Sustainable Polyphenol-Rich Extracts from Agricultural By-Products: Infectivity Inhibition Potential for Human Coronavirus 229E
Abstract
:1. Introduction
2. Results
2.1. Characterisation of Extracts
2.2. Inhibition of Viral Infectivity
2.3. Inhibition of Viral Replication
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Extraction of Polyphenols by Subcritical Water Extraction
4.3. Enrichment in Polyphenols Using Adsorption Resin Chromatography
4.4. Characterisation of Polyphenol Extracts
4.4.1. Total Phenolic Content (TPC) Determined by the Folin–Ciocalteu Method
4.4.2. Determination of the Antioxidant Activity by the DPPH Method
4.4.3. Quantitation of Major Polyphenols by UPLC-MS-MS
4.5. Cell Culture and Viral Strain
4.6. Viral Infectivity Inhibition Experiments
4.7. Viral Replication Inhibition Experiments
4.8. Determination of Cell Viability by the MTT Assay
4.9. Data Calculations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATCC | American Type Culture Collection |
COVID-19 | Coronavirus disease 2019 |
CPE | Cytopathic effect |
DMSO | Dimethyl sulfoxide |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
GAE | Gallic acid equivalent |
EC50 | Half maximal effective concentration |
EMEM | Eagle’s minimum essential medium |
FBS | Fetal bovine serum |
MERS-CoV | Middle East respiratory syndrome coronavirus |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
PBS | Phosphate-buffered saline |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SEM | Standard error of the mean |
SWE | Subcritical water extraction |
TCID50 | Tissue culture infectious dose 50% |
TPC | Total phenolic content |
UPLC-MS-MS | Ultra-high performance liquid chromatography coupled with mass spectrometry |
References
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M. Olive Mill and Winery Wastes as Viable Sources of Bioactive Compounds: A Study on Polyphenols Recovery. Antioxidants 2020, 9, 1074. [Google Scholar] [CrossRef]
- Agriculture, Forestry and Fishery Statistics, 2018th ed.Publications Office of the European Union: Luxembourg, 2018. [CrossRef]
- Coman, V.; Teleky, B.E.; Mitrea, L.; Martău, G.A.; Szabo, K.; Călinoiu, L.F.; Vodnar, D.C. Bioactive Potential of Fruit and Vegetable Wastes. Adv. Food Nutr. Res. 2020, 91, 157–225. [Google Scholar] [CrossRef] [PubMed]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the Extraction Method on the Recovery of Bioactive Phenolic Compounds from Food Industry By-Products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef] [PubMed]
- Chaji, S.; Capaldi, G.; Gallina, L.; Grillo, G.; Boffa, L.; Cravotto, G. Semi-Industrial Ultrasound-Assisted Extraction of Grape-Seed Proteins. J. Sci. Food Agric. 2024, 104, 5689–5697. [Google Scholar] [CrossRef]
- Gallego, R.; Bueno, M.; Herrero, M. Sub- and Supercritical Fluid Extraction of Bioactive Compounds from Plants, Food-by-Products, Seaweeds and Microalgae—An Update. TrAC Trends Anal. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent Advances in the Extraction of Bioactive Compounds with Subcritical Water: A Review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Wijngaard, H.; Hossain, M.B.; Rai, D.K.; Brunton, N. Techniques to Extract Bioactive Compounds from Food By-Products of Plant Origin. Food Res. Int. 2012, 46, 505–513. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, R.; Dar, Z.; Bijarnia, R.K.; Dhingra, N.; Kaur, T. Genetic Comparison among Various Coronavirus Strains for the Identification of Potential Vaccine Targets of SARS-CoV2. Infect. Genet. Evol. 2021, 89, 104490. [Google Scholar] [CrossRef]
- Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; et al. A Familial Cluster of Pneumonia Associated with the 2019 Novel Coronavirus Indicating Person-to-Person Transmission: A Study of a Family Cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef]
- Vassilara, F.; Spyridaki, A.; Pothitos, G.; Deliveliotou, A.; Papadopoulos, A. A Rare Case of Human Coronavirus 229E Associated with Acute Respiratory Distress Syndrome in a Healthy Adult. Case Rep. Infect. Dis. 2018, 2018, 6796839. [Google Scholar] [CrossRef]
- Kamboj, A.; Saluja, A.K.; Kumar, M.; Atri, P. Antiviral Activity of Plant Polyphenols. J. Pharm. Res. 2012, 5, 2402–2412. [Google Scholar]
- Luque-Rodríguez, J.M.; Luque de Castro, M.D.; Pérez-Juan, P. Dynamic Superheated Liquid Extraction of Anthocyanins and Other Phenolics from Red Grape Skins of Winemaking Residues. Bioresour. Technol. 2007, 98, 2705–2713. [Google Scholar] [CrossRef]
- Moudache, M.; Colon, M.; Nerín, C.; Zaidi, F. Phenolic Content and Antioxidant Activity of Olive By-Products and Antioxidant Film Containing Olive Leaf Extract. Food Chem. 2016, 212, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Di Petrillo, A.; Orrù, G.; Fais, A.; Fantini, M.C. Quercetin and Its Derivates as Antiviral Potentials: A Comprehensive Review. Phytother. Res. 2022, 36, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Neamati, N.; Zhao, H.; Kiryu, Y.; Turpin, J.A.; Aberham, C.; Strebel, K.; Kohn, K.; Witvrouw, M.; Pannecouque, C.; et al. Chicoric Acid Analogues as HIV-1 Integrase Inhibitors. J. Med. Chem. 1999, 42, 1401–1414. [Google Scholar] [CrossRef]
- Pasquereau, S.; Nehme, Z.; Haidar Ahmad, S.; Daouad, F.; Van Assche, J.; Wallet, C.; Schwartz, C.; Rohr, O.; Morot-Bizot, S.; Herbein, G. Resveratrol Inhibits HCoV-229E and SARS-CoV-2 Coronavirus Replication In Vitro. Viruses 2021, 13, 354. [Google Scholar] [CrossRef]
- Jang, M.; Park, R.; Park, Y.I.; Cha, Y.E.; Yamamoto, A.; Lee, J.I.; Park, J. EGCG, a Green Tea Polyphenol, Inhibits Human Coronavirus Replication in Vitro. Biochem. Biophys. Res. Commun. 2021, 547, 23–28. [Google Scholar] [CrossRef]
- Subhadra, B.; Agrawal, R.; Pal, V.K.; Chenine, A.L.; Mattathil, J.G.; Singh, A. Significant Broad-Spectrum Antiviral Activity of Bi121 against Different Variants of SARS-CoV-2. Viruses 2023, 15, 1299. [Google Scholar] [CrossRef]
- Ou, C.; Shi, N.; Yang, Q.; Zhang, Y.; Wu, Z.; Wang, B.; Compans, R.W.; He, C. Protocatechuic Acid, a Novel Active Substance against Avian Influenza Virus H9N2 Infection. PLoS ONE 2014, 9, e111004. [Google Scholar] [CrossRef]
- Delgado-Roche, L.; Mesta, F. Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection. Arch. Med. Res. 2020, 51, 384–387. [Google Scholar] [CrossRef]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. Polyphenols and Their Potential Role to Fight Viral Diseases: An Overview. Sci. Total Environ. 2021, 801, 149719. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.K.; Lee, J.H.; Lim, S.M.; Lee, K.A.; Kim, Y.B.; Chang, P.S.; Paik, H.D. Short Communication: Antiviral Activity of Subcritical Water Extract of Brassica Juncea against Influenza Virus A/H1N1 in Nonfat Milk. J. Dairy Sci. 2014, 97, 5383–5386. [Google Scholar] [CrossRef] [PubMed]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; Rittà, M.; Donalisio, M.; Mariatti, F.; You, S.G.; Lembo, D.; Cravotto, G. Effect of Different Non-Conventional Extraction Methods on the Antibacterial and Antiviral Activity of Fucoidans Extracted from Nizamuddinia Zanardinii. Int. J. Biol. Macromol. 2019, 124, 131–137. [Google Scholar] [CrossRef] [PubMed]
