The Current State of Knowledge Regarding the Genetic Predisposition to Sports and Its Health Implications in the Context of the Redox Balance, Especially Antioxidant Capacity
Abstract
:1. Introduction
1.1. Exercise—Health Implications
1.2. Sports Genomics and the Redox Balance
2. Body Functions during Physical Exercise
2.1. Energy Metabolism
2.2. Energy Resources
3. The Effect of Physical Exercise on the Redox Balance
3.1. Mitochondrial Respiratory Chain and ROS Production
3.2. The Components of Oxidant–Antioxidant Balance
3.3. Exercise-Induced Changes in the Redox Balance
4. Genes Responsible for the Production of Antioxidant Capacity in the Context of Athletic Performance
4.1. Polymorphisms of Antioxidant Genes and Physical Performance
4.2. Antioxidant Adaptation as a Result of Exercise
5. Conclusions and Future Perspectives
5.1. Conclusions
5.2. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Świątkiewicz, I.; Wróblewski, M.; Nuszkiewicz, J.; Sutkowy, P.; Wróblewska, J.; Woźniak, A. The Role of Oxidative Stress Enhanced by Adiposity in Cardiometabolic Diseases. Int. J. Mol. Sci. 2023, 24, 6382. [Google Scholar] [CrossRef] [PubMed]
- Sutkowy, P.; Woźniak, A.; Mila-Kierzenkowska, C.; Szewczyk-Golec, K.; Wesołowski, R.; Pawłowska, M.; Nuszkiewicz, J. Physical Activity vs. Redox Balance in the Brain: Brain Health, Aging and Diseases. Antioxidants 2021, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Corbi, G.; Conti, V.; Troisi, J.; Colucci, A.; Manzo, V.; Di Pietro, P.; Calabrese, M.C.; Carrizzo, A.; Vecchione, C.; Ferrara, N.; et al. Cardiac Rehabilitation Increases SIRT1 Activity and β-Hydroxybutyrate Levels and Decreases Oxidative Stress in Patients with HF with Preserved Ejection Fraction. Oxidative Med. Cell. Longev. 2019, 2019, 7049237. [Google Scholar] [CrossRef] [PubMed]
- Belanger, M.J.; Rao, P.; Robbins, J.M. Exercise, Physical Activity, and Cardiometabolic Health. Cardiol. Rev. 2021, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Fedotovskaya, O.N. Sports genomics: Current state of knowledge and future directions. Cell. Mol. Exerc. Physiol. 2012, 1, e1. [Google Scholar] [CrossRef]
- Chávez-Guevara, I.A.; Hernández-Torres, R.P.; González-Rodríguez, E.; Ramos-Jiménez, A.; Amaro-Gahete, F.J. Biomarkers and genetic polymorphisms associated with maximal fat oxidation during physical exercise: Implications for metabolic health and sports performance. Eur. J. Appl. Physiol. 2022, 122, 1773–1795. [Google Scholar] [CrossRef] [PubMed]
- De Moor, M.H.M.; Spector, T.D.; Cherkas, L.F.; Falchi, M.; Hottenga, J.J.; Boomsma, D.I.; De Geus, E.J.C. Genome-Wide Linkage Scan for Athlete Status in 700 British Female DZ Twin Pairs. Twin Res. Hum. Genet. 2007, 10, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.S.; Hagberg, J.M.; Pérusse, L.; Rankinen, T.; Roth, S.M.; Wolfarth, B.; Bouchard, C. The Human Gene Map for Performance and Health-Related Fitness Phenotypes. Med. Sci. Sports Exerc. 2009, 41, 34–72. [Google Scholar] [CrossRef] [PubMed]
- Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Genes and Athletic Performance: The 2023 Update. Genes 2023, 14, 1235. [Google Scholar] [CrossRef]
- Montgomery, H.E.; Marshall, R.; Hemingway, H.; Myerson, S.; Clarkson, P.; Dollery, C.; Hayward, M.; Holliman, D.E.; Jubb, M.; World, M.; et al. Human gene for physical performance. Nature 1998, 393, 221–222. [Google Scholar] [CrossRef]
