Colorimetric Immunoassays with Boronic Acid-Decorated, Peroxidase-like Metal-Organic Frameworks as the Carriers of Antibodies and Enzymes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Cu-MOFs
2.2. Catalytic Oxidation of TMB
2.3. Feasibility of Colorimetric Immunoassays
2.4. Sensitivity
2.5. Selectivity
2.6. Assays of PSA in Serums
3. Experimental
3.1. Regents and Instruments
3.2. Preparation of Boronic Acid-Modified Cu-MOFs
3.3. Functionalization of FPBA-Cu-MOF with Antibody and HRP
3.4. Colorimetric Immunoassays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farka, Z.; Jurik, T.; Kovar, D.; Trnkova, L.; Skladal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev. 2017, 117, 9973–10042. [Google Scholar] [CrossRef]
- Radha, R.; Shahzadi, S.K.; Al-Sayah, M.H. Fluorescent immunoassays for detection and quantification of cardiac troponin I: A short review. Molecules 2021, 26, 4812. [Google Scholar] [CrossRef]
- Hu, H.; Wang, Y. Recent advances in metal–organic frameworks as emerging platforms for immunoassays. TrAC-Trends Anal. Chem. 2024, 171, 117520. [Google Scholar] [CrossRef]
- Liu, L.; Hao, Y.; Deng, D.; Xia, N. Nanomaterials-based colorimetric immunoassays. Nanomaterials 2019, 9, 316. [Google Scholar] [CrossRef]
- Zhu, L.; Chang, Y.; Li, Y.Y.; Qiao, M.Y.; Liu, L. Biosensors based on the binding events of nitrilotriacetic acid-metal complexes. Biosensors 2023, 13, 507. [Google Scholar] [CrossRef]
- Ma, X.; Hao, Y.; Dong, X.; Xia, N. Biosensors with metal ion-phosphate chelation interaction for molecular recognition. Molecules 2023, 28, 4394. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, Y.; Wu, M.; Liu, L.; Song, Q. Electrochemical detection of glycoproteins using boronic acid-modified metal–organic frameworks as dual-functional signal reporters. Anal. Methods 2023, 15, 4452–4458. [Google Scholar] [CrossRef]
- Qu, K.; Li, J. Functional interface for glycoprotein sensing: Focusing on biosensors. Langmuir 2024, 40, 10405–10413. [Google Scholar] [CrossRef]
- Liu, L.; Ma, X.; Chang, Y.; Guo, H.; Wang, W. Biosensors with boronic acid-based materials as the recognition elements and signal labels. Biosensors 2023, 13, 785. [Google Scholar] [CrossRef]
- Malla, P.; Liao, H.-P.; Liu, C.-H.; Wu, W.-C. Electrochemical immunoassay for serum parathyroid hormone using screen-printed carbon electrode and magnetic beads. J. Electroanal. Chem. 2021, 895, 115463–115472. [Google Scholar] [CrossRef]
- Wang, Y.T.; Wu, N.; Yang, T.; Wang, J.H. Unusual Selective Response to Glycoprotein over Sugar Facilitates Ultrafast Universal Fluorescent Immunoassay of Biomarkers. Anal. Chem. 2020, 92, 5540–5545. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Su, H.; Qu, X.; Ju, P.; Cui, L.; Ai, S. Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide–gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sens. Actuators B. Chem. 2011, 160, 1255–1261. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, Q.; Yang, X. Immobilization of glycosylated enzymes on carbon electrodes, and its application in biosensors. Microchim. Acta 2005, 150, 21–26. [Google Scholar] [CrossRef]
