Detection of VOCs and Biogenic Amines Through Luminescent Zn–Salen Complex-Tethered Pyrenyl Arms
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sellegri, K.; Hanke, M.; Umann, B.; Arnold, F.; Kulmala, M. Measurements of Organic Gases During Aerosol Formation Events in the Boreal Forest Atmosphere During QUEST. Atmos. Chem. Phys. 2005, 5, 373–384. [Google Scholar] [CrossRef]
- Jang, J.-K. Amines as Occupational Hazards for Visual Disturbance. Ind. Health 2016, 54, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Poste, A.E.; Grung, M.; Wright, R.F. Amines and Amine-Related Compounds in Surface Waters: A Review of Sources, Concentrations and Aquatic Toxicity. Sci. Total Environ. 2014, 481, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Wexler, A.S.; Clegg, S.L. Atmospheric Amines—Part I. A Review. Atmos. Environ. 2011, 45, 524–546. [Google Scholar] [CrossRef]
- Mangotra, A.; Singh, S.K. Volatile Organic Compounds: A Threat to the Environment and Health Hazards to Living Organisms—A Review. J. Biotechnol. 2024, 382, 51–69. [Google Scholar] [CrossRef]
- Saha Turna, N.; Chung, R.; McIntyre, L. A Review of Biogenic Amines in Fermented Foods: Occurrence and Health Effects. Heliyon 2024, 10, 24501–24512. [Google Scholar] [CrossRef]
- Doeun, D.; Davaatseren, M.; Chung, M.-S. Biogenic Amines in Foods. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef]
- Jaguey-Hernández, Y.; Aguilar-Arteaga, K.; Ojeda-Ramirez, D.; Añorve-Morga, J.; González-Olivares, L.G.; Castañeda-Ovando, A. Biogenic Amines Levels in Food Processing: Efforts for Their Control in Foodstuffs. Food Res. Int. 2021, 144, 110341–110354. [Google Scholar] [CrossRef]
- Shalaby, A.R. Significance of Biogenic Amines to Food Safety and Human Health. Food Res. Int. 1996, 29, 675–690. [Google Scholar] [CrossRef]
- Gainetdinov, R.R.; Hoener, M.C.; Berry, M.D.; Witkin, J.M. Trace Amines and Their Receptors. Pharmacol. Rev. 2018, 70, 549–620. [Google Scholar] [CrossRef]
- Hembury, G.A.; Borovkov, V.V.; Inoue, Y. Chirality-Sensing Supramolecular Systems. Chem. Rev. 2007, 108, 1–73. [Google Scholar] [CrossRef] [PubMed]
- Gomes Müller, D.; Quadro Oreste, E.; Grazielle Heinemann, M.; Dias, D.; Kessler, F. Biogenic Amine Sensors and its Building Materials: A Review. Eur. Polym. J. 2022, 175, 111221–111241. [Google Scholar] [CrossRef]
- Yoon, H.; Park, J.H.; Choi, A.; Hwang, H.-J.; Mah, J.-H. Validation of an HPLC Analytical Method for Determination of Biogenic Amines in Agricultural Products and Monitoring of Biogenic Amines in Korean Fermented Agricultural Products. Toxicol. Res. 2015, 31, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Tırıs, G.; Sare Yanıkoğlu, R.; Ceylan, B.; Egeli, D.; Kepekci Tekkeli, E.; Önal, A. A Review of the Currently Developed Analytical Methods for the Determination of Biogenic Amines in Food Products. Food Chem. 2023, 398, 133919. