Investigation into the Neuroprotective and Therapeutic Potential of Plant-Derived Chk2 Inhibitors
Abstract
:1. Introduction and Background
2. Chk2 Inhibition and Mechanisms
3. Neuroprotective Effects
4. Therapeutic Potential and Future Directions
4.1. Challenges and Limitations
4.2. Potential Future Developments
4.3. Key Findings and Directions for Further Research
5. Conclusions
- The lack of data indicating the optimal and toxic doses;
- The lack of data regarding their potential side effects;
- The lack of data evaluating their pharmacodynamic and pharmacokinetic properties.
Author Contributions
Funding
Conflicts of Interest
References
- Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021, 26, 1109. [Google Scholar] [CrossRef]
- Cancer. Available online: https://www.who.int/health-topics/cancer#tab=tab_1 (accessed on 6 April 2024).
- Chk2 Inhibitor Programme|Cancer Research Horizons. Available online: https://www.cancerresearchhorizons.com/licensing-opportunities/chk2-inhibitor-programme (accessed on 6 April 2024).
- Jobson, A.G.; Lountos, G.T.; Lorenzi, P.L.; Llamas, J.; Connelly, J.; Cerna, D.; Tropea, J.E.; Onda, A.; Zoppoli, G.; Kondapaka, S.; et al. Cellular Inhibition of Checkpoint Kinase 2 (Chk2) and Potentiation of Camptothecins and Radiation by the Novel Chk2 Inhibitor PV1019 [7-Nitro-1H-Indole-2-Carboxylic Acid {4-[1-(Guanidinohydrazone)-Ethyl]-Phenyl}-Amide]. J. Pharmacol. Exp. Ther. 2009, 331, 816–826. [Google Scholar] [CrossRef]
- Xu, Z.; Vandenberg, C.J.; Lieschke, E.; Di Rago, L.; Scott, C.L.; Majewski, I.J. CHK2 Inhibition Provides a Strategy to Suppress Hematologic Toxicity from PARP Inhibitors. Mol. Cancer Res. 2021, 19, 1350–1360. [Google Scholar] [CrossRef]
- Lulli, M.; Del Coco, L.; Mello, T.; Sukowati, C.; Madiai, S.; Gragnani, L.; Forte, P.; Fanizzi, F.P.; Mazzocca, A.; Rombouts, K.; et al. DNA Damage Response Protein CHK2 Regulates Metabolism in Liver Cancer. Cancer Res. 2021, 81, 2861–2873. [Google Scholar] [CrossRef]
- Zannini, L.; Delia, D.; Buscemi, G. CHK2 Kinase in the DNA Damage Response and Beyond. J. Mol. Cell Biol. 2014, 6, 442–457. [Google Scholar] [CrossRef]
- Ariumi, Y.; Kuroki, M.; Dansako, H.; Abe, K.-I.; Ikeda, M.; Wakita, T.; Kato, N. The DNA Damage Sensors Ataxia-Telangiectasia Mutated Kinase and Checkpoint Kinase 2 Are Required for Hepatitis C Virus RNA Replication. J. Virol. 2008, 82, 9639–9646. [Google Scholar] [CrossRef]
- Ashfaq, U.A.; Javed, T.; Rehman, S.; Nawaz, Z.; Riazuddin, S. An Overview of HCV Molecular Biology, Replication and Immune Responses. Virol. J. 2011, 8, 161. [Google Scholar] [CrossRef]
- Hepatitis, C. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c (accessed on 6 April 2024).
- 2021 Viral Hepatitis Surveillance Report|CDC. Available online: https://www.cdc.gov/hepatitis/statistics/2021surveillance/index.htm (accessed on 6 April 2024).