- Huang, Y.; Bu, L.; Wang, W.; Qin, X.; Li, Z.; Huang, Z.; Fu, Y.; Su, X.; Xie, Q.; Yao, S. One-pot preparation of uricase–poly(thiophene-3-boronic acid)–Ptnano composites for high-performance amperometric biosensing of uric acid. Sens. Actuators B. Chem. 2013, 177, 116–123. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, W.; Li, Z.; Qin, X.; Bu, L.; Tang, Z.; Fu, Y.; Ma, M.; Xie, Q.; Yao, S.; et al. Horseradish peroxidase-catalyzed synthesis of poly(thiophene-3-boronic acid) biocomposites for mono-/bi-enzyme immobilization and amperometric biosensing. Biosens. Bioelectron. 2013, 44, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.R.; Greish, Y.E. MOF-based biosensors for the detection of carcinoembryonic antigen: A concise review. Molecules 2023, 28, 5970. [Google Scholar] [CrossRef] [PubMed]
- Mansour, F.R.; Hammad, S.F.; Abdallah, I.A.; Bedair, A.; Abdelhameed, R.M.; Locatelli, M. Applications of metal organic frameworks in point of care testing. TrAC-Trends Anal. Chem. 2024, 172, 117596. [Google Scholar] [CrossRef]
- Dai, H.; Lu, W.; Zuo, X.; Zhu, Q.; Pan, C.; Niu, X.; Liu, J.; Chen, H.; Chen, X. A novel biosensor based on boronic acid functionalized metal-organic frameworks for the determination of hydrogen peroxide released from living cells. Biosens. Bioelectron. 2017, 95, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, S. Metal-organic frameworks for the development of biosensors: A current overview. Biosensors 2018, 8, 92. [Google Scholar] [CrossRef]
- Chen, G.; Fang, X.; Chen, Q.; Zhang, J.g.; Zhong, Z.; Xu, J.; Zhu, F.; Ouyang, G. Boronic acid decorated defective metal-organic framework nanoreactors for high-efficiency carbohydrates separation and labeling. Adv. Funct. Mater. 2017, 27, 1702126–1702134. [Google Scholar] [CrossRef]
- Lakhera, P.; Chaudhary, V.; Kumar, P.; Huertas, C.S.; Kumar, P.; Kumar, S. Nonenzymatic dual glucose sensing on boronic acid modified zeolitic imidazolate framework-67 nanoparticles for diabetes management. Microchim. Acta 2024, 191, 306. [Google Scholar] [CrossRef]
- Hu, W.; Du, B.; Pei, F.; Liang, M.; Yang, L.; Liu, B.; Mu, X.; Tong, Z. A facile fluorescence imprinted strategy based on boronic acid functionalized MOF and Mg/N-CDs for discrimination of transferrin: Expansion for boronic acid functionalized MOF application. Microchem. J. 2024, 197, 109759. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, A.; Wu, F.; Luo, X.; Zhang, J. Boronic acid grafted metal-organic framework for selective enrichment of cis-diol-containing compounds. J. Chromatogr. A 2023, 1677, 463281. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Chen, T.; Liu, W.; Ye, F.; Zhao, S. Design and fabrication of boric acid functionalized hierarchical porous metal-organic frameworks for specific removal of cis-diol-containing compounds from aqueous solution. Appl. Surf. Sci. 2021, 535, 147714–147723. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, Y.; Liu, W.; Ye, F.; Zhao, S. Immobilized glucose oxidase on boronic acid-functionalized hierarchically porous MOF as an integrated nanozyme for one-step glucose detection. ACS Sustain. Chem. Eng. 2020, 8, 4481–4488. [Google Scholar] [CrossRef]
