Assessment of Popcorn’s Bioactive Status in Response to Popping
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Variability of Phytic P Acid, Glutathione, Total Phenolic Content, and DPPH Radical Scavenging Activity upon Popping
2.2. The Variability of Carotenoid Content upon Popping
2.3. The Variability of Tocopherols Content upon Popping
2.4. The PCA of the Evaluated Bioactive Compounds
3. Material and Methods
3.1. Field Trial and Sample Preparation
3.2. Chemicals and Reagents
3.3. Spectrophotometric Methods
3.3.1. Phytic P Content (Pphy)
3.3.2. Total Glutathione Content (GSH)
3.3.3. Total Phenolic Content (TPC)
3.3.4. Antioxidant Activity—DPPH• Method
3.4. HPLC Analysis
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Chemical Society (ACS). Popcorn: The Snack with Even Higher Antioxidants Levels than Fruits and Vegetables. Science Daily. 2012. Available online: www.sciencedaily.com/releases/2012/03/120325173008.htm (accessed on 5 April 2023).
- Öztürk, A.; Erdal, Ş.; Pamukçu, M.; Boyaci, H.F.; Sade, B. Determination of some quality traits and relationships among traits in popcorn inbred lines. Derim 2016, 33, 119–130. [Google Scholar] [CrossRef]
- Grandjean, A.C.; Fulgoni, V.L., III; Reimers, K.J.; Agarwal, S. Popcorn consumption and dietary and physiological parameters of US children and adults: Analysis of the National Health and Nutrition Examination Survey (NHANES) 1999–2002 Dietary Survey Data. J. Am. Diet. Assoc. 2008, 108, 853–856. [Google Scholar] [CrossRef]
- Das, A.K.; Singh, V. Antioxidative free and bound phenolic constituents in botanical fractions of Indian specialty maize (Zea mays L.) genotypes. Food Chem. 2016, 201, 298–306. [Google Scholar] [CrossRef]
- Trono, D. Carotenoids in Cereal Food Crops: Composition and Retention throughout Grain Storage and Food Processing. Plants 2019, 8, 551. [Google Scholar] [CrossRef] [PubMed]
- Devgan, M.; Gill, G.K.; Praba, U.P.; Singh, G.; Garg, T.; Karnatam, K.S.; Kaur, A.; Vikal, Y. Biochemical and molecular characterization of sub-tropical maize germplasm for tocopherols. J. Food Compos. Anal. 2022, 114, 104842. [Google Scholar] [CrossRef]
- Dragičević, V.; Brankov, M.; Stoiljković, M.; Tolimir, M.; Kanatas, P.; Travlos, I.; Simić, M. Kernel color and fertilization as factors of enhanced maize quality. Front. Plant Sci. 2022, 13, 1027618. [Google Scholar] [CrossRef] [PubMed]
- Pramitha, J.L.; Jeeva, G.; Ravikesavan, R.; Joel, A.J.; Vinothana, N.K.; Meenakumari, B.; Raveendran, M.; Uma, D.; Hossain, F.; Kumar, B.; et al. Environmental impact of phytic acid in Maize (Zea mays L.) genotypes for the identification of stable inbreds for low phytic acid. Physiol. Mol. Biol. Plants 2020, 26, 1477–1488. [Google Scholar] [CrossRef]
- Raboy, V. Low phytic acid crops: Observations based on four decades of research. Plants 2020, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.O.; Bracarense, A.P.F.R.L. Phytic Acid: From Antinutritional to Multiple Protection Factor of Organic Systems. J. Food Sci. 2016, 81, R1357–R1362. [Google Scholar] [CrossRef]
- Coco, M.G., Jr.; Vinson, J.A. Analysis of Popcorn (Zea Mays L. var. Everta) for Antioxidant Capacity and Total Phenolic Content. Antioxidants 2019, 8, 22. [Google Scholar] [CrossRef]
- Mishra, G.; Joshi, D.C.; Panda, K.B. Popping and Puffing of Cereal Grains: A Review. J. Grain Process. Storage 2014, 1, 34–46. [Google Scholar]
- U.S. Food and Drug Administration (FDA). Available online: https://www.fda.gov/food/process-contaminants-food/authorized-uses-pfas-food-contact-applications (accessed on 16 July 2023).
