Investigating the Catalytic Influence of Boron on Ni-Co/Ca Catalysts for Improved Syngas Generation from Rice Straw Pyrolysis
Abstract
:1. Introduction
2. Results
2.1. Characterizations of Catalysts
2.1.1. XRD
2.1.2. N2 Adsorption/Desorption
2.1.3. SEM
2.1.4. H2-TPR
2.2. Analysis of Influencing Factors
2.2.1. Ni/Co Ratio
2.2.2. Residence Time
2.2.3. Calcination Temperature
2.2.4. Addition of B
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalytic Pyrolysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, M.W. A Review of Dolomite Catalyst for Biomass Gasification Tar Removal. Fuel 2020, 267, 117095. [Google Scholar] [CrossRef]
- Maitlo, G.; Mahar, R.; Bhatti, Z.A.; Unar, I. A Comprehensive Literature Review of Thermochemical Conversion of Biomass for Syngas Production and Associated Challenge. Mehran Univ. Res. J. Eng. Technol. 2019, 38, 495–512. [Google Scholar] [CrossRef]
- Alptekin, F.M.; Celiktas, M.S. Review on Catalytic Biomass Gasification for Hydrogen Production as a Sustainable Energy Form and Social, Technological, Economic, Environmental, and Political Analysis of Catalysts. ACS Omega 2022, 7, 24918–24941. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.A.; Koohi-Fayegh, S. The Prospects for Hydrogen as an Energy Carrier: An Overview of Hydrogen Energy and Hydrogen Energy Systems. Energy Ecol. Environ. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Report on the Comprehensive Utilization of National Crop Straw. Available online: http://www.gov.cn/xinwen/2022-10/10/content_5717116.htm (accessed on 10 March 2023).
- Li, J.; Xu, K.; Yao, X.; Chen, S. Prediction and Optimization of Syngas Production from Steam Gasification: Numerical Study of Operating Conditions and Biomass Composition. Energy Convers. Manag. 2021, 236, 114077. [Google Scholar] [CrossRef]
- Samimi, F.; Marzoughi, T.; Rahimpour, M.R. Energy and Exergy Analysis and Optimization of Biomass Gasification Process for Hydrogen Production (Based on Air, Steam and Air/Steam Gasifying Agents). Int. J. Hydrogen Energy 2020, 45, 33185–33197. [Google Scholar] [CrossRef]
- Karanwal, N.; Kurniawan, R.G.; Park, J.; Verma, D.; Oh, S.; Kim, S.M.; Kwak, S.K.; Kim, J. One-Pot, Cascade Conversion of Cellulose to γ-Valerolactone over a Multifunctional Ru–Cu/Zeolite-Y Catalyst in Supercritical Methanol. Appl. Catal. B Environ. 2022, 314, 121466. [Google Scholar] [CrossRef]
- Xu, T.; Zheng, X.; Xu, J.; Wu, Y. Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Nano-NiO/Al2O3 Catalyst. Catalysts 2022, 12, 256. [Google Scholar] [CrossRef]
- Ramos, A.; Rouboa, A. Syngas Production Strategies from Biomass Gasification: Numerical Studies for Operational Conditions and Quality Indexes. Renew. Energy 2020, 155, 1211–1221. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, H.; Zhang, H.; Zhong, C.; Wang, J.; Zhu, D.; Guan, H.; Sun, L.; Yang, S.; Chen, L. Study on Hydrogen-Rich Gas Production by Biomass Catalytic Pyrolysis Assisted with Magnetic Field. J. Anal. Appl. Pyrolysis 2021, 157, 105227. [Google Scholar] [CrossRef]
- Raza, M.; Inayat, A.; Ahmed, A.; Jamil, F.; Ghenai, C.; Naqvi, S.R.; Shanableh, A.; Ayoub, M.; Waris, A.; Park, Y.-K. Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing. Sustainability 2021, 13, 11061. [Google Scholar] [CrossRef]
- Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. Energy Fuels 2005, 19, 2098–2106. [Google Scholar] [CrossRef]
- Ellison, C.R.; Boldor, D. Mild Upgrading of Biomass Pyrolysis Vapors via Ex-Situ Catalytic Pyrolysis over an Iron-Montmorillonite Catalyst. Fuel 2021, 291, 120226. [Google Scholar] [CrossRef]