- Niu, X.; Li, X.; Lyu, Z.; Pan, J.; Ding, S.; Ruan, X.; Zhu, W.; Du, D.; Lin, Y. Metal-organic framework based nanozymes: Promising materials for biochemical analysis. Chem. Commun. 2020, 56, 11338–11353. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, L.; Liu, D.; Ma, W.; Dramou, P.; He, H. Nanozymes based on metal-organic frameworks: Construction and prospects. TrAC-Trends Anal. Chem. 2020, 133, 116080. [Google Scholar] [CrossRef]
- Chi, Z.; Gu, J.; Li, H.; Wang, Q. Recent progress of metal–organic framework-based nanozymes with oxidoreductase-like activity. Analyst 2024, 149, 1416–1435. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, S.; Ye, F.; Su, L.; Zhang, C.; Shen, S.; Zhao, S. Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chem. Commun. 2015, 51, 4635–4638. [Google Scholar] [CrossRef]
- Jin, T.; Li, Y.; Jing, W.; Li, Y.; Fan, L.; Li, X. Cobalt-based metal organic frameworks: A highly active oxidase-mimicking nanozyme for fluorescence “turn-on” assays of biothiol. Chem. Commun. 2020, 56, 659–662. [Google Scholar] [CrossRef]
- Wang, D.; Jana, D.; Zhao, Y. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Wang, Y.; Yang, J.; Sun, Y.; Xing, G.; Deng, R.; Hu, X.; Zhang, G. Competitive electrochemical immunosensor for maduramicin detection by multiple signal amplification strategy via hemin@Fe-MIL-88NH2/AuPt. Biosens. Bioelectron. 2019, 142, 111554–111561. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Xu, Y.; Ma, B.; Ma, Z.; Han, H. Anti-fouling materials decorated immunoprobe and electrochemical sensing interface to improve immunoassay. Chem. Eng. J. 2022, 450, 137954. [Google Scholar] [CrossRef]
- Hong, F.; Ren, L.; Chen, Y. Kill three birds with one stone: Zr-MOF-mediated composite multi-functional materials to enhance the efficiency for fluorescent and colorimetric dual-signal readout bioassay. Chem. Eng. J. 2023, 452, 139149. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Z.; Sun, W.; Ye, S.; Tao, X. High-performance colorimetric immunoassay for determination of chloramphenicol using metal-organic framework-based hybrid composites with increased peroxidase activity. Microchim. Acta 2022, 189, 484. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Li, G.; Sun, Z.; Peng, Y.; Han, Y.; Li, J.; Zhu, S.; Yin, Y. Peptide-functionalized metal-organic framework nanocomposite for ultrasensitive detection of secreted protein acidic and rich in cysteine with practical application. Biosens. Bioelectron. 2020, 169, 112613. [Google Scholar] [CrossRef]
- Pham, X.-H.; Hahm, E.; Huynh, K.-H.; Son, B.S.; Kim, H.-M.; Jun, B.-H. Sensitive colorimetric detection of prostate specific antigen using a peroxidase-mimicking anti-PSA antibody coated Au nanoparticle. BioChip J. 2020, 14, 158–168. [Google Scholar] [CrossRef]
- Yan, H.; Chen, Y.; Jiao, L.; Gu, W.; Zhu, C. Amorphous RuTe nanorods as efficient peroxidase mimics for colorimetric immunoassay. Sens. Actuators B Chem. 2021, 341, 130007. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D. Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules. Anal. Chem. 2013, 85, 6945–6952. [Google Scholar] [CrossRef]
- Tan, F.; Yang, Y.; Xie, X.; Wang, L.; Deng, K.; Xia, X.; Yang, X.; Huang, H. Prompting peroxidase-like activity of gold nanorod composites by localized surface plasmon resonance for fast colorimetric detection of prostate specific antigen. Analyst 2018, 143, 5038–5045. [Google Scholar] [CrossRef]