- Willers, H.; Pfäffle, H.N.; Zou, L. Targeting Homologous Recombination Repair in Cancer. In DNA Repair in Cancer Therapy; Elsevier: Amsterdam, The Netherlands, 2012; pp. 119–160. [Google Scholar]
- Filbin, M.E.; Vollmar, B.S.; Shi, D.; Gonen, T.; Kieft, J.S. HCV IRES Manipulates the Ribosome to Promote the Switch from Translation Initiation to Elongation. Nat. Struct. Mol. Biol. 2013, 20, 150–158. [Google Scholar] [CrossRef]
- Taylor, M.J.; Thompson, A.M.; Alhajlah, S.; Tuxworth, R.I.; Ahmed, Z. Inhibition of Chk2 Promotes Neuroprotection, Axon Regeneration, and Functional Recovery after CNS Injury. Sci. Adv. 2022, 8, eabq2611. [Google Scholar] [CrossRef]
- Tuxworth, R.I.; Taylor, M.J.; Martin Anduaga, A.; Hussien-Ali, A.; Chatzimatthaiou, S.; Longland, J.; Thompson, A.M.; Almutiri, S.; Alifragis, P.; Kyriacou, C.P.; et al. Attenuating the DNA Damage Response to Double-Strand Breaks Restores Function in Models of CNS Neurodegeneration. Brain Commun. 2019, 1, fcz005. [Google Scholar] [CrossRef]
- Brochier, C.; Langley, B. Chromatin Modifications Associated with DNA Double-Strand Breaks Repair as Potential Targets for Neurological Diseases. Neurotherapeutics 2013, 10, 817–830. [Google Scholar] [CrossRef]
- Liang, X.; Guo, Y.; Figg, W.D.; Fojo, A.T.; Mueller, M.D.; Yu, J.J. The Role of Wild-Type P53 in Cisplatin-Induced Chk2 Phosphorylation and the Inhibition of Platinum Resistance with a Chk2 Inhibitor. Chemother. Res. Pract. 2011, 2011, 715469. [Google Scholar] [CrossRef]
- Castedo, M.; Perfettini, J.-L.; Roumier, T.; Yakushijin, K.; Horne, D.; Medema, R.; Kroemer, G. The Cell Cycle Checkpoint Kinase Chk2 Is a Negative Regulator of Mitotic Catastrophe. Oncogene 2004, 23, 4353–4361. [Google Scholar] [CrossRef]
- Moodbagil, C.I.; Mahmood, R.; Jain, R.S.K.; Meghana, P.; Prashanth, N.; Kumaraswamy, H.M.; Sharath, R. Docking Based Screening of Potent Flavonoids as CHK2 Inhibitors from Genus Miliusa. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2023, 93, 159–164. [Google Scholar] [CrossRef]
- Hu, A.; Huang, J.J.; Zhang, J.F.; Dai, W.J.; Li, R.L.; Lu, Z.Y.; Duan, J.L.; Li, J.P.; Chen, X.P.; Fan, J.P.; et al. Curcumin Induces G2/M Cell Cycle Arrest and Apoptosis of Head and Neck Squamous Cell Carcinoma in Vitro and in Vivo through ATM/Chk2/P53-Dependent Pathway. Oncotarget 2017, 8, 50747. [Google Scholar] [CrossRef]
- Cornebise, C.; Perus, M.; Hermetet, F.; Valls-Fonayet, J.; Richard, T.; Aires, V.; Delmas, D. Red Wine Extract Prevents Oxidative Stress and Inflammation in ARPE-19 Retinal Cells. Cells 2023, 12, 1408. [Google Scholar] [CrossRef]
- Zhang, L.; Ruan, J.; Yan, L.; Li, W.; Wu, Y.; Tao, L.; Zhang, F.; Zheng, S.; Wang, A.; Lu, Y. Xanthatin Induces Cell Cycle Arrest at G2/M Checkpoint and Apoptosis via Disrupting NF-ΚB Pathway in A549 Non-Small-Cell Lung Cancer Cells. Molecules 2012, 17, 3736–3750. [Google Scholar] [CrossRef]
- Fielder, E.; Von Zglinicki, T.; Jurk, D. The DNA Damage Response in Neurons: Die by Apoptosis or Survive in a Senescence-Like State? J. Alzheimers Dis. 2017, 60, S107–S131. [Google Scholar] [CrossRef]