- Ahmetov, I.; Kulemin, N.; Popov, D.; Naumov, V.; Akimov, E.; Bravy, Y.; Egorova, E.; Galeeva, A.; Generozov, E.; Kostryukova, E.; et al. Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biol. Sport 2014, 32, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Drozdovska, S.B.; Lysenko, O.M.; Dosenko, V.E.; Ilyin, V.N. Dependence of Aerobic Performance of Athletes on Polymorphism of Genes. Centr. Eur. J. Sport Sci. Med. 2015, 9, 65–73. [Google Scholar]
- Végh, D.; Reichwalderová, K.; Slaninová, M.; Vavák, M. The Effect of Selected Polymorphisms of the ACTN3, ACE, HIF1A and PPARA Genes on the Immediate Supercompensation Training Effect of Elite Slovak Endurance Runners and Football Players. Genes 2022, 13, 1525. [Google Scholar] [CrossRef] [PubMed]
- A Rabelo, L.; Alenina, N.; Bader, M. ACE2–angiotensin-(1–7)–Mas axis and oxidative stress in cardiovascular disease. Hypertens. Res. 2010, 34, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Kim, T. Peroxisome-proliferator-activated receptors regulate redox signaling in the cardiovascular system. World J. Cardiol. 2013, 5, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Choi, D.-K. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway? Mediat. Inflamm. 2015, 2015, 584758. [Google Scholar] [CrossRef] [PubMed]
- Sutkowy, P.; Wróblewska, J.; Wróblewski, M.; Nuszkiewicz, J.; Modrzejewska, M.; Woźniak, A. The Impact of Exercise on Redox Equilibrium in Cardiovascular Diseases. J. Clin. Med. 2022, 11, 4833. [Google Scholar] [CrossRef] [PubMed]
- Yalçınkaya, B.H.; Genc, S.; Yılmaz, B.; Özilgen, M. How does exercise affect energy metabolism? An in silico approach for cardiac muscle. Heliyon 2023, 9, e17164. [Google Scholar] [CrossRef] [PubMed]
- Ashcroft, S.P.; Stocks, B.; Egan, B.; Zierath, J.R. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab. 2024, 36, 278–300. [Google Scholar] [CrossRef]
- Burke, L.M.; Whitfield, J.; Heikura, I.A.; Ross, M.L.R.; Tee, N.; Forbes, S.F.; Hall, R.; McKay, A.K.A.; Wallett, A.M.; Sharma, A.P. Adaptation to a low carbohydrate high fat diet is rapid but impairs endurance exercise metabolism and performance despite enhanced glycogen availability. J. Physiol. 2021, 599, 771–790. [Google Scholar] [CrossRef]
- Vigh-Larsen, J.F.; Ørtenblad, N.; Nielsen, J.; Andersen, O.E.; Overgaard, K.; Mohr, M. The Role of Muscle Glycogen Content and Localization in High-Intensity Exercise Performance: A Placebo-Controlled Trial. Med. Sci. Sports Exerc. 2022, 54, 2073–2086. [Google Scholar] [CrossRef] [PubMed]
- Maunder, E.; Rothschild, J.A.; Fritzen, A.M.; Jordy, A.B.; Kiens, B.; Brick, M.J.; Leigh, W.B.; Chang, W.-L.; Kilding, A.E. Skeletal muscle proteins involved in fatty acid transport influence fatty acid oxidation rates observed during exercise. Pflügers Arch. Eur. J. Physiol. 2023, 475, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Hamada, Y.; Sumikawa, M.; Araki, S.; Yamamoto, H. Solubility of Oxygen in Organic Solvents and Calculation of the Hansen Solubility Parameters of Oxygen. Ind. Eng. Chem. Res. 2014, 53, 19331–19337. [Google Scholar] [CrossRef]
- Bartosz, G. The Other Face of Oxygen. Free Radicals in Nature; Polish Scientific Publishers: Warsaw, Poland, 2005. [Google Scholar]
- Boveris, A. Mitochondrial Production of Superoxide Radical and Hydrogen Peroxide. In Tissue Hypoxia and Ischemia; Reivich, M., Coburn, R., Lahiri, S., Chance, B., Eds.; Springer: Boston, MA, USA, 1977; pp. 67–82. [Google Scholar]