- Sun, P.; Li, Y.; Li, J.; Zhang, Y. Entrapment of horseradish peroxidase into nanometer-scale metal–organic frameworks: A new nanocarrier for signal amplification in enzyme-linked immunosorbent assay. Microchim. Acta 2021, 188, 409. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Xu, M.; Lu, M.; Chen, G.; Tang, D. Urchin-like(goldcore)@(platinumshell)nanohybrids: A highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosens. Bioelectron. 2015, 70, 194–201. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, L.; Yan, H.; Xu, W.; Wu, Y.; Zheng, L.; Gu, W.; Zhu, C. Fe–N–C Single-atom catalyst coupling with Pt clusters boosts peroxidase-like activity for cascade-amplified colorimetric immunoassay. Anal. Chem. 2021, 93, 12353–12359. [Google Scholar] [CrossRef]
- Yan, D.; Jiao, L.; Chen, C.; Jia, X.; Li, R.; Hu, L.; Li, X.; Zhai, Y.; Strizhak, P.E.; Zhu, Z.; et al. p–d Orbital hybridization-engineered PdSn nanozymes for a sensitive immunoassay. Nano Lett. 2024, 24, 2912–2920. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, C.; Wang, J.; Tan, H. Cascade amplified colorimetric immunoassay based on an integrated multifunctional composite with catalytic coordination polymers for prostate specific antigen detection. J. Mater. Chem. B 2020, 8, 10662–10669. [Google Scholar] [CrossRef]
- Sun, T.; Xia, N.; Yuan, F.; Liu, X.; Chang, Y.; Liu, S.; Liu, L. A colorimetric method for determination of the prostate specific antigen based on enzyme-free cascaded signal amplification via peptide-copper(II) nanoparticles. Microchim. Acta 2020, 187, 116. [Google Scholar] [CrossRef]
- Li, L.; Xing, Z.; Tang, Q.; Yang, L.; Dai, L.; Wang, H.; Yan, T.; Xu, W.; Ma, H.; Wei, Q. Enzyme-free colorimetric immunoassay for protein biomarker enabledby loading and disassembly behaviors of polydopamine nanoparticles. ACS Appl. Bio. Mater. 2020, 3, 8841–8848. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Lv, S.; Xu, M.; Tang, D. High-index {hk0} faceted platinum concave nanocubes with enhanced peroxidase-like activity for an ultrasensitive colorimetric immunoassay of the human prostate-specific antigen. Analyst 2017, 142, 911–917. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Wu, Q.; Wen, Z.; Ren, Y.; Wang, M. An acid-responsive all-in-one signal amplification strategy for the ultrasensitive prostate-specific antigen detection. New J. Chem. 2019, 43, 15910–15914. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Gu, W.; Liu, M.; Zhu, C. Galvanic replacement reaction-regulated photoelectric response and enzyme-mimicking property of ionic liquid functionalized Cu@Cu2O aerogels for dual-mode immunoassay. Chem. Eng. J. 2023, 455, 140743. [Google Scholar] [CrossRef]
- Li, J.; Gao, Z.; Ye, H.; Wan, S.; Pierce, M.; Tang, D.; Xia, X. A non-enzyme cascade amplification strategy for colorimetric assay of disease biomarkers. Chem. Commun. 2017, 53, 9055–9058. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Xie, W.; Chen, Z.; Jiang, Y.; Liu, Y. Metal ion chelation-based color generation for alkaline phosphatase-linked high-performance visual immunoassays. Sens. Actuators B Chem. 2018, 273, 35–40. [Google Scholar] [CrossRef]