- Simpson, J.E.; Ince, P.G.; Matthews, F.E.; Shaw, P.J.; Heath, P.R.; Brayne, C.; Garwood, C.; Higginbottom, A.; Wharton, S.B. A Neuronal DNA Damage Response Is Detected at the Earliest Stages of Alzheimer’s Neuropathology and Correlates with Cognitive Impairment in the Medical Research Council’s Cognitive Function and Ageing Study Ageing Brain Cohort. Neuropathol. Appl. Neurobiol. 2015, 41, 483. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Zheng, Y.H.; Zhang, C.T.; Liang, W.W.; Wang, S.Y.; Wang, X.D.; Wang, Y.; Wang, T.H.; Jiang, H.Q.; Feng, H.L. Wild-Type P53-Induced Phosphatase 1 down-Regulation Promotes Apoptosis by Activating the DNA Damage-Response Pathway in Amyotrophic Lateral Sclerosis. Neurobiol. Dis. 2020, 134, 104648. [Google Scholar] [CrossRef]
- Iijima-Ando, K.; Zhao, L.J.; Gatt, A.; Shenton, C.; Iijima, K. A DNA Damage-Activated Checkpoint Kinase Phosphorylates Tau and Enhances Tau-Induced Neurodegeneration. Hum. Mol. Genet. 2010, 19, 1930–1938. [Google Scholar] [CrossRef]
- Mendoza, J.; Sekiya, M.; Taniguchi, T.; Iijima, K.M.; Wang, R.; Ando, K. Global Analysis of Phosphorylation of Tau by the Checkpoint Kinases Chk1 and Chk2 in Vitro. J. Proteome Res. 2013, 12, 2654–2665. [Google Scholar] [CrossRef]
- He, Z.Y.; Wang, W.Y.; Hu, W.Y.; Yang, L.; Li, Y.; Zhang, W.Y.; Yang, Y.S.; Liu, S.C.; Zhang, F.L.; Mei, R.; et al. Gamma-H2AX Upregulation Caused by Wip1 Deficiency Increases Depression-Related Cellular Senescence in Hippocampus. Sci. Rep. 2016, 6, 34558. [Google Scholar] [CrossRef]
- Lu, X.H.; Mattis, V.B.; Wang, N.; Al-Ramahi, I.; Van Den Berg, N.; Fratantoni, S.A.; Waldvogel, H.; Greiner, E.; Osmand, A.; Elzein, K.; et al. Targeting ATM Ameliorates Mutant Huntingtin Toxicity in Cell and Animal Models of Huntington’s Disease. Sci. Transl. Med. 2014, 6, 268ra178. [Google Scholar] [CrossRef]
- Kung, H.C.; Lin, K.J.; Kung, C.T.; Lin, T.K. Oxidative Stress, Mitochondrial Dysfunction, and Neuroprotection of Polyphenols with Respect to Resveratrol in Parkinson’s Disease. Biomedicines 2021, 9, 918. [Google Scholar] [CrossRef]
- Rao, Y.L.; Ganaraja, B.; Joy, T.; Pai, M.M.; Ullal, S.D.; Murlimanju, B.V. Neuroprotective Effects of Resveratrol in Alzheimer’s Disease. Front Biosci 2020, 12, 139–149. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, K.; Wan, W.; Cheng, Y.; Pu, X.; Ye, X. Resveratrol Provides Neuroprotection by Regulating the JAK2/STAT3/PI3K/AKT/MTOR Pathway after Stroke in Rats. Genes. Dis. 2018, 5, 245–255. [Google Scholar] [CrossRef]
- Zhu, X.; Yue, H.; Guo, X.; Yang, J.; Liu, J.; Liu, J.; Wang, R.; Zhu, W. The Preconditioning of Berberine Suppresses Hydrogen Peroxide-Induced Premature Senescence via Regulation of Sirtuin 1. Oxid. Med. Cell Longev. 2017, 2017, 2391820. [Google Scholar] [CrossRef]
- Cheng, Z.; Kang, C.; Che, S.; Su, J.; Sun, Q.; Ge, T.; Guo, Y.; Lv, J.; Sun, Z.; Yang, W.; et al. Berberine: A Promising Treatment for Neurodegenerative Diseases. Front. Pharmacol. 2022, 13, 845591. [Google Scholar] [CrossRef]
- Tian, E.; Sharma, G.; Dai, C. Neuroprotective Properties of Berberine: Molecular Mechanisms and Clinical Implications. Antioxidants 2023, 12, 1883. [Google Scholar] [CrossRef]
- Singla, R.K.; Behzad, S.; Khan, J.; Tsagkaris, C.; Gautam, R.K.; Goyal, R.; Chopra, H.; Shen, B. Natural Kinase Inhibitors for the Treatment and Management of Endometrial/Uterine Cancer: Preclinical to Clinical Studies. Front. Pharmacol. 2022, 13, 801733. [Google Scholar] [CrossRef]