- De Wilde, A.H.; Jochmans, D.; Posthuma, C.C.; Zevenhoven-Dobbe, J.C.; Van Nieuwkoop, S.; Bestebroer, T.M.; Van Den Hoogen, B.G.; Neyts, J.; Snijder, E.J. Screening of an FDA-Approved Compound Library Identifies Four Small-Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Replication in Cell Culture. Antimicrob. Agents Chemother. 2014, 58, 4875–4884. [Google Scholar] [CrossRef]
- Persoons, L.; Vanderlinden, E.; Vangeel, L.; Wang, X.; Do, N.D.T.; Foo, S.Y.C.; Leyssen, P.; Neyts, J.; Jochmans, D.; Schols, D.; et al. Broad Spectrum Anti-Coronavirus Activity of a Series of Anti-Malaria Quinoline Analogues. Antiviral Res. 2021, 193, 105127. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Sample | Feedstock | TPC ± SD (mg GAE/g) | DPPH ± SD (mg GAE/g) |
---|---|---|---|
PLX 390 | Red onion peels | 202.36 ± 3.10 | 62.58 ± 2.72 |
PLX 397 | Vineyard prunings | 82.02 ± 0.62 | 32.01 ± 4.55 |
PLX 386 | Chicory leaves | 210.35 ± 2.83 | 102.59 ± 6.12 |
PLX 411 | Olive prunings | 206.55 ± 4.77 | 38.695 ± 3.54 |
PLX 390—Red Onion Peels | PLX 397—Vineyard Prunings | ||
Metabolite | Concentration (mg/g) | Metabolite | Concentration (mg/g) |
Protocatechuic acid | 12.55 ± 1.05 | Protocatechuic acid | 0.86 ± 0.01 |
Quercetin | 42.70 ± 4.01 | Gallic acid | 0.89 ± 0.01 |
Isorhamnetin | 0.43 ± 0.05 | Resveratrol | 3.77 ± 0.44 |
Tamarixetin | 0.83 ± 0.04 | Piceatannol | 0.17 ± 0.01 |
Quercetine-7-O-glucoside | 0.80 ± 0.02 | Epicatechin | 0.25 ± 0.03 |
Isoquercitrin | 0.05 ± 0.01 | Catechin | 0.52 ± 0.06 |
Spireoside | 12.78 ± 1.78 | Polydatin | 0.11 ± 0.01 |
PLX 386—Chicory Leaves | PLX 411—Olive Prunings | ||
Metabolite | Concentration (mg/g) | Metabolite | Concentration (mg/g) |
Chicoric acid | 30.97 ± 1.74 | Oleuropein | 63.50 ± 7.55 |
Caftaric acid | 10.66 ± 0.16 | Verbascoside | 21.94 ± 0.89 |
Caffeic acid | 8.63 ± 0.51 | Tyrosol | 40.72 ± 3.08 |
Luteolin-7-O-glucuronide | 2.98 ± 0.77 | Cynaroside | 2.65 ± 0.60 |
Luteolin | 0.44 ± 0.19 | Oleacein | 1.53 ± 0.23 |
Chlorogenic acid | 2.46 ± 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teichenné, J.; Tobajas, Y.; Leonard, K.; Tchoumtchoua, J.; Escoté, X. Sustainable Polyphenol-Rich Extracts from Agricultural By-Products: Infectivity Inhibition Potential for Human Coronavirus 229E. Molecules 2025, 30, 1806. https://doi.org/10.3390/molecules30081806
Teichenné J, Tobajas Y, Leonard K, Tchoumtchoua J, Escoté X. Sustainable Polyphenol-Rich Extracts from Agricultural By-Products: Infectivity Inhibition Potential for Human Coronavirus 229E. Molecules. 2025; 30(8):1806. https://doi.org/10.3390/molecules30081806
Chicago/Turabian StyleTeichenné, Joan, Yaiza Tobajas, Kevin Leonard, Job Tchoumtchoua, and Xavier Escoté. 2025. "Sustainable Polyphenol-Rich Extracts from Agricultural By-Products: Infectivity Inhibition Potential for Human Coronavirus 229E" Molecules 30, no. 8: 1806. https://doi.org/10.3390/molecules30081806
APA StyleTeichenné, J., Tobajas, Y., Leonard, K., Tchoumtchoua, J., & Escoté, X. (2025). Sustainable Polyphenol-Rich Extracts from Agricultural By-Products: Infectivity Inhibition Potential for Human Coronavirus 229E. Molecules, 30(8), 1806. https://doi.org/10.3390/molecules30081806