- Yue, W.; Ma, X.; Yu, Z.; Liu, H.; Li, M.; Lu, X. Ni-CaO Bifunctional Catalyst for Biomass Catalytic Pyrolysis to Produce Hydrogen-Rich Gas. J. Anal. Appl. Pyrolysis 2023, 169, 105872. [Google Scholar] [CrossRef]
- Li, Q.; Ji, S.; Hu, J.; Jiang, S. Catalytic Steam Reforming of Rice Straw Biomass to Hydrogen-Rich Syngas over Ni-Based Catalysts. Chin. J. Catal. 2013, 34, 1462–1468. [Google Scholar] [CrossRef]
- Arregi, A.; Lopez, G.; Amutio, M.; Barbarias, I.; Santamaria, L.; Bilbao, J.; Olazar, M. Regenerability of a Ni Catalyst in the Catalytic Steam Reforming of Biomass Pyrolysis Volatiles. J. Ind. Eng. Chem. 2018, 68, 69–78. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, G. Modulating and Controlling Active Species Dispersion over Ni–Co Bimetallic Catalysts for Enhancement of Hydrogen Production of Ethanol Steam Reforming. Int. J. Hydrogen Energy 2016, 41, 3349–3362. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Chen, L.; Sun, L.; Si, H.; Chen, G. High Quality Fuel Gas from Biomass Pyrolysis with Calcium Oxide. Bioresour. Technol. 2014, 156, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Zhou, W.; Zhang, X.; Zhao, B.; Chen, L.; Sun, L.; Ding, W.; Yang, S.; Guan, H.; Bai, B. Gas Production by Catalytic Pyrolysis of Herb Residues Using Ni/CaO Catalysts. J. Anal. Appl. Pyrolysis 2018, 130, 216–223. [Google Scholar] [CrossRef]
- Lu, Q.; Li, W.; Zhang, X.; Liu, Z.; Cao, Q.; Xie, X.; Yuan, S. Experimental Study on Catalytic Pyrolysis of Biomass over a Ni/Ca-Promoted Fe Catalyst. Fuel 2020, 263, 116690. [Google Scholar] [CrossRef]
- San-José-Alonso, D.; Juan-Juan, J.; Illán-Gómez, M.J.; Román-Martínez, M.C. Ni, Co and Bimetallic Ni–Co Catalysts for the Dry Reforming of Methane. Appl. Catal. A Gen. 2009, 371, 54–59. [Google Scholar] [CrossRef]
- Santamaria, L.; Lopez, G.; Arregi, A.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. Catalytic Steam Reforming of Biomass Fast Pyrolysis Volatiles over Ni–Co Bimetallic Catalysts. J. Ind. Eng. Chem. 2020, 91, 167–181. [Google Scholar] [CrossRef]
- Wu, R.-C.; Tang, C.-W.; Huang, H.-H.; Wang, C.-C.; Chang, M.-B.; Wang, C.-B. Effect of Boron Doping and Preparation Method of Ni/Ce0.5Zr0.5O2 Catalysts on the Performance for Steam Reforming of Ethanol. Int. J. Hydrogen Energy 2019, 44, 14279–14289. [Google Scholar] [CrossRef]
- Singh, S.; Nguyen, T.D.; Siang, T.J.; Phuong, P.T.T.; Huy Phuc, N.H.; Truong, Q.D.; Lam, S.S.; Vo, D.-V.N. Boron-Doped Ni/SBA-15 Catalysts with Enhanced Coke Resistance and Catalytic Performance for Dry Reforming of Methane. J. Energy Inst. 2020, 93, 31–42. [Google Scholar] [CrossRef]
- Yao, D.; Yang, H.; Chen, H.; Williams, P.T. Co-Precipitation, Impregnation and so-Gel Preparation of Ni Catalysts for Pyrolysis-Catalytic Steam Reforming of Waste Plastics. Appl. Catal. B Environ. 2018, 239, 565–577. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Hong, Q.; Lin, J.; Dautzenberg, F.M. Catalytic Partial Oxidation of Methane to Syngas over Ca-Decorated-Al2O3-Supported Ni and NiB Catalysts. Appl. Catal. A Gen. 2005, 292, 295–304. [Google Scholar] [CrossRef]
- Fouskas, A.; Kollia, M.; Kambolis, A.; Papadopoulou, C.; Matralis, H. Boron-Modified Ni/Al2O3 Catalysts for Reduced Carbon Deposition during Dry Reforming of Methane. Appl. Catal. A Gen. 2014, 474, 125–134. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, Y.; Pan, Y.; Liu, X.; Zhang, F.; Yang, H.; Liu, Q.; Liu, Z. Hydrogenation of CaCO3 to CH4 catalyzed by NiCO3. Chem. Eng. J. 2024, 485, 150012. [Google Scholar] [CrossRef]