- Xu, Y.; Noonan, G.O.; Begley, T.H. Migration of perfluoroalkyl acids from food packaging to food simulants. Food Addit. Contam. Part A 2013, 30, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Farahnaky, A.; Alipour, M.; Majzoobi, M. Popping Properties of Corn Grains of Two Different Varieties at Different Moistures. J. Agric. Sci. Technol. 2013, 15, 771–780. [Google Scholar]
- Pohndorf, R.S.; Lang, G.H.; Ferreira, C.D.; Ziegler, V.; Goebel, J.T.; de Oliveira, M. Kinetic evaluation and optimization of red popcorn grain drying: Influence of the temperature and air velocity on the expansion properties and β-carotene content. J. Food Process Eng. 2019, 42, e13204. [Google Scholar] [CrossRef]
- Soylu, S.; Tekkanat, A. Interactions among expansion volume and kernel properties in various popcorn genotypes. J. Food Eng. 2007, 80, 336–341. [Google Scholar] [CrossRef]
- Singh, J.; Singh, N. Effects of different ingredients and microwave power on popping characteristics of popcorn. J. Food Eng. 1999, 42, 161–165. [Google Scholar] [CrossRef]
- Sweley, J.C.; Rose, D.J.; Jackson, D.S. Hybrid and environment effect on popcorn kernel physiochemical properties and their relationship to microwave popping performance. J. Cereal Sci. 2012, 55, 188–194. [Google Scholar] [CrossRef]
- Bayomy, H.M. Sensory, nutritional and popping qualities of yellow and purple popcorn. J. Food Dairy Sci. Mansoura Univ. 2017, 8, 361–367. [Google Scholar] [CrossRef]
- Paraginski, R.T.; de Souza, N.L.; Alves, G.H.; Ziegler, V.; de Oliveira, M.; Elias, M.C. Sensory and nutritional evaluation of popcorn kernels with yellow, white and red pericarps expanded in different ways. J. Cereal Sci. 2016, 69, 383–391. [Google Scholar] [CrossRef]
- Shavandi, M.; Javanmard, M.; Basiri, A. Novel popping through infrared: Effect on some physicochemical. LWT—Food Sci. Technol. 2022, 155, 112955. [Google Scholar] [CrossRef]
- Al-Temimi, A.A.; Al-Mossawi, A.E.; Al-Hilifi, S.A.; Korma, S.A.; Esatbeyoglu, T.; Rocha, J.M.; Agarwal, V. Glutathione for Food and Health Applications with Emphasis on Extraction, Identification, and Quantification Methods: A Review. Metabolites 2023, 13, 465. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef]
- Horvat, D.; Šimić, G.; Drezner, G.; Lalić, A.; Ledenčan, T.; Tucak, M.; Plavšić, H.; Andrić, L.; Zdunić, Z. Phenolic Acid Profiles and Antioxidant Activity of Major Cereal Crops. Antioxidants 2020, 9, 527. [Google Scholar] [CrossRef] [PubMed]
