the potential-determining step in oxygen evolution reaction by regulating the cobalt valence in NiCo2O4 via Ru substitution. Appl. Surf. Sci. 2021, 544, 148897. [Google Scholar] [CrossRef]
- Xiong, H.; Wiebenga, M.H.; Carrillo, C.; Gaudet, J.R.; Pham, H.N.; Kunwar, D.; Oh, S.H.; Qi, G.; Kim, C.H.; Datye, A.K. Design considerations for low-temperature hydrocarbon oxidation reactions on Pd based catalysts. Appl. Catal. B Environ. 2018, 236, 436–444. [Google Scholar] [CrossRef]
- Ma, S.; Hou, Y.; Li, Y.; Ding, X.; Yang, Y.; Tian, J.; Cui, Y.; Huang, Z. Regulation of A-site cations in AMn2Ox spinel catalysts on the deep oxidation of light alkanes VOCs. Fuel 2023, 334, 126785. [Google Scholar] [CrossRef]
- Feng, C.; Chen, C.; Wang, J.; Xiong, G.; Wang, Z.; Pan, Y.; Fei, Z.; Lu, Y.; Liu, Y.; Zhang, R.; et al. Total oxidation of propane in Ag-doped MnCeOx catalysts: The role of Ag species. Fuel 2023, 332, 126208. [Google Scholar] [CrossRef]
- Feng, C.; Wang, Y.; Chen, C.; Fu, X.; Pan, Y.; Xin, H.; Wang, Z.; Lu, Y.; Li, X.; Zhang, R.; et al. Fabrication of highly dispersed Pd-Mn3O4 catalyst for efficient catalytic propane total oxidation. J. Colloid Interface Sci. 2023, 650, 1415–1423. [Google Scholar] [CrossRef]
- Xiong, G.; Feng, C.; Chen, H.-C.; Li, J.; Jiang, F.; Tao, S.; Wang, Y.; Li, Y.; Pan, Y. Atomically Dispersed Pt-Doped Co3O4 Spinel Nanoparticles Embedded in Polyhedron Frames for Robust Propane Oxidation at Low Temperature. Small Methods 2023, 7, 2300121. [Google Scholar] [CrossRef]
- Feng, C.; Chen, C.; Xiong, G.; Yang, D.; Wang, Z.; Pan, Y.; Fei, Z.; Lu, Y.; Liu, Y.; Zhang, R.; et al. Cr-doping regulates Mn3O4 spinel structure for efficient total oxidation of propane: Structural effects and reaction mechanism determination. Appl. Catal. B Environ. 2023, 328, 122528. [Google Scholar] [CrossRef]
- Shan, C.; Zhang, Y.; Zhao, Q.; Li, J.; Wang, Y.; Han, R.; Liu, C.; Liu, Q. New insight into opposite oxidation behavior in acetone and propane catalytic oxidation over CoMn based spinel oxides. Chem. Eng. J. 2023, 476, 146550. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H.; Zheng, J.; Xie, F.; Gu, H.; Rostamnia, S.; Pan, F.; Liu, X.; Zhang, L. Interfacial engineering enables surface lattice oxygen activation of SmMn2O5 for catalytic propane combustion. Appl. Catal. B Environ. Energy 2023, 330, 122649. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, L.; Huang, L.; Zhang, J.-P.; Gao, R.; Zhang, D. Rational Design of High-Performance DeNOx Catalysts Based on MnxCo3–xO4 Nanocages Derived from Metal–Organic Frameworks. ACS Catal. 2014, 4, 1753–1763. [Google Scholar] [CrossRef]
- Nie, L.H.; Meng, A.Y.; Yu, J.G.; Jaroniec, M. Hierarchically Macro-Mesoporous Pt/gamma-Al2O3 Composite Microspheres for Efficient Formaldehyde Oxidation at Room Temperature. Sci. Rep. 2013, 3, 3215. [Google Scholar] [CrossRef]
- Dong, C.; Qu, Z.P.; Qin, Y.; Fu, Q.; Sun, H.C.; Duan, X.X. Revealing the Highly Catalytic Performance of Spinel CoMn2O4 for Toluene Oxidation: Involvement and Replenishment of Oxygen Species Using In Situ Designed-TP Techniques. ACS Catal. 2019, 9, 6698–6710. [Google Scholar] [CrossRef]
- Tian, H.; He, J.; Liu, L.; Wang, D.; Hao, Z.; Ma, C. Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde. Microporous Mesoporous Mater. 2012, 151, 397–402. [Google Scholar] [CrossRef]