- Lai, W.; Tang, D.; Zhuang, J.; Chen, G.; Yang, H. Magnetic bead-based enzyme-chromogenic substrate system for ultrasensitive colorimetric immunoassay accompanying cascade reaction for enzymatic formation of squaric acid-Iron(III) chelate. Anal. Chem. 2014, 86, 5061–5068. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, L.; Zhang, Z. An ultrasensitive colorimetric immunoassay based on glucose oxidasecatalyzed cascade formation of blue–black iodine–starch complex. Sens. Actuators B Chem. 2017, 248, 195–200. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, D.; Wang, B.; Ni, P.; Jiang, Y.; Zhang, C.; Yang, F.; Lu, Y.; Sun, J. Alkaline phosphatase-triggered in situ formation of silicon containing nanoparticles for a fluorometric and colorimetric dual channel immunoassay. Anal. Chem. 2020, 92, 4639–4646. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, Y.; Huang, P.; Wu, F.-Y. Colorimetric and photothermal immunosensor for sensitive detection of cancer biomarkers based on enzyme-mediated growth of gold nanostars on polydopamine. Anal. Chim. Acta 2023, 1279, 341775. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, X.; Xu, Z.; Liu, M.; Lin, Z.; Qiu, B.; Guo, L.; Chen, G. Multicolor ELISA based on alkaline phosphatase triggered growth of Au nanorods. Analyst 2016, 141, 2970–2976. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yang, J.; Wang, H.; Wang, Z.; Huang, X.; Wang, Z.; Niu, G.; Hight Walker, A.R.; Chen, X. Glucose oxidase-catalyzed growth of gold nanoparticles enables quantitative detection of attomolar cancer biomarkers. Anal. Chem. 2014, 86, 5800–5806. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.C.; Tseng, W.L. 1,4-Benzenediboronic-acid-induced aggregation of gold nanoparticles: Application to hydrogen peroxide detection and biotin-avidin-mediated immunoassay with naked-eye detection. Anal. Chem. 2016, 88, 5355–5362. [Google Scholar] [CrossRef]
- Ma, X.; Lin, Y.; Guo, L.; Qiu, B.; Chen, G.; Yang, H.; Lin, Z. A universal multicolor immunosensor for semiquantitative visual detection of biomarkers with the naked eyes. Biosens. Bioelectron. 2017, 87, 122–128. [Google Scholar] [CrossRef]
- Liang, J.; Yao, C.; Li, X.; Wu, Z.; Huang, C.; Fu, Q.; Lan, C.; Cao, D.; Tang, Y. Silve rnanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosens. Bioelectron. 2015, 69, 128–134. [Google Scholar] [CrossRef]
- Shao, F.; Zhang, L.; Jiao, L.; Wang, X.; Miao, L.; Li, H.; Zhou, F. Enzyme-free immunosorbent assay of prostate specific antigen amplified by releasing pH indicator molecules entrapped in mesoporous silica nanoparticles. Anal. Chem. 2018, 90, 8673–8679. [Google Scholar] [CrossRef]
- Chu, B.; Qi, T.; Liao, J.; Peng, J.; Li, W.; Fu, S.; Luo, F.; Qian, Z. Colorimetric detection of cancer biomarker based on pH induced color change. Sens. Actuators B Chem. 2012, 166, 56–60. [Google Scholar] [CrossRef]
- Xiao, L.; Zhu, A.; Xu, Q.; Chen, Y.; Xu, J.; Weng, J. Colorimetric biosensor for detection of cancer biomarker by Au nanoparticle-decorated Bi2Se3 nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 6931–6940. [Google Scholar] [CrossRef]