- Telfer, A. Too much light? How b–carotene protects the photosystem II reaction centre. Photochem. Photobiol. Sci. 2005, 4, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Kahriman, F.; Aktaş, F.; Songur, U.; Şerment, M.; Egesel, C.Ö. Screening Turkish maize landraces for kernel oil content and oil quality traits. Plant Genet. Resour. Charact. Util. 2020, 18, 278–286. [Google Scholar] [CrossRef]
- Gliszyńska-Swigło, A.; Ciska, E.; Pawlak-Lemańska, K.; Chmielewski, J.; Borkowski, T.; Tyrakowska, B. Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit. Contam. 2006, 23, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Seybold, C.; Fröhlich, K.; Bitsch, R.; Otto, K.; Böhm, V. Changes in contents of carotenoids and vitamin E during tomato processing. J. Agric. Food Chem. 2004, 52, 7005–7010. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, S.; Schlich, E. Impact of different cooking methods on food quality: Retention of lipophilic vitamins in fresh and frozen vegetables. J. Food Eng. 2006, 77, 327–333. [Google Scholar] [CrossRef]
- Dragicević, V.; Sredojević, S.; Perić, V.; Nišavić, A.; Srebrić, M. Validation study of a rapid colorimetric method for the determination of phytic acid and inorganic phosphorus from grains. Acta Period. Technol. 2011, 42, 11–21. [Google Scholar] [CrossRef]
- Sari-Gorla, M.; Ferrario, S.; Rossini, L.; Frova, C.; Villa, M. Developmental expression of glutathione-S-transferase in maize and its possible connection with herbicide tolerance. Euphytica 1993, 67, 221–230. [Google Scholar] [CrossRef]
- Anderson, A.; Ng, P. Changes in disulfide and sulfhydryl contents and electrophoretic patterns of extruded wheat flour proteins. Cereal Chem. 2000, 77, 354–359. [Google Scholar] [CrossRef]
- Singleton, V.; Orthofer, R.; Lamuela-Raventos, R. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Abe, N.; Murata, T.; Hirota, A. Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus. Biosci. Biotechnol. Biochem. 1998, 62, 661–666. [Google Scholar] [CrossRef]
- Vukadinović, J.; Srdić, J.; Tosti, T.; Dragičević, V.; Kravić, N.; Mladenović Drinić, S.; Milojković-Opsenica, D. Alteration in phytochemicals from sweet maize in response to domestic cooking and frozen storage. J. Food Compos. Anal. 2022, 114, 104637. [Google Scholar] [CrossRef]
- Mesarović, J.; Srdić, J.; Mladenović-Drinić, S.; Dragičević, V.; Simić, M.; Brankov, M.; Milojković-Opsenica, D. Evaluation of the nutritional profile of sweet maize after herbicide and foliar fertilizer application. J. Cereal Sci. 2019, 87, 132–137. [Google Scholar] [CrossRef]