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Q.; Li, G.; An, T. A New Method of Simultaneous Determination of Atmospheric Amines in Gaseous and Particulate Phases by Gas Chromatography-Mass Spectrometry. J. Environ. Sci. 2022, 114, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.R.; Manchanda, A.K.; Singh, G.; Verma, R.S. Cyclic Voltammetry of Aromatic Amines in Aqueous and non-Aqueous Media. Electrochim. Acta 1982, 27, 223–233. [Google Scholar] [CrossRef]
- Zhang, J.; Yue, C.; Ke, Y.; Qu, H.; Zeng, L. Fluorescent Probes for the Detection of Biogenic Amines, Nitrite and Sulfite in Food: Progress, Challenges and Perspective. Adv. Agrochem. 2023, 2, 127–141. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, T.; Cao, H.; Zhang, J.; James, T.D.; Sun, X. Fluorometric Detection of Volatile Amines Using an Indanonalkene Platform. Org. Chem. Front. 2023, 10, 1393–1398. [Google Scholar] [CrossRef]
- Das, G.; Garai, B.; Prakasam, T.; Benyettou, F.; Varghese, S.; Sharma, S.K.; Gándara, F.; Pasricha, R.; Baias, M.; Jagannathan, R.; et al. Fluorescence Turn on Amine Detection in a Cationic Covalent Organic Framework. Nat. Commun. 2022, 13, 3904. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Yan, Z.-J.; Liu, W.-X.; Chen, X.-M.; Ding, M.-H.; Tang, L.-L.; Zeng, F. Rapid and Visual Detection of Volatile Amines Based on Their Gas–Solid Reaction with Tetrachloro-p-Benzoquinone. Molecules 2024, 29, 1818–1825. [Google Scholar] [CrossRef]
- Kirchner, N.; Zedler, L.; Mayerhöfer, T.G.; Mohr, G.J. Functional Liquid Crystal Films Selectively Recognize Amine Vapours and Simultaneously Change Their Colour. Chem. Commun. 2006, 14, 1512–1514. [Google Scholar] [CrossRef] [PubMed]
- Stumpel, J.E.; Wouters, C.; Herzer, N.; Ziegler, J.; Broer, D.J.; Bastiaansen, C.W.M.; Schenning, A.P.H.J. An Optical Sensor for Volatile Amines Based on an Inkjet-Printed, Hydrogen-Bonded, Cholesteric Liquid Crystalline Film. Adv. Opt. Mater. 2014, 2, 459–464. [Google Scholar] [CrossRef]
- Foelen, Y.; Puglisi, R.; Debije, M.G.; Schenning, A.P.H.J. Photonic Liquid Crystal Polymer Absorbent for Immobilization and Detection of Gaseous Nerve Agent Simulants. ACS Appl. Opt. Mater. 2022, 1, 107–114. [Google Scholar] [CrossRef]
- Wang, L.; Ran, X.; Tang, H.; Cao, D. Recent Advances on Reaction-Based Amine Fluorescent Probes. Dye. Pigment. 2021, 194, 109634. [Google Scholar] [CrossRef]
- Lambert, S.; Carpentier, R.; Lepeintre, M.; Testa, C.; Pappalardo, A.; Bartik, K.; Jabin, I. Development of a Cone Homooxacalix[3]arene-Based Fluorescent Chemosensor for the Selective Detection of Biogenic Ammonium Ions in Protic Solvents. J. Org. Chem. 2024, 89, 10903–10911. [Google Scholar] [CrossRef]
- Zhang, E.; Hou, X.; Yang, H.; Zou, Y.; Ju, P. A Novel Bicoumarin-Based Multifunctional Fluorescent Probe for Naked-Eye Sensing of Amines/Ammonia. Anal. Methods 2020, 12, 1744–1751. [Google Scholar] [CrossRef]