- Hou, Z.; Chen, Y.; Wang, C.; Ma, X.; Yang, H.; Wang, W.; Zhang, Y. The Promotional Effects of Mn on Ni/SiO2 Catalysts for CO Methanation. React. Kinet. Mech. Catal. 2023, 136, 587–601. [Google Scholar] [CrossRef]
- Xu, J.; Chen, L.; Tan, K.; Borgna, A.; Saeys, M. Effect of Boron on the Stability of Ni Catalysts during Steam Methane Reforming. J. Catal. 2009, 261, 158–165. [Google Scholar] [CrossRef]
- Guo, J.; Lou, H.; Zhao, H.; Wang, X.; Zheng, X. Novel Synthesis of High Surface Area MgAl2O4 Spinel as Catalyst Support. Mater. Lett. 2004, 58, 1920–1923. [Google Scholar] [CrossRef]
- Zheng, J.; Xia, Z.; Li, J.; Lai, W.; Yi, X.; Chen, B.; Fang, W.; Wan, H. Promoting Effect of Boron with High Loading on Ni-Based Catalyst for Hydrogenation of Thiophene-Containing Ethylbenzene. Catal. Commun. 2012, 21, 18–21. [Google Scholar] [CrossRef]
- Santoro, M.; Luisetto, I.; Tuti, S.; Licoccia, S.; Romano, C.; Notargiacomo, A.; Di Bartolomeo, E. Nickel-Based Structured Catalysts for Indirect Internal Reforming of Methane. Appl. Sci. 2020, 10, 3083. [Google Scholar] [CrossRef]
- Tipo, R.; Tippayawong, N.; Chaichana, C.; Chimupala, Y.; Chaiklangmuang, S. Characterizations of Ni-Loaded Lignite Char Catalysts and Their Performance Enhancements to Catalytic Steam Gasification of Coal. J. Energy Inst. 2022, 105, 53–71. [Google Scholar] [CrossRef]
- Dong, Z.; Yang, H.; Liu, Z.; Chen, P.; Chen, Y.; Wang, X.; Chen, H. Effect of Boron-Based Additives on Char Agglomeration and Boron Doped Carbon Microspheres Structure from Lignin Pyrolysis. Fuel 2021, 303, 121237. [Google Scholar] [CrossRef]
- Scaccia, S.; Della Seta, L.; Mirabile Gattia, D.; Vanga, G. Catalytic Performance of Ni/CaO-Ca12Al14O33 Catalyst in the Green Synthesis Gas Production via CO2 Reforming of CH4. J. CO2 Util. 2021, 45, 101447. [Google Scholar] [CrossRef]
- Piyapaka, K.; Tungkamani, S.; Phongaksorn, M. Effect of Strong Metal Support Interactions of Supported Ni and Ni-Co Catalyst on Metal Dispersion and Catalytic Activity toward Dry Methane Reforming Reaction. Appl. Sci. Eng. Prog. 2016, 9. [Google Scholar] [CrossRef]
- Li, X.; Ai, J.; Li, W.; Li, D. Ni-Co Bimetallic Catalyst for CH4 Reforming with CO2. Front. Chem. Eng. China 2010, 4, 476–480. [Google Scholar] [CrossRef]
- Lin, J.; Ma, C.; Luo, J.; Kong, X.; Xu, Y.; Ma, G.; Wang, J.; Zhang, C.; Li, Z.; Ding, M. Preparation of Ni Based Mesoporous Al2O3 Catalyst with Enhanced CO2 Methanation Performance. RSC Adv. 2019, 9, 8684–8694. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhou, N.; Dai, L.; Deng, W.; Liu, C.; Cheng, Y.; Liu, Y.; Cobb, K.; Chen, P.; et al. Applications of Calcium Oxide–Based Catalysts in Biomass Pyrolysis/Gasification—A Review. J. Clean. Prod. 2021, 291, 125826. [Google Scholar] [CrossRef]
- Gao, R.; Zhu, L.; Zhou, M.; Wang, Z.; He, Y.; Qin, Z.; Li, J. Effective Catalytic of Rice Straw Pyrolysis over Ni/CaZnAl Catalyst for Producing Hydrogen-Rich Syngas. BioEnergy Res. 2022, 16, 1706–1717. [Google Scholar] [CrossRef]
- Lan, K.; Qin, Z.; Li, Z.; Hu, R.; Xu, X.; He, W.; Li, J. Syngas Production by Catalytic Pyrolysis of Rice Straw over Modified Ni-Based Catalyst. BioResources 2020, 15, 2293–2309. [Google Scholar] [CrossRef]
- Chai, Y.; Wang, M.; Gao, N.; Duan, Y.; Li, J. Experimental Study on Pyrolysis/Gasification of Biomass and Plastics for H2 Production under New Dual-Support Catalyst. Chem. Eng. J. 2020, 396, 125260. [Google Scholar] [CrossRef]
- Díez, D.; Urueña, A.; Antolín, G. Investigation of Ni–Fe–Cu-Layered Double Hydroxide Catalysts in Steam Reforming of Toluene as a Model Compound of Biomass Tar. Processes 2021, 9, 76. [Google Scholar] [CrossRef]