Mean Square | LSD | |||||
---|---|---|---|---|---|---|
Antioxidants | H | T | H × T | H | H × T | CV (%) |
Pphy | 0.12 * | 3.83 * | 0.11 * | 0.13 | 0.18 | 2.89 |
GSH | 113,810.89 * | 31,040,093.47 * | 70,256.24 * | 99.19 | 140.30 | 4.77 |
TPC | 38.17 * | 2.45 | 0.02 | 0.14 | 0.19 | 4.46 |
DPPH | 334.63 * | 1383.72 * | 439.16 * | 2.90 | 4.10 | 3.15 |
δ-T | 0.65 * | 0.91 * | 0.04 * | 0.05 | 0.07 | 1.72 |
β + γ-T | 8.67 * | 91.30 * | 9.45 * | 0.41 | 0.58 | 1.80 |
α-T | 1.14 * | 0.40 * | 0.43 * | 0.05 | 0.07 | 1.90 |
L + Z | 86.18 * | 5666.82 * | 92.29 * | 0.83 | 1.18 | 2.23 |
β-carotene | 0.66 * | 0.03 * | 0.23 * | 0.05 | 0.07 | 2.62 |
Hybrid | Pphy (mg/g DW) | GSH (µmol/g DW) | TPC (mg FAE/g DW) | DPPH (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Kernels | Flakes | % Change | Kernels | Flakes | % Change | Kernels | Flakes | % Change | Kernels | Flakes | % Change | |
H1 | 3.30 ± 0.08 ef | 2.72 ± 0.04 ijk | −17.54 | 1.83 ± 0.01 f | 0.66 ± 0.00 gh | −63.61 | 1.49 ± 0.03 k | 1.56 ± 0.02 jk | 4.27 | 43.89 ± 0.34 l | 79.13 ± 0.13 bc | 80.27 |
H2 | 3.55 ± 0.14 b | 3.24 ± 0.02 ef | −8.67 | 1.92 ± 0.14 f | 0.59 ± 0.00 hi | −69.32 | 2.30 ± 0.03 c | 2.34 ± 0.05 bc | 1.77 | 51.14 ± 0.55 k | 74.97 ± 0.05 de | 46.60 |
H3 | 3.36 ± 0.09 bcdef | 2.88 ± 0.04 hi | −14.35 | 2.69 ± 0.00 a | 0.74 ± 0.01 g | −72.49 | 1.74 ± 0.04 hij | 1.76 ± 0.04 ghi | 1.68 | 81.41 ± 0.05 bc | 57.87 ± 0.16 j | −28.92 |
H4 | 3.49 ± 0.05 bcd | 2.76 ± 0.15 ijk | −20.89 | 2.12 ± 0.05 e | 0.65 ± 0.08 ghi | −69.43 | 2.03 ± 0.16 ef | 2.08 ± 0.07 def | 2.17 | 85.88 ± 0.08 a | 69.79 ± 0.05 fg | −18.74 |
H5 | 3.51 ± 0.02 bc | 2.63 ± 0.13 k | −25.00 | 2.16 ± 0.04 de | 0.60 ± 0.03 ghi | −72.19 | 2.04 ± 0.20 ef | 2.09 ± 0.04 def | 2.30 | 70.40 ± 0.27 fg | 68.10 ± 0.18 gh | −3.28 |
H6 | 4.13 ± 0.02 a | 2.84 ± 0.09 ij | −31.08 | 2.68 ± 0.00 a | 0.68 ± 0.03 gh | −74.60 | 2.24 ± 0.03 cd | 2.29 ± 0.05 c | 2.46 | 73.12 ± 0.18 ef | 57.42 ± 0.23 j | −21.48 |
H7 | 3.35 ± 0.02 cdef | 3.32 ± 0.02 def | −0.86 | 2.10 ± 0.07 e | 0.63 ± 0.06 ghi | −69.91 | 1.89 ± 0.04 fgh | 1.94 ± 0.05 fg | 2.61 | 80.79 ± 0.12 bc | 60.84 ± 0.25 ij | −24.70 |
H8 | 3.22 ± 0.07 fg | 2.86 ± 0.06 hi | −11.04 | 2.31 ± 0.09 c | 0.60 ± 0.02 ghi | −73.86 | 2.21 ± 0.10 cde | 2.27 ± 0.04 cd | 2.38 | 77.41 ± 0.09 cd | 64.27 ± 0.10 hi | −16.97 |
H9 | 3.30 ± 0.08 ef | 3.04 ± 0.03 gh | −7.72 | 1.84 ± 0.22 f | 0.52 ± 0.05 ij | −71.69 | 1.67 ± 0.16 ijk | 1.70 ± 0.07 ij | 1.92 | 81.59 ± 0.38 ab | 46.67 ± 0.10 l | −42.80 |