- Bartosz, G. Reactive oxygen species: Destroyers or messengers? Biochem. Pharmacol. 2009, 77, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Babiy, A.V.; Gebicki, S.; Gebicki, J.M. Protein Peroxides: Formation by Superoxide-Generating Systems and During Oxidation of Low Density Lipoprotein. In Free Radicals from Basic Science to Medicine; Springer: Berlin/Heidelberg, Germany, 1993; pp. 340–348. [Google Scholar] [CrossRef]
- Gebicki, S.; Gebicki, J.M. Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem. J. 1993, 289, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.S.; D’Imprima, E.; Vonck, J. Mitochondrial Respiratory Chain Complexes. In Membrane Protein Complexes: Structure and Function; Harris, J.R., Boekema, E.J., Eds.; Springer: Singapore, 2018; pp. 167–227. [Google Scholar]
- Harel, S.; Kanner, J. Haemoglobin and Myoglobin as Inhibitors of Hydroxyl Radical Generation in a Model System of “Iron Redox” Cycle. Free. Radic. Res. Commun. 1989, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; de Bono, D. Myoglobin protects against endothelial cell membrane damage associated with hydrogen peroxide or xanthine/xanthine oxidase. FEBS Lett. 1993, 319, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Hultquist, D.E.; Xu, F.; Quandt, K.S.; Shlafer, M.; Mack, C.P.; Till, G.O.; Seekamp, A.; Betz, A.L.; Ennis, S.R. Evidence that NADPH-dependent methemoglobin reductase and administered riboflavin protect tissues from oxidative injury. Am. J. Hematol. 1993, 42, 13–18. [Google Scholar] [CrossRef]
- Linder, M.C. Biochemistry of Copper; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Freedman, J.H.; Ciriolo, M.R.; Peisach, J. The role of glutathione in copper metabolism and toxicity. J. Biol. Chem. 1989, 264, 5598–5605. [Google Scholar] [CrossRef]
- Sato, M.; Bremner, I. Oxygen free radicals and metallothionein. Free. Radic. Biol. Med. 1993, 14, 325–337. [Google Scholar] [CrossRef]
- Dimauro, I.; Paronetto, M.P.; Caporossi, D. Exercise, redox homeostasis and the epigenetic landscape. Redox Biol. 2020, 35, 101477. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, T.; Muraoka, I. Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants 2018, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Canale, R.E.; Farney, T.M.; McCarthy, C.G.; Bloomer, R.J. Influence of acute exercise of varying intensity and duration on postprandial oxidative stress. Eur. J. Appl. Physiol. 2014, 114, 1913–1924. [Google Scholar] [CrossRef] [PubMed]
- Ost, M.; Coleman, V.; Kasch, J.; Klaus, S. Regulation of myokine expression: Role of exercise and cellular stress. Free. Radic. Biol. Med. 2016, 98, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Szabó, M.R.; Pipicz, M.; Csont, T.; Csonka, C. Modulatory Effect of Myokines on Reactive Oxygen Species in Ischemia/Reperfusion. Int. J. Mol. Sci. 2020, 21, 9382. [Google Scholar] [CrossRef] [PubMed]
- Nobari, H.; Nejad, H.A.; Kargarfard, M.; Mohseni, S.; Suzuki, K.; Adsuar, J.C.; Pérez-Gómez, J. The Effect of Acute Intense Exercise on Activity of Antioxidant Enzymes in Smokers and Non-Smokers. Biomolecules 2021, 11, 171. [Google Scholar] [CrossRef] [PubMed]
- Daud, D.M.A.; Ahmedy, F.; Baharuddin, D.M.P.; Zakaria, Z.A. Oxidative Stress and Antioxidant Enzymes Activity after Cycling at Different Intensity and Duration. Appl. Sci. 2022, 12, 9161. [Google Scholar] [CrossRef]