- Zhang, E.; Hou, X.; Zhang, Z.; Zhang, Y.; Wang, J.; Yang, H.; Youa, J.; Ju, P. A Novel Biomass-Based Reusable AIE Material: AIE Properties and Potential Applications in Amine/Ammonia Vapor Sensing and Information Storage. J. Mater. Chem. C 2019, 7, 8404–8411. [Google Scholar] [CrossRef]
- Dey, N.; Haynes, C.J.E. Supramolecular Coordination Complexes as Optical Biosensors. ChemPlusChem 2021, 86, 418–433. [Google Scholar] [CrossRef]
- Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Recent Progress in Metal–Organic Complexes for Optoelectronic Applications. Chem. Soc. Rev. 2014, 43, 3259–3302. [Google Scholar] [CrossRef]
- Bell, T.W.; Hext, N.M. Supramolecular Optical Chemosensors for Organic Analytes. Chem. Soc. Rev. 2004, 33, 589–598. [Google Scholar] [CrossRef]
- Mallick, A.; El-Zohry, A.M.; Shekhah, O.; Yin, J.; Jia, J.; Aggarwal, H.; Emwas, A.H.; Mohammed, O.F.; Eddaoudi, M. Unprecedented Ultralow Detection Limit of Amines using a Thiadiazole-Functionalized Zr(IV)-Based Metal−Organic Framework. J. Am. Chem. Soc. 2019, 141, 7245–7249. [Google Scholar] [CrossRef] [PubMed]
- Leelasree, T.; Dixit, M.; Aggarwal, H. Cobalt-Based Metal—Organic Frameworks and its Mixed-Matrix Membranes for Discriminative Sensing of Amines and On-Site Detection of Ammonia. Chem. Mater. 2023, 35, 416–423. [Google Scholar] [CrossRef]
- VanDenburgh, K.L.; Liu, Y.; Sadhukhan, T.; Benson, C.R.; Cox, N.M.; Erbas-Cakmak, S.; Qiao, B.; Gao, X.; Pink, M.; Raghavachari, K.; et al. Multi-State Amine Sensing by Electron Transfers in a BODIPY Probe. Org. Biomol. Chem. 2020, 18, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.; Nunes, M.; Pereira, C.; Fernandes, D.M.; Peixoto, A.F.; Rocha, M. Metallo(Salen) Complexes as Versatile Building Blocks for the Fabrication of Molecular Materials and Devices with Tuned Properties. Coord. Chem. Rev. 2019, 394, 104–134. [Google Scholar] [CrossRef]
- Puglisi, R.; Pappalardo, A.; Gulino, A.; Trusso Sfrazzetto, G. Supramolecular Recognition of a CWA Simulant by Metal–Salen Complexes: The First Multi-Topic Approach. Chem. Comm. 2018, 54, 11156–11159. [Google Scholar] [CrossRef]
- Attinà, A.; Oliveri, I.P.; Di Bella, S. Detection of Volatile Primary Aliphatic Amines: Highly Selective and Sensitive Vapoluminescent Sensing of n-Butylamine. Sens. Actuators B Chem. 2024, 419, 136414–136425. [Google Scholar] [CrossRef]
- Gaeta, M.; Oliveri, I.P.; Munzi, G.; Lo Presti, F.; Di Bella, S. Stimuli-Responsive Properties of a Zinc(II) Salen-Type Schiff-Base Complex and Vapochromic Detection of Volatile Organic Compounds. Inorg. Chem. 2024, 63, 3850–3858. [Google Scholar] [CrossRef]
- Ballistreri, F.P.; Pappalardo, A.; Tomaselli, G.A.; Toscano, R.M.; Trusso Sfrazzetto, G. Heteroditopic Chiral Uranyl–Salen Receptor for Molecular Recognition of Amino Acid Ammonium Salts. Eur. J. Org. Chem. 2010, 20, 3806–3810. [Google Scholar] [CrossRef]