H10 | 3.20 ± 0.01 fg | 2.71 ± 0.29 ijk | −15.09 | 2.27 ± 0.06 cd | 0.44 ± 0.00 j | −80.61 | 2.49 ± 0.08 ab | 2.56 ± 0.15 a | 2.82 | 56.65 ± 0.68 j | 32.38 ± 0.04 m | −42.84 |
H11 | 3.40 ± 0.02 bcde | 2.61 ± 0.04 k | −23.35 | 2.38 ± 0.02 bc | 0.60 ± 0.0 hi | −74.88 | 2.35 ± 0.19 bc | 2.38 ± 0.08 abc | 1.45 | 70.91 ± 0.16 efg | 44.33 ± 0.07 l | −37.48 |
H12 | 3.25 ± 0.05 ef | 2.67 ± 0.04 jk | −17.78 | 2.45 ± 0.05 b | 0.72 ± 0.02 gh | −70.66 | 2.30 ± 0.02 bc | 2.32 ± 0.06 bc | 1.05 | 52.89 ± 0.12 k | 45.18 ± 0.12 l | −14.58 |
Average | 3.42 ± 0.25 | 2.86 ± 0.23 | −16.12 | 2.23 ± 0.29 | 0.62 ± 0.08 | −71.94 | 2.06 ± 0.31 | 2.11 ± 0.31 | 2.24 | 68.84 ± 14.11 | 58.41 ± 14.00 | 63.44 |
−25.18 |
Hybrid | Lutein + Zeaxanthin | β-Carotene | ||||
---|---|---|---|---|---|---|
Kernels | Flakes | % Change | Kernels | Flakes | % Change | |
H1 | 24.90 ± 0.43 i | 13.43 ± 0.04 k | −46.04 | 1.03 ± 0.02 i | 1.26 ± 0.03 g | 22.11 |
H2 | 45.14 ± 0.67 b | 13.24 ± 0.04 kl | −70.67 | 1.74 ± 0.03 c | 2.05 ± 0.06 b | 17.68 |
H3 | 26.28 ± 0.62 h | 14.22 ± 0.13 k | −45.91 | 0.72 ± 0.03 l | 0.51 ± 0.01 m | −29.21 |
H4 | 32.58 ± 1.62 f | 11.15 ± 0.01 m | −65.77 | 0.85 ± 0.05 k | 1.64 ± 0.04 d | 92.07 |
H5 | 31.54 ± 1.73 f | 12.14 ± 0.03 lm | −61.51 | 1.14 ± 0.07 h | 1.14 ± 0.03 h | 0.68 |
H6 | 28.06 ± 0.15 g | 14.22 ± 0.07 jk | −49.32 | 1.05 ± 0.01 i | 0.87 ± 0.02 k | −16.38 |
H7 | 50.87 ± 0.61 a | 12.08 ± 0.03 lm | −76.25 | 1.42 ± 0.02 ef | 2.48 ± 0.07 a | 74.23 |
H8 | 40.57 ± 0.74 d | 14.12 ± 0.18 k | −65.19 | 1.02 ± 0.02 ij | 0.82 ± 0.02 k | −19.45 |
H9 | 34.72 ± 0.06 e | 14.27 ± 0.04 jk | −58.91 | 1.98 ± 0.01 b | 1.57 ± 0.04 d | −20.67 |
H10 | 43.24 ± 0.23 c | 13.35 ± 0.03 k | −69.12 | 1.36 ± 0.01 f | 0.96 ± 0.02 j | −29.76 |
H11 | 43.64 ± 0.12 c | 15.40 ± 0.05 j | −64.72 | 1.46 ± 0.04 e | 1.00 ± 0.02 ij | −31.39 |
H12 | 35.72 ± 0.09 e | 28.86 ± 0.27 g | −19.19 | 1.15 ± 0.05 h | 1.20 ± 0.03 gh | 4.67 |
Average | 36.44 ± 8.25 | 14.71 ± 4.61 | −57.72 | 1.24 ± 0.37 | 1.29 ± 0.56 | 35.24 |
−24.48 |
Hybrid | δ-T | β + γ-T | α-T | ||||||
---|---|---|---|---|---|---|---|---|---|
Kernels | Flakes | % Change | Kernels | Flakes | % Change | Kernels | Flakes | % Change | |
H1 | 1.33 ± 0.01 j | 0.61 ± 0.01 p | −53.98 | 16.94 ± 0.15 ef | 8.44 ± 0.48 l | −50.18 | 0.85 ± 0.02 p | 1.74 ± 0.03 k | 105.01 |
H2 | 1.46 ± 0.01 gh | 1.09 ± 0.02 l | −25.13 | 19.07 ± 0.13 b | 14.45 ± 0.18 i | −24.19 | 1.64 ± 0.04 l | 1.94 ± 0.02 j | 17.75 |