- Ji, Y.; Ni, X.; Zheng, K.; Jiang, Y.; Ren, C.; Zhu, H.; Xiao, M.; Wang, T. Synergistic effects of aerobic exercise and transcranial direct current stimulation on executive function and biomarkers in healthy young adults. Brain Res. Bull. 2023, 202, 110747. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wan, L.; Zhu, H.; Peng, Y. The effect of 12 week-maximum fat oxidation (FATmax) intensity exercise on microvascular function in obese patients with nonalcoholic fatty liver disease and its mechanism. Gen. Physiol. Biophys. 2023, 42, 251–262. [Google Scholar] [CrossRef]
- Flockhart, M.; Nilsson, L.C.; Tais, S.; Ekblom, B.; Apró, W.; Larsen, F.J. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metab. 2021, 33, 957–970.e6. [Google Scholar] [CrossRef]
- Jemili, H.; Mejri, M.; Bouhlel, E.; Amri, M. Biochemical status, oxidative and antioxidant responses after 3-month specific training in elite karate athletes. Imaging 2017, 104, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, X.; Liu, Y.; Zhang, Z. Effects of Exercise-Induced ROS on the Pathophysiological Functions of Skeletal Muscle. Oxidative Med. Cell. Longev. 2021, 2021, 3846122–5. [Google Scholar] [CrossRef] [PubMed]
- Thirupathi, A.; Pinho, R.A. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J. Physiol. Biochem. 2018, 74, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Koltai, E.; Suzuki, K.; Aguiar, A.S.; Pinho, R.; Boldogh, I.; Berkes, I.; Radak, Z. Exercise, redox system and neurodegenerative diseases. Biochim. et Biophys. Acta (BBA)—Mol. Basis Dis. 2020, 1866, 165778. [Google Scholar] [CrossRef] [PubMed]
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. BioMed Res. Int. 2014, 2014, 761264. [Google Scholar] [CrossRef]
- Ogino, S.; Ogino, N.; Tomizuka, K.; Eitoku, M.; Okada, Y.; Tanaka, Y.; Suganuma, N.; Ogino, K. SOD2 mRNA as a potential biomarker for exercise: Interventional and cross-sectional research in healthy subjects. J. Clin. Biochem. Nutr. 2021, 69, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Lisi, V.; Senesi, G.; Bertola, N.; Pecoraro, M.; Bolis, S.; Gualerzi, A.; Picciolini, S.; Raimondi, A.; Fantini, C.; Moretti, E.; et al. Plasma-derived extracellular vesicles released after endurance exercise exert cardioprotective activity through the activation of antioxidant pathways. Redox Biol. 2023, 63, 102737. [Google Scholar] [CrossRef]
- Ngo, V.; Duennwald, M.L. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants 2022, 11, 2345. [Google Scholar] [CrossRef]
- Kasai, S.; Shimizu, S.; Tatara, Y.; Mimura, J.; Itoh, K. Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology. Biomolecules 2020, 10, 320. [Google Scholar] [CrossRef]
- Souza, J.; da Silva, R.A.; Scheffer, D.d.L.; Penteado, R.; Solano, A.; Barros, L.; Budde, H.; Trostchansky, A.; Latini, A. Physical-Exercise-Induced Antioxidant Effects on the Brain and Skeletal Muscle. Antioxidants 2022, 11, 826. [Google Scholar] [CrossRef]
- Gao, L.; Wang, H.-J.; Tian, C.; Zucker, I.H. Skeletal Muscle Nrf2 Contributes to Exercise-Evoked Systemic Antioxidant Defense Via Extracellular Vesicular Communication. Exerc. Sport Sci. Rev. 2021, 49, 213–222. [Google Scholar] [CrossRef]
- Akimoto, A.K.; Miranda-Vilela, A.L.; Alves, P.C.Z.; Pereira, L.C.d.S.; Lordelo, G.S.; Hiragi, C.d.O.; da Silva, I.C.R.; Grisolia, C.K.; Klautau-Guimarães, M.d.N. Evaluation of gene polymorphisms in exercise-induced oxidative stress and damage. Free Radic. Res. 2010, 44, 322–331. [Google Scholar] [CrossRef]