- Bonaccorso, C.; Brancatelli, G.; Ballistreri, F.P.; Geremia, S.; Pappalardo, A.; Tomaselli, G.A.; Toscano, R.M.; Sciotto, D. Novel Chiral (Salen)Mn(III) Complexes Containing a Calix[4]arene Unit in 1,3-Alternate Conformation as Catalysts for Enantioselective Epoxidation Reactions of (Z)-Aryl Alkenes. Dalton Trans. 2014, 43, 2183–2193. [Google Scholar] [CrossRef]
- Puglisi, R.; Ballistreri, F.P.; Gangemi, C.M.A.; Toscano, R.M.; Tomaselli, G.A.; Pappalardo, A.; Sfrazzetto, G.T. Chiral Zn–Salen Complexes: A New Class of Fluorescent Receptors for Enantiodiscrimination of Chiral Amines. New J. Chem. 2017, 41, 911–915. [Google Scholar] [CrossRef]
- Consiglio, G.; Oliveri, I.P.; Punzo, F.; Thompson, A.L.; Di Bella, S.; Failla, S. Structure and Aggregation Properties of a Schiff-Base Zinc(II) Complex Derived from cis-1,2-Diaminocyclohexane. Dalton Trans. 2015, 44, 13040–13048. [Google Scholar] [CrossRef] [PubMed]
- Consiglio, G.; Failla, S.; Fortuna, C.G.; D’Urso, L.; Forte, G. Aggregation of a Zn(II)-Salen Complex: Theoretical Study of Structure and Spectra. Comput. Theor. Chem. 2015, 1067, 1–6. [Google Scholar] [CrossRef]
- Dumur, F.; Contal, E.; Wantz, G.; Gigmes, D. Photoluminescence of Zinc Complexes: Easily Tunable Optical Properties by Variation of the Bridge Between the Imido Groups of Schiff Base Ligands. Eur. J. Inorg. Chem. 2014, 25, 4186–4198. [Google Scholar] [CrossRef]
- Winnik, F.M. Photophysics of Preassociated Pyrenes in Aqueous Polymer Solutions and in Other Organized Media. Chem. Rev. 1993, 93, 587–614. [Google Scholar] [CrossRef]
- Bains, G.K.; Kim, S.H.; Sorin, E.J.; Narayanaswami, V. The Extent of Pyrene Excimer Fluorescence Emission Is a Reflector of Distance and Flexibility: Analysis of the Segment Linking the LDL Receptor-Binding and Tetramerization Domains of Apolipoprotein E3. Biochemistry 2012, 51, 6207–6219. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Mishra, G.; Pathak, A.K.; Pandey, S.; Awasthi, C.; Pandey, M.D.; Behera, K. Pyrene-Appended Luminescent Probes for Selective Detection of Toxic Heavy Metals and Live Cell Applications. ChemistrySelect 2024, 9, e202303914. [Google Scholar] [CrossRef]
- Kurahashi, T. Variation of the Emission Efficiency and Wavelength from Fluorescent Zinc Salen Complexes upon Systematic Structural Modifications. ACS Omega 2022, 7, 30642–30654. [Google Scholar] [CrossRef]
- Jun, E.J.; Won, H.N.; Kim, J.S.; Lee, K.-H.; Yoon, J. Unique Blue Shift Due to the Formation of Static Pyrene Excimer: Highly Selective Fluorescent Chemosensor for Cu2+. Tetr. Lett. 2006, 47, 4577–4580. [Google Scholar] [CrossRef]
- Yang, L.; Adam, C.; Cockroft, S.L. Quantifying Solvophobic Effects in Nonpolar Cohesive Interactions. JACS 2015, 137, 10084–10087. [Google Scholar] [CrossRef]
- Wilming, F.M.; Becker, J.; Schreiner, P.R. Quantifying Solvophobic Effects in Organic Solvents Using a Hydrocarbon Molecular Balance. JOC 2021, 87, 1874–1878. [Google Scholar] [CrossRef]