- Mo, J.; Zhang, Y.; Xu, Q.; Lamson, J.J.; Zhao, R. Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmos. Environ. 2009, 43, 2229–2246. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, L.Y.; Liu, Y.X.; Deng, J.G.; Jing, L.; Wang, Z.W.; Pei, W.B.; Yu, X.H.; Wang, J.; Dai, H.X. Effect of support nature on catalytic activity of the bimetallic RuCo nanoparticles for the oxidative removal of 1,2-dichloroethane. Appl. Catal. B Environ. 2021, 285, 119804. [Google Scholar] [CrossRef]
- Wang, J.; Dai, L.Y.; Deng, J.G.; Liu, Y.X.; Jing, L.; Hao, X.Q.; Pei, W.B.; Yu, X.H.; Rastegarpanah, A.; Dai, H.X. An investigation on catalytic performance and reaction mechanism of RuMn/meso-TiO2 derived from RuMn intermetallic compounds for methyl ethyl ketone oxidation. Appl. Catal. B Environ. 2021, 296, 120361. [Google Scholar] [CrossRef]
- Pei, Y.; He, W.; Wang, M.; Wang, J.; Sun, T.; Hu, L.; Zhu, J.; Tang, Y.; Wang, J. RuCo alloy trifunctional electrocatalysts with ratio-dependent activity for Zn-air batteries and self-powered water splitting. Chem. Commun. 2021, 57, 11872. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Bu, L.; Huang, B.; Wang, P.; Shen, C.; Bai, S.; Chan, T.-S.; Shao, Q.; Hu, Z.; Huang, X. Compensating Electronic Effect Enables Fast Site-to-Site Electron Transfer over Ultrathin RuMn Nanosheet Branches toward Highly Electroactive and Stable Water Splitting. Adv. Mater. 2021, 33, 2105308. [Google Scholar] [CrossRef]
- Hu, H.L.; He, H.C.; Xie, R.K.; Cheng, C.; Yan, T.R.; Chen, C.; Sun, D.; Chan, T.S.; Wu, J.P.; Zhang, L. Achieving reversible Mn2+/Mn4+ double redox couple through anionic substitution in a P2-type layered oxide cathode. Nano Energy 2022, 99, 107390. [Google Scholar] [CrossRef]
- He, M.; Ji, J.; Liu, B.; Huang, H. Reduced TiO2 with tunable oxygen vacancies for catalytic oxidation of formaldehyde at room temperature. Appl. Surf. Sci. 2019, 473, 934–942. [Google Scholar] [CrossRef]
- Zeng, L.; Song, W.; Li, M.; Zeng, D.; Xie, C. Catalytic oxidation of formaldehyde on surface of H-TiO2/H-C-TiO2 without light illumination at room temperature. Appl. Catal. B Environ. 2014, 147, 490–498. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, Z.; Fang, W.; Yao, X.; Zou, G.; Shangguan, W. Low-temperature catalytic oxidation of formaldehyde over Co3O4 catalysts prepared using various precipitants. Chin. J. Catal. 2016, 37, 947–954. [Google Scholar] [CrossRef]
- Chen, H.; He, J.; Zhang, C.; He, H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. J. Phys. Chem. C 2007, 111, 18033–18038. [Google Scholar] [CrossRef]
- Zhao, J.; Tu, C.; Sun, W.; Xia, H.; Zhang, H.; Dai, Q.; Wang, X. The catalytic combustion of CH2Cl2 over SO42--TixSn1-x modified with Ru. Catal. Sci. Technol. 2020, 10, 742–756. [Google Scholar] [CrossRef]
- Li, G.; Li, N.; Sun, Y.; Qu, Y.; Jiang, Z.; Zhao, Z.; Zhang, Z.; Cheng, J.; Hao, Z. Efficient defect engineering in Co-Mn binary oxides for low-temperature propane oxidation. Appl. Catal. B Environ. 2021, 282, 119512. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, X.; Li, C.; Liu, Z.; Liang, C. Manipulating morphology and surface engineering of spinel cobalt oxides to attain high catalytic performance for propane oxidation. J. Catal. 2021, 396, 179–191. [Google Scholar] [CrossRef]