- Ben-Zaken, S.; Eliakim, A.; Nemet, D.; Kassem, E.; Meckel, Y. Increased prevalence of MnSOD genetic polymorphism in endurance and power athletes. Free Radic. Res. 2013, 47, 1002–1008. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Naumov, V.A.; Donnikov, A.E.; Maciejewska-Karłowska, A.; Kostryukova, E.S.; Larin, A.K.; Maykova, E.V.; Alexeev, D.G.; Fedotovskaya, O.N.; Generozov, E.V.; et al. SOD2 gene polymorphism and muscle damage markers in elite athletes. Free Radic. Res. 2014, 48, 948–955. [Google Scholar] [CrossRef]
- Cotton, S.C.; Sharp, L.; Little, J.; Brockton, N. Glutathione S-Transferase Polymorphisms and Colorectal Cancer: A HuGE Review. Am. J. Epidemiol. 2000, 151, 7–32. [Google Scholar] [CrossRef]
- Cho, H.-J.; Lee, S.-Y.; Ki, C.-S.; Kim, J.-W. GSTM1, GSTT1 and GSTP1 Polymorphisms in the Korean Population. J. Korean Med. Sci. 2005, 20, 1089–1092. [Google Scholar] [CrossRef]
- Guéye, P.M.; Glasser, N.; Férard, G.; Lessinger, J.-M. Influence of human haptoglobin polymorphism on oxidative stress induced by free hemoglobin on red blood cells. Clin. Chem. Lab. Med. 2006, 44, 542–547. [Google Scholar] [CrossRef]
- Langlois, M.R.; Delanghe, J.R. Biological and clinical significance of haptoglobin polymorphism in humans. Clin. Chem. 1996, 42, 1589–1600. [Google Scholar] [CrossRef]
- Goldenstein, H.; Levy, N.S.; Levy, A.P. Haptoglobin genotype and its role in determining heme-iron mediated vascular disease. Pharmacol. Res. 2012, 66, 1–6. [Google Scholar] [CrossRef]
- Franzoni, F.; Ghiadoni, L.; Galetta, F.; Plantinga, Y.; Lubrano, V.; Huang, Y.; Salvetti, G.; Regoli, F.; Taddei, S.; Santoro, G.; et al. Physical activity, plasma antioxidant capacity, and endothelium-dependent vasodilation in young and older men. Am. J. Hypertens. 2005, 18, 510–516. [Google Scholar] [CrossRef]
- Franzoni, F.; Plantinga, Y.; Femia, F.R.; Bartolomucci, F.; Gaudio, C.; Regoli, F.; Carpi, A.; Santoro, G.; Galetta, F. Plasma antioxidant activity and cutaneous microvascular endothelial function in athletes and sedentary controls. Biomed. Pharmacother. 2004, 58, 432–436. [Google Scholar] [CrossRef]
- Scarfò, G.; Daniele, S.; Chelucci, E.; Rizza, A.; Fusi, J.; Freggia, G.; Costa, B.; Taliani, S.; Artini, P.; Martini, C.; et al. Regular exercise delays microvascular endothelial dysfunction by regulating antioxidant capacity and cellular metabolism. Sci. Rep. 2023, 13, 17671. [Google Scholar] [CrossRef]
- Kojda, G.; Hambrecht, R. Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? Cardiovasc. Res. 2005, 67, 187–197. [Google Scholar] [CrossRef]
- Mancinelli, R.; Checcaglini, F.; Coscia, F.; Gigliotti, P.; Fulle, S.; Fanò-Illic, G. Biological Aspects of Selected Myokines in Skeletal Muscle: Focus on Aging. Int. J. Mol. Sci. 2021, 22, 8520. [Google Scholar] [CrossRef]
- Riguene, E.; Theodoridou, M.; Barrak, L.; Elrayess, M.A.; Nomikos, M. The Relationship between Changes in MYBPC3 Single-Nucleotide Polymorphism-Associated Metabolites and Elite Athletes’ Adaptive Cardiac Function. J. Cardiovasc. Dev. Dis. 2023, 10, 400. [Google Scholar] [CrossRef]
Gene | Locus | Alleles | Type of Benefit |
---|---|---|---|
AMPD1 (Adenosine Monophosphate Deaminase 1) | 1p13 | rs17602729 C/T | endurance/power (C allele) |
CDKN1A (Cyclin-Dependent Kinase Inhibitor 1A) | 6p21.2 | rs236448 A/C | endurance (A allele)/power (C allele) |
HFE (Homeostatic Iron Regulator) | 6p21.3 | rs1799945 C/G | endurance (G allele) |