- Qiao, H.; Li, J.; Lv, L.; Nie, B.; Lu, P.; Xue, F.; Zhang, Z. Eupatilin Inhibits Microglia Activation and Attenuates Brain Injury in Intracerebral Hemorrhage. Exp. Ther. Med. 2018, 16, 4005–4009. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, L.; Xie, J.; Li, J.; Wang, C. Eupatilin Prevents Behavioral Deficits and Dopaminergic Neuron Degeneration in a Parkinson’s Disease Mouse Model. Life Sci. 2020, 253, 117745. [Google Scholar] [CrossRef]
- Chou, C.-H.; Hsu, K.-C.; Lin, T.E.; Yang, C.-R. Anti-Inflammatory and Tau Phosphorylation–Inhibitory Effects of Eupatin. Molecules 2020, 25, 5652. [Google Scholar] [CrossRef]
- Fei, X.; Chen, C.; Kai, S.; Fu, X.; Man, W.; Ding, B.; Wang, C.; Xu, R. Eupatilin Attenuates the Inflammatory Response Induced by Intracerebral Hemorrhage through the TLR4/MyD88 Pathway. Int. Immunopharmacol. 2019, 76, 105837. [Google Scholar] [CrossRef]
- Hong, Y.; He, S.; Zou, Q.; Li, C.; Wang, J.; Chen, R. Eupatilin Alleviates Inflammatory Response after Subarachnoid Hemorrhage by Inhibition of TLR4/MyD88/NF-κB Axis. J. Biochem. Mol. Toxicol. 2023, 37, e23317. [Google Scholar] [CrossRef]
- Ahmadi, Z.; Mohammadinejad, R.; Ashrafizadeh, M. Drug Delivery Systems for Resveratrol, a Non-Flavonoid Polyphenol: Emerging Evidence in Last Decades. J. Drug Deliv. Sci. Technol. 2019, 51, 591–604. [Google Scholar] [CrossRef]
- Satari, A.; Ghasemi, S.; Habtemariam, S.; Asgharian, S.; Lorigooini, Z. Rutin: A Flavonoid as an Effective Sensitizer for Anticancer Therapy; Insights into Multifaceted Mechanisms and Applicability for Combination Therapy. Evid.-Based Complement. Altern. Med. 2021, 2021, 9913179. [Google Scholar] [CrossRef]
- Manic, G.; Obrist, F.; Sistigu, A.; Vitale, I. Trial Watch: Targeting ATM–CHK2 and ATR–CHK1 Pathways for Anticancer Therapy. Mol. Cell Oncol. 2015, 2, e1012976. [Google Scholar] [CrossRef]
- Carlsen, L.; El-Deiry, W.S. Anti-Cancer Immune Responses to DNA Damage Response Inhibitors: Molecular Mechanisms and Progress toward Clinical Translation. Front. Oncol. 2022, 12, 998388. [Google Scholar] [CrossRef]
- Wang, Q.-E. DNA Damage Responses in Cancer Stem Cells: Implications for Cancer Therapeutic Strategies. World J. Biol. Chem. 2015, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.T.; Saleem, R.S.Z.; Luderer, M.J.; Hovde, S.; Henry, R.W.; Tepe, J.J. Radioprotection by Hymenialdisine-Derived Checkpoint Kinase 2 Inhibitors. ACS Chem. Biol. 2012, 7, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, G.; Belvedere, R.; Petrella, A.; Tosco, A.; Stork, B.; Salamone, S.; Minassi, A.; Pollastro, F.; Morretta, E.; Monti, M.C. Drug Affinity-Responsive Target Stability Unveils Filamins as Biological Targets for Artemetin, an Anti-Cancer Flavonoid. Front. Mol. Biosci. 2022, 9, 964295. [Google Scholar] [CrossRef]
- Fatima, S.; Farzeen, I.; Ashraf, A.; Aslam, B.; Ijaz, M.U.; Hayat, S.; Sarfraz, M.H.; Zafar, S.; Zafar, N.; Unuofin, J.O.; et al. A Comprehensive Review on Pharmacological Activities of Pachypodol: A Bioactive Compound of an Aromatic Medicinal Plant Pogostemon Cablin Benth. Molecules 2023, 28, 3469. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.U.; Azmat, R.; Yeni, D.K.; Ashraf, A.; Mariappan, V. Pachypodol, a Plant Flavonoid, Mitigates Cisplatin-Induced Hepatotoxicity Through Anti-Oxidant, Anti-Inflammatory and Anti-Apoptotic Mechanisms. J. Food Nutr. Res. 2023, 11, 513–518. [Google Scholar] [CrossRef]