- Al-Abadleh, H.A.; Grassian, V.H. FT-IR study of water adsorption on aluminum oxide surfaces. Langmuir 2003, 19, 341–347. [Google Scholar] [CrossRef]
- Dong, T.; Liu, W.M.; Ma, M.D.; Peng, H.G.; Yang, S.Y.; Tao, J.X.; He, C.; Wang, L.; Wu, P.; An, T.C. Hierarchical zeolite enveloping Pd-CeO2 nanowires: An efficient adsorption/catalysis bifunctional catalyst for low temperature propane total degradation. Chem. Eng. J. 2020, 393, 124717. [Google Scholar] [CrossRef]
- Chai, G.T.; Zhang, W.D.; Liotta, L.F.; Li, M.Q.; Guo, Y.L.; Giroir-Fendler, A. Total oxidation of propane over Co3O4-based catalysts: Elucidating the influence of Zr dopant. Appl. Catal. B Environ. 2021, 298, 120606. [Google Scholar] [CrossRef]
- Liu, P.; Liao, Y.X.; Li, J.J.; Chen, L.W.; Fu, M.L.; Wu, P.Q.; Zhu, R.L.; Liang, X.L.; Wu, T.L.; Ye, D.Q. Insight into the effect of manganese substitution on mesoporous hollow spinel cobalt oxides for catalytic oxidation of toluene. J. Colloid Interface Sci. 2021, 594, 713–726. [Google Scholar] [CrossRef]
Catalyst | Reaction Conditions | T90 (°C) | Ref. |
---|---|---|---|
NiMn2O4 | 0·05% C3H8, 5% O2, GHSV = 30,000 mL g·cat−1·h−1 | 232 | [27] |
Ag/MnCeOx−7 | 0·25%C3H8, 21%O2, GHSV = 30,000 mL g·cat−1·h−1 | 242 | [28] |
Pd-Mn3O4 | 0·25%C3H8, and balance air, at 30,000 mL g·cat−1·h−1 | 240 | [29] |
Pt-Co3O4 NPs/PFs | 0·25%C3H8, and balance air, at 30,000 mL g·cat−1·h−1 | 184 | [30] |
MnxCr3−xO4 | 0·25%C3H8, and balance air, at 30,000 mL g·cat−1·h−1 | 264 | [31] |
ZnCoMn spinel | 800 ppm C3H8, and balance air, at 30,000 mL g·cat−1·h−1 | 360 | [32] |
Co3O4/SmMn2O5 | 0·2%C3H8, 2%O2, 5% H2O, at 30,000 mL g·cat−1·h−1 | 247 | [33] |
0.1%Ru@CoMn2O4 | 0·2% C3H8, 10% O2, GHSV = 60,000 mL g·cat−1·h−1 | 217 | This work |
Catalyst | SBET (m2/g) | Average Pore Size (nm) | Pore Volume (cm3/g) |
---|---|---|---|
CoMn2O4 | 132.57 | 14.13 | 0.47 |
0.1%Ru/CoMn2O4 | 106.27 | 11.54 | 0.31 |
0.1%Ru@CoMn2O4 | 82.97 | 17.22 | 0.36 |
Catalyst | Mn2+/Mn | Mn3+/Mn | Mn4+/Mn | Co2+/Co | Co3+/Co | Olat/Ototal | Oad/Ototal |
---|---|---|---|---|---|---|---|
CoMn2O4 | 0.31 | 0.54 | 0.15 | 0.47 | 0.53 | 0.54 | 0.46 |
0.1%Ru/CoMn2O4 | 0.27 | 0.49 | 0.24 | 0.54 | 0.46 | 0.56 | 0.44 |
0.1%Ru@CoMn2O4 | 0.15 | 0.58 | 0.27 | 0.48 | 0.52 | 0.59 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Zeng, Z.; Hou, Y.; Ma, S.; Shen, W.; Huang, Z. A Low-Noble-Metal Ru@CoMn2O4 Spinel Catalyst for the Efficient Oxidation of Propane. Molecules 2024, 29, 2255. https://doi.org/10.3390/molecules29102255
Cui Y, Zeng Z, Hou Y, Ma S, Shen W, Huang Z. A Low-Noble-Metal Ru@CoMn2O4 Spinel Catalyst for the Efficient Oxidation of Propane. Molecules. 2024; 29(10):2255. https://doi.org/10.3390/molecules29102255
Chicago/Turabian StyleCui, Yan, Zequan Zeng, Yaqin Hou, Shuang Ma, Wenzhong Shen, and Zhanggen Huang. 2024. "A Low-Noble-Metal Ru@CoMn2O4 Spinel Catalyst for the Efficient Oxidation of Propane" Molecules 29, no. 10: 2255. https://doi.org/10.3390/molecules29102255
APA StyleCui, Y., Zeng, Z., Hou, Y., Ma, S., Shen, W., & Huang, Z. (2024). A Low-Noble-Metal Ru@CoMn2O4 Spinel Catalyst for the Efficient Oxidation of Propane. Molecules, 29(10), 2255. https://doi.org/10.3390/molecules29102255