MYBPC3 (Myosin Binding Protein C3) | 11p11.2 | rs1052373 A/G | endurance (G allele) |
NFIA-AS2 (NFIA antisense RNA 2) | 1p31.3 | rs1572312 C/A | endurance (C allele) |
PPARA (Peroxisome Proliferator Activated Receptor A) | 22q13.31 | rs4253778 G/C | endurance (G allele) |
PPARGC1A (Peroxisome Proliferative Activated Receptor Γ coactivator 1 A) | 4p15.1 | rs8192678 G/A | endurance (G allele) |
ACTN3 (Actinin A 3) | 11q13.1 | rs1815739 C/T | power/strength (C allele) |
CPNE5 (Copine V) | 6p21.2 | rs3213537 G/A | power (G allele) |
GALNTL6 (Polypeptide N-acetylgalactosaminyltransferase Like 6) | 4q34.1 | rs558129 T/C | power (T allele) |
IGF2 (Insulin-Like Growth Factor 2) | 11p15.5 | rs680 A/G | power (G allele) |
IGSF3 (Immunoglobulin Superfamily Member 3) | 1p13.1 | rs699785 G/A | power (A allele) |
NOS3 (Nitric Oxide Synthase 3) | 7q36 | rs2070744 T/C | power (T allele) |
TRHR (Thyrotropin-Releasing Hormone Receptor | 8q23.1 | rs7832552 C/T | power (T allele) |
AR (Androgen Receptor) | Xq12 | CAG repeats | strength (allele of ≥21 CAG repeats) |
LRPPRC (Leucine-Rich Pentatricopeptide Repeat Cassette) | 2p21 | rs10186876 A/G | strength (A allele) |
MMS22L (Methyl Methanesulfonate-Sensitivity Protein 22-Like) | 6q16.1 | rs9320823 T/C | strength (T allele) |
PHACTR1 (Phosphate and Actin Regulator 1) | 6p24.1 | rs6905419 C/T | strength (C allele) |
PPARG (Peroxisome Proliferator Activated Receptor Γ) | 3p25.2 | rs1801282 G/C | strength (G allele) |
Parameter | Genotypes (Single-Nucleotide Polymorphisms) | Relationship with Physical Performance | References |
---|---|---|---|
Manganese superoxide dismutase (SOD 2, EC 1.15.1.1) | Val/Val, Ala/Val, Ala/Ala | Yes | [57,58,59] |
Catalase (CAT, EC 1.11.1.6) | AA, AT, TT | No | [57] |
Glutathione peroxidase 1 (GPX 1, EC 1.11.1.9) | Pro/Pro, Pro/Leu, Leu/Leu | No | [57] |
Haptoglobin (Hp) | 1F-1F, 1F-1S, 1S-1S, 1F-2, 1S-2, 2-2 | Yes | [57] |
Glutathione S-transferase (GST, EC 2.5.1.18) | GSTM1-, GSTM1+, GSTT1-, GSTT1+, GSTM1-T1-, GSTM1+T1-, GSTM-T+, GSTM+T+ | No | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutkowy, P.; Modrzejewska, M.; Porzych, M.; Woźniak, A. The Current State of Knowledge Regarding the Genetic Predisposition to Sports and Its Health Implications in the Context of the Redox Balance, Especially Antioxidant Capacity. Int. J. Mol. Sci. 2024, 25, 6915. https://doi.org/10.3390/ijms25136915
Sutkowy P, Modrzejewska M, Porzych M, Woźniak A. The Current State of Knowledge Regarding the Genetic Predisposition to Sports and Its Health Implications in the Context of the Redox Balance, Especially Antioxidant Capacity. International Journal of Molecular Sciences. 2024; 25(13):6915. https://doi.org/10.3390/ijms25136915
Chicago/Turabian StyleSutkowy, Paweł, Martyna Modrzejewska, Marta Porzych, and Alina Woźniak. 2024. "The Current State of Knowledge Regarding the Genetic Predisposition to Sports and Its Health Implications in the Context of the Redox Balance, Especially Antioxidant Capacity" International Journal of Molecular Sciences 25, no. 13: 6915. https://doi.org/10.3390/ijms25136915
APA StyleSutkowy, P., Modrzejewska, M., Porzych, M., & Woźniak, A. (2024). The Current State of Knowledge Regarding the Genetic Predisposition to Sports and Its Health Implications in the Context of the Redox Balance, Especially Antioxidant Capacity. International Journal of Molecular Sciences, 25(13), 6915. https://doi.org/10.3390/ijms25136915