- Abdoulmoumine, N.; Adhikari, S.; Kulkarni, A.; Chattanathan, S. A Review on Biomass Gasification Syngas Cleanup. Appl. Energy 2015, 155, 294–307. [Google Scholar] [CrossRef]
- Santamaria, L.; Lopez, G.; Arregi, A.; Amutio, M.; Artetxe, M.; Bilbao, J.; Olazar, M. Effect of Calcination Conditions on the Performance of Ni/MgO–Al2O3 Catalysts in the Steam Reforming of Biomass Fast Pyrolysis Volatiles. Catal. Sci. Technol. 2019, 9, 3947–3963. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.; Li, X.; Yang, X.; Wu, Y.; Li, S.; Ye, Y.; Wang, D.; Wang, D.; Zheng, Z. Calcination Temperature Induced Structural Change of Red Mud and Its Enhanced Catalytic Performance for Hydrocarbon-Based Biofuels Production. Fuel Process. Technol. 2022, 233, 107316. [Google Scholar] [CrossRef]
- Ma, L.; Li, J.; Arandiyan, H.; Shi, W.; Fu, L. Influence of Calcination Temperature on Fe/HBEA Catalyst for the Selective Catalytic Reduction of NOx with NH3. Catal. Today 2012, 184, 145–152. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, X. Metal-Free Boron-Containing Heterogeneous Catalysts. Angew. Chem. Int. Ed. 2017, 56, 15506–15518. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Yang, H.; Liu, Z.; Chen, P.; Chen, Y.; Wang, X.; Chen, H.; Wang, S. Pyrolysis of Boron-Crosslinked Lignin: Influence on Lignin Softening and Product Properties. Bioresour. Technol. 2022, 355, 127218. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, Y.; Xiong, T.; Qin, Z.; He, Y.; Li, J. Development and Application of Ni–M/Sepiolite (M=Ce, Pr, and La) Catalysts in Biomass Pyrolysis for Syngas Production. Energy Rep. 2022, 8, 5957–5964. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Li, B.; Li, Z.; He, Y.; Qin, Z.; Gao, R. Preparation of Ni-La/Al2O3-CeO2-Bamboo Charcoal Catalyst and Its Application in Co-pyrolysis of Straw and Plastic for Hydrogen Production. BioEnergy Res. 2021, 15, 1501–1514. [Google Scholar] [CrossRef]
Samples | Fresh 0% B (nm) | Used 0% B (nm) | Fresh 4% B (nm) | Used 4% B (nm) | Fresh 10% B (nm) | Used 10% B (nm) |
---|---|---|---|---|---|---|
NiO | 21.4 | 65.8 | 5.0 | - | - | - |
Ni | - | 31.7 | 8.8 | 13.2 | 10.1 | 14.8 |
CoO | 20.7 | 28.5 | 4.7 | - | - | - |
Co | - | 36.9 | 6.8 | 19.4 | 11.2 | 16.0 |
CaO | - | 66.4 | - | - | - | - |
Catalyst | SBET (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
10% B | 29.0 | 0.11 | 7.3 |
4% B | 20.4 | 0.05 | 6.9 |
Used 10% B | 33.8 | 0.06 | 6.4 |
Used 4% B | 53.2 | 0.09 | 6.3 |
Sample | Ultimate Analysis (wt.%) | Proximate Analysis (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|---|
C | H | O * | N | S | M | A | V | FC | |
Rice straw | 39.67 | 5.73 | 39.51 | 0.84 | 0.16 | 4.21 | 14.09 | 76.33 | 5.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, L.; Li, Y. Investigating the Catalytic Influence of Boron on Ni-Co/Ca Catalysts for Improved Syngas Generation from Rice Straw Pyrolysis. Molecules 2024, 29, 1730. https://doi.org/10.3390/molecules29081730
Wang J, Wang L, Li Y. Investigating the Catalytic Influence of Boron on Ni-Co/Ca Catalysts for Improved Syngas Generation from Rice Straw Pyrolysis. Molecules. 2024; 29(8):1730. https://doi.org/10.3390/molecules29081730
Chicago/Turabian StyleWang, Jiaxiang, Luqi Wang, and Yueyao Li. 2024. "Investigating the Catalytic Influence of Boron on Ni-Co/Ca Catalysts for Improved Syngas Generation from Rice Straw Pyrolysis" Molecules 29, no. 8: 1730. https://doi.org/10.3390/molecules29081730
APA StyleWang, J., Wang, L., & Li, Y. (2024). Investigating the Catalytic Influence of Boron on Ni-Co/Ca Catalysts for Improved Syngas Generation from Rice Straw Pyrolysis. Molecules, 29(8), 1730. https://doi.org/10.3390/molecules29081730