- Yu, Y.; Cai, W.; Pei, C.G.; Shao, Y. Rhamnazin, a Novel Inhibitor of VEGFR2 Signaling with Potent Antiangiogenic Activity and Antitumor Efficacy. Biochem. Biophys. Res. Commun. 2015, 458, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Kim, E.G.; Kim, W.; Seong, K.M.; Youn, H.S.; Kim, J.W.; Kim, J.; Youn, B. Rhamnetin and Cirsiliol Induce Radiosensitization and Inhibition of Epithelial-Mesenchymal Transition (EMT) by MiR-34a-Mediated Suppression of Notch-1 Expression in Non-Small Cell Lung Cancer Cell Lines. J. Biol. Chem. 2013, 288, 27343–27357. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Yang, Q.; Wang, T.; Cao, Y.; Jiang, Q.Y.; Da Ma, H.; Sun, H.W.; Hou, M.X.; Yang, Y.P.; Feng, F. Rhamnetin Induces Sensitization of Hepatocellular Carcinoma Cells to a Small Molecular Kinase Inhibitor or Chemotherapeutic Agents. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2016, 1860, 1417–1430. [Google Scholar] [CrossRef]
- Jnawali, H.N.; Lee, E.; Jeong, K.W.; Shin, A.; Heo, Y.S.; Kim, Y. Anti-Inflammatory Activity of Rhamnetin and a Model of Its Binding to c-Jun NH2-Terminal Kinase 1 and P38 MAPK. J. Nat. Prod. 2014, 77, 258–263. [Google Scholar] [CrossRef]
- Park, E.S.; Kang, J.C.; Jang, Y.C.; Park, J.S.; Jang, S.Y.; Kim, D.E.; Kim, B.; Shin, H.S. Cardioprotective Effects of Rhamnetin in H9c2 Cardiomyoblast Cells under H2O2-Induced Apoptosis. J. Ethnopharmacol. 2014, 153, 552–560. [Google Scholar] [CrossRef]
- Shapira, T.; Rankine-Wilson, L.; Chao, J.D.; Pichler, V.; Rens, C.; Pfeifer, T.; Av-Gay, Y. High-Content Screening of Eukaryotic Kinase Inhibitors Identify CHK2 Inhibitor Activity Against Mycobacterium Tuberculosis. Front. Microbiol. 2020, 11, 553962. [Google Scholar] [CrossRef]
- Li, C.; Deng, C.; Wang, S.; Dong, X.; Dai, B.; Guo, W.; Guo, Q.; Feng, Y.; Xu, H.; Song, X.; et al. A Novel Role for the ROS-ATM-Chk2 Axis Mediated Metabolic and Cell Cycle Reprogramming in the M1 Macrophage Polarization. Redox Biol. 2024, 70, 103059. [Google Scholar] [CrossRef]
- Liga, S.; Paul, C.; Péter, F. Flavonoids: Overview of Biosynthesis, Biological Activity, and Current Extraction Techniques. Plants 2023, 12, 2732. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Channakesavula, C.N.; Stone, S.R.; Kaur, P. Synthetic Biology towards Improved Flavonoid Pharmacokinetics. Biomolecules 2021, 11, 754. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Wang, X.; Wang, H.; Zhong, L.; Zou, D. Advances in ATM, ATR, WEE1, and CHK1/2 Inhibitors in the Treatment of PARP Inhibitor-Resistant Ovarian Cancer. Cancer Biol. Med. 2024, 20, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Habiba, Y.H.; Omran, G.A.; Helmy, M.W.; Houssen, M.E. Antitumor Effects of Rhamnazinon Sorafenib-Treated Human Hepatocellular Carcinoma Cell Lines via Modulation of VEGF Signaling and PI3K/NF-ΚB P38/Caspase-3 Axes Cross Talk. Life Sci. 2022, 297, 120443. [Google Scholar] [CrossRef]
Substance | Origin | Mechanism of Inhibition | Reference |
---|---|---|---|
Flavonoids | |||
Artemetin | Cordia verbenacea, Cladanthus arabicus | direct, by interlinkage with catalytic amino acid residues | [19] |