H3 | 1.35 ± 0.03 ij | 0.96 ± 0.02 mn | −28.61 | 18.13 ± 0.25 c | 13.32 ± 0.26 jk | −26.54 | 2.92 ± 0.07 b | 3.03 ± 0.06 a | 3.97 |
H4 | 1.70 ± 0.01 e | 1.20 ± 0.02 k | −29.05 | 17.77 ± 0.12 cd | 14.26 ± 0.20 i | −19.76 | 2.14 ± 0.01 h | 2.58 ± 0.04 e | 20.83 |
H5 | 0.99 ± 0.01 m | 0.91 ± 0.01 n | −8.22 | 15.25 ± 0.19 h | 13.40 ± 0.19 j | −12.15 | 2.20 ± 0.03 h | 2.07 ± 0.03 i | −5.75 |
H6 | 2.19 ± 0.02 a | 1.86 ± 0.03 c | −15.03 | 19.70 ± 0.17 a | 16.85 ± 0.24 f | −14.49 | 1.89 ± 0.03 j | 1.51 ± 0.01 m | −20.28 |
H7 | 1.74 ± 0.05 de | 1.40 ± 0.02 hi | −19.15 | 17.61 ± 0.52 cd | 13.17 ± 0.21 jk | −25.21 | 1.33 ± 0.02 n | 1.48 ± 0.04 m | 10.98 |
H8 | 1.51 ± 0.04 fg | 1.40 ± 0.02 hi | −7.23 | 17.29 ± 0.26 def | 16.09 ± 0.22 g | −6.92 | 3.05 ± 0.04 a | 2.15 ± 0.05 h | −29.56 |
H9 | 1.95 ± 0.04 b | 1.93 ± 0.02 b | −0.81 | 12.89 ± 0.15 jk | 17.46 ± 0.16 de | 35.46 | 1.01 ± 0.01 o | 2.69 ± 0.05 d | 167.23 |
H10 | 1.78 ± 0.03 d | 1.56 ± 0.01 f | −12.41 | 17.30 ± 0.18 def | 15.44 ± 0.12 h | −10.75 | 1.55 ± 0.01 m | 1.49 ± 0.03 m | −3.72 |
H11 | 0.95 ± 0.02 mn | 0.93 ± 0.01 mn | −2.38 | 15.32 ± 0.29 h | 13.99 ± 0.19 i | −8.68 | 2.32 ± 0.04 g | 2.06 ± 0.05 i | −11.23 |
H12 | 0.94 ± 0.06 n | 0.69 ± 0.01 o | −26.93 | 15.46 ± 0.73 h | 12.75 ± 0.16 k | −17.51 | 2.46 ± 0.03 f | 2.82 ± 0.07 c | 14.58 |
Average | 1.49 ± 0.40 | 1.21 ± 0.43 | −53.98 | 16.89 ± 1.88 | 14.13 ± 2.35 | 35.46 | 1.95 ± 0.70 | 2.13 ± 0.54 | 48.62 |
−19.67 | −14.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vukadinović, J.; Srdić, J.; Kravić, N.; Mladenović Drinić, S.; Simić, M.; Brankov, M.; Dragičević, V. Assessment of Popcorn’s Bioactive Status in Response to Popping. Molecules 2024, 29, 807. https://doi.org/10.3390/molecules29040807
Vukadinović J, Srdić J, Kravić N, Mladenović Drinić S, Simić M, Brankov M, Dragičević V. Assessment of Popcorn’s Bioactive Status in Response to Popping. Molecules. 2024; 29(4):807. https://doi.org/10.3390/molecules29040807
Chicago/Turabian StyleVukadinović, Jelena, Jelena Srdić, Natalija Kravić, Snežana Mladenović Drinić, Milena Simić, Milan Brankov, and Vesna Dragičević. 2024. "Assessment of Popcorn’s Bioactive Status in Response to Popping" Molecules 29, no. 4: 807. https://doi.org/10.3390/molecules29040807
APA StyleVukadinović, J., Srdić, J., Kravić, N., Mladenović Drinić, S., Simić, M., Brankov, M., & Dragičević, V. (2024). Assessment of Popcorn’s Bioactive Status in Response to Popping. Molecules, 29(4), 807. https://doi.org/10.3390/molecules29040807