- Manzewitsch, A.N.; Liu, H.; Lin, B.; Li, P.; Pellechia, P.J.; Shimizu, K.D. Empirical Model of Solvophobic Interactions in Organic Solvents. Angew. Chem. Int. Ed. 2023, 63, e202314962. [Google Scholar] [CrossRef] [PubMed]
- Petroselli, M.; Chen, Y.-Q.; Zhao, M.-K.; Rebek, J., Jr.; Yu, Y. C-H···X-C Bonds in Alkyl Halides Drive Reverse Selectivities in Confined Spaces. Chin. Chem. Lett. 2023, 34, 107834. [Google Scholar] [CrossRef]
- Puglisi, R.; Cavallaro, A.; Pappalardo, A.; Petroselli, M.; Santonocito, R.; Trusso Sfrazzetto, G. A New BODIPY-Based Receptor for the Fluorescent Sensing of Catecholamines. Molecules 2024, 29, 3714–3726. [Google Scholar] [CrossRef] [PubMed]
- Petroselli, M.; Saccone, M.; Cametti, M. Aryl Boronic Acids in Columnar Stacked Co-crystalline Materials: Key-Factors Governing the Assembly with Quinones. ChemPhysChem 2023, 24, e202200883. [Google Scholar] [CrossRef] [PubMed]
Entry | Guest | Binding Constant (logK) a | LOD (µM) b |
1 c | Ethylamine | 5.34 ± 0.01 | 0.22 |
2 c | Propylamine | 6.03 ± 0.01 | 0.21 |
3 c | Butylamine | 6.21 ± 0.01 | 0.23 |
4 c | Hexylamine | 6.45 ± 0.02 | 0.15 |
5 c | Phenylethylamine | 6.39 ± 0.02 | 0.35 |
6 c | Phenylpropylamine | 6.45 ± 0.01 | 0.27 |
7 c | Phenylbutylamine | 6.49 ± 0.01 | 0.22 |
8 c | Tyramine | 5.90 ± 0.01 | 0.13 |
9 c | Methoxytyramine | 5.69 ± 0.01 | 0.17 |
10 d | R(+)-1-(2-Naphtyl)ethylamine | 7.59 ± 0.07 | 0.12 |
11 d | S(−)-1-(2-Naphtyl)ethylamine. | 5.61 ± 0.02 | 0.28 |
Entry | Guest | Complexation Energy (Ecomplex) |
1 | Ethylamine | 19.2 |
2 | Hexylamine | 17.9 a |
3 | Phenylethylamine | 16.2 |
4 | Phenylbutylamine | 15.8 a |
5 | R(+)-1-(2-Naphtyl)ethylamine | 14.9 |
6 | S(−)-1-(2-Naphtyl)ethylamine. | 10.9 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puglisi, R.; Testa, C.; Scuderi, S.; Greco, V.; Trusso Sfrazzetto, G.; Petroselli, M.; Pappalardo, A. Detection of VOCs and Biogenic Amines Through Luminescent Zn–Salen Complex-Tethered Pyrenyl Arms. Molecules 2024, 29, 5796. https://doi.org/10.3390/molecules29235796
Puglisi R, Testa C, Scuderi S, Greco V, Trusso Sfrazzetto G, Petroselli M, Pappalardo A. Detection of VOCs and Biogenic Amines Through Luminescent Zn–Salen Complex-Tethered Pyrenyl Arms. Molecules. 2024; 29(23):5796. https://doi.org/10.3390/molecules29235796
Chicago/Turabian StylePuglisi, Roberta, Caterina Testa, Sara Scuderi, Valentina Greco, Giuseppe Trusso Sfrazzetto, Manuel Petroselli, and Andrea Pappalardo. 2024. "Detection of VOCs and Biogenic Amines Through Luminescent Zn–Salen Complex-Tethered Pyrenyl Arms" Molecules 29, no. 23: 5796. https://doi.org/10.3390/molecules29235796
APA StylePuglisi, R., Testa, C., Scuderi, S., Greco, V., Trusso Sfrazzetto, G., Petroselli, M., & Pappalardo, A. (2024). Detection of VOCs and Biogenic Amines Through Luminescent Zn–Salen Complex-Tethered Pyrenyl Arms. Molecules, 29(23), 5796. https://doi.org/10.3390/molecules29235796