Rhamnetin | Camellia sinensis, Ammannia multiflora | direct, by interlinkage with catalytic amino acid residues | [19] |
Pachypodolol | Melicope triphylla, Melicope semecarpifolia | direct, by interlinkage with catalytic amino acid residues | [19] |
Rhamnazin | Callicarpa kwangtungensis, Halocnemum strobilaceum | direct, by interlinkage with catalytic amino acid residues | [19] |
Rutin | Camellia sinensis, Amaranthus hybridus | direct, by interlinkage with catalytic amino acid residues | [19] |
Polyphenols | |||
Curcumin | Curcuma longa | indirect, by decreasing the expression of Chk2 mRNA | [20] |
Resveratrol | Humulus lupulus, Malus | direct, by decreasing phosphorylation of Chk2 | [21] |
Lactones | |||
Xanthatin | Xanthium pungens, Xanthium strumarium | indirect, by downregulating the expression of Chk2 | [22] |
Substance/Group of Substances | Biological Properties | Reference |
---|---|---|
Artemetin | Decreases cancer cell growth, induces apoptosis, inhibits cell migration, modulates microtubule dynamics, affects proteins like filamins, and leads to cytoskeleton disassembly. | [48] |
Rhamnetin | Radiosensitization in NSCLC, inhibition of EMT, chemosensitization in HCC, anti-inflammatory and antioxidative effects. | [52,53,54,55] |
Pachypodolol | Anti-inflammatory, antioxidant, anti-mutagenic, antimicrobial, antidepressant, anticancer, antiemetic, antiviral, cytotoxic. | [49] |
Rhamnazin | Inhibits angiogenesis by targeting VEGFR2 signaling pathways. | [51] |
Rutin | Anticarcinogenic, neuroprotective, antiproliferative, anti-inflammatory, antimetastatic, and antioxidative effects. | [43] |
DDUG (4,4′-diacetyldiphenylurea bis(guanylhydrazone)) | Inhibits intracellular growth of Mycobacterium tuberculosis. | [56] |
Chk2 inhibitors | Sensitize tumor cells to DNA-damaging agents, induce cell cycle arrest and apoptosis, enhance efficacy of conventional cancer treatments, overcome drug resistance mechanisms, and have chemoprotective and radioprotective effects in non-tumor cells. | [17,45,46,47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kisielewska, M.; Filipski, M.; Sebastianka, K.; Karaś, D.; Molik, K.; Choromańska, A. Investigation into the Neuroprotective and Therapeutic Potential of Plant-Derived Chk2 Inhibitors. Int. J. Mol. Sci. 2024, 25, 7725. https://doi.org/10.3390/ijms25147725
Kisielewska M, Filipski M, Sebastianka K, Karaś D, Molik K, Choromańska A. Investigation into the Neuroprotective and Therapeutic Potential of Plant-Derived Chk2 Inhibitors. International Journal of Molecular Sciences. 2024; 25(14):7725. https://doi.org/10.3390/ijms25147725
Chicago/Turabian StyleKisielewska, Monika, Michał Filipski, Kamil Sebastianka, Dobrawa Karaś, Klaudia Molik, and Anna Choromańska. 2024. "Investigation into the Neuroprotective and Therapeutic Potential of Plant-Derived Chk2 Inhibitors" International Journal of Molecular Sciences 25, no. 14: 7725. https://doi.org/10.3390/ijms25147725
APA StyleKisielewska, M., Filipski, M., Sebastianka, K., Karaś, D., Molik, K., & Choromańska, A. (2024). Investigation into the Neuroprotective and Therapeutic Potential of Plant-Derived Chk2 Inhibitors. International Journal of Molecular Sciences, 25(14), 7725. https://doi.org/10.3390/ijms25147725