- Xia, N.; Deng, D.; Mu, X.; Liu, A.; Xie, J.; Zhou, D.; Yang, P.; Xing, Y.; Liu, L. Colorimetric immunoassays based on pyrroloquinoline quinone-catalyzed generation of Fe(II)-ferrozine with tris(2-carboxyethyl)phosphine as the reducing reagent. Sens. Actuators B Chem. 2020, 306, 127571. [Google Scholar] [CrossRef]
Chromogenic Reaction | Signal Label | Linear Range (pg/mL) | LOD (pg/mL) | Ref. |
---|---|---|---|---|
TMB oxidation | Au NPs | 2.5 × 102–2.5 × 106 | 230 | [37] |
TMB oxidation | a-RuTe2 | 50–5 × 103 | 32.6 | [38] |
TMB oxidation | AuNPs-catalase | 50–2 × 104 | 30 | [39] |
TMB oxidation | AuNC/GNRs | 10–2 × 103 | 10 | [40] |
TMB oxidation | HRP@PCN-333 | 15–1.65 × 102 | 6 | [41] |
TMB oxidation | Au@PtNHs | 5–5 × 102 | 2.9 | [42] |
TMB oxidation | FeSA−PtC | 8–1 × 103 | 1.8 | [43] |
TMB oxidation | PdSn nanozymes | 2–2 × 103 | 1.696 | [44] |
TMB oxidation | GOx@FeCPs | 10–2 × 103 | 1.03 | [45] |
TMB oxidation | Cu-P NPs | 1–103 | 1 | [46] |
TMB oxidation | PDA-Fe3+ NPs | 0.5–2 × 104 | 0.87 | [47] |
TMB oxidation | HIF-Pt-CNCs | 20–2 × 103 | 0.8 | [48] |
TMB oxidation | MY/ZIF-8 | 1–1 × 103 | 0.67 | [49] |
TMB oxidation | IL-Cu@Cu2O | 5–1 × 103 | 0.63 | [50] |
TMB oxidation | AgNPs | 2 − 64 | 0.165 | [51] |
Cu(I)-BCA complex | ALP | 5×102 − 2.5 × 104 | 380 | [52] |
Iron(III) complex | AuNP-GOx | 1–3 × 104 | 0.5 | [53] |
Iodine–starch complex | GOx | 1–106 | 0.46 | [54] |
Formation of Si NPs | ALP | 20 − 2.8 × 104 | 9.6 | [55] |
Growth of Au on PDA | ALP | 50–1 × 105 | 6.71 | [56] |
AuNPs growth | ALP | 1–2 × 102 | 3 × 10−2 | [57] |
AuNPs growth | MB-GOx | 1 × 10−2–1 × 102 | 3.1 × 10−3 | [58] |
AuNPs aggregation | GOx | 0–104 | 4 × 103 | [59] |
Etching of AuNRs | HRP | Not reported | 75 | [60] |
Etching of AgNPRs | GOx | 0.01–1 × 102 | 4.1 × 10−3 | [61] |
pH indicator | TP-MSN | 0.5–8 × 103 | 0.36 | [62] |
pH indicator | GSH-AuNPs | 1 × 102–104 | 1 × 102 | [63] |
4-NP reduction | Au/Bi2Se3 NSs | Not reported | 72 | [64] |
Fe(III)-ferrozine/TCEP | MSN/PQQ | 5–5 × 103 | 1 | [65] |
TMB oxidation | Poly-HRP | 1 × 102–2.5 × 103 | 1 × 102 | This work |
TMB oxidation | MOF-HRP | 1–2.5 × 102 | 1 | This work |
Added (pg/mL) | Found by This Method (pg/mL) | Recovery Rate (%) |
---|---|---|
10 | 10.7 | 107 |
50 | 49.2 | 98.4 |
100 | 92.1 | 92.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Yi, X.; Liu, L.; Zhao, F. Colorimetric Immunoassays with Boronic Acid-Decorated, Peroxidase-like Metal-Organic Frameworks as the Carriers of Antibodies and Enzymes. Molecules 2024, 29, 3000. https://doi.org/10.3390/molecules29133000
Sun T, Yi X, Liu L, Zhao F. Colorimetric Immunoassays with Boronic Acid-Decorated, Peroxidase-like Metal-Organic Frameworks as the Carriers of Antibodies and Enzymes. Molecules. 2024; 29(13):3000. https://doi.org/10.3390/molecules29133000
Chicago/Turabian StyleSun, Ting, Xinyao Yi, Lin Liu, and Feng Zhao. 2024. "Colorimetric Immunoassays with Boronic Acid-Decorated, Peroxidase-like Metal-Organic Frameworks as the Carriers of Antibodies and Enzymes" Molecules 29, no. 13: 3000. https://doi.org/10.3390/molecules29133000
APA StyleSun, T., Yi, X., Liu, L., & Zhao, F. (2024). Colorimetric Immunoassays with Boronic Acid-Decorated, Peroxidase-like Metal-Organic Frameworks as the Carriers of Antibodies and Enzymes. Molecules, 29(13), 3000. https://doi.org/10.3390/molecules29133000