Studying Pathogenetic Contribution of a Variant of Unknown Significance, p.M659I (c.1977G > A) in MYH7, to the Development of Hypertrophic Cardiomyopathy Using CRISPR/Cas9-Engineered Isogenic Induced Pluripotent Stem Cells
Abstract
:1. Introduction
2. Results
2.1. Introducing p.M659I (c.1977G > A) Mutation with CRISPR/Cas9 in MYH7 of Healthy Donor iPSCs
2.2. Cardiomyocytes Derived from iPSCs with Introduced p.M659I (c.1977G > A) Mutation in MYH7 Demonstrate HCM Features
3. Discussion
4. Materials and Methods
4.1. Editing MYH7 with CRISPR/Cas9 in iPSCs of Healthy Donor
4.2. Analysis of Introduced Mutations and CRISPR/Cas9 off-Target Activity
4.3. Spontaneous In Vitro Differentiation
4.4. Immunofluorescence Staining
4.5. RT-qPCR
4.6. Karyotyping
4.7. Mycoplasma Detection
4.8. Directed iPSC Differentiation into Cardiomyocytes
4.9. Analysis of Cardiomyocyte Size
4.10. Calcium Imaging
4.11. Seahorse
4.12. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maron, B.J. Hypertrophic Cardiomyopathy: A Systematic Review. JAMA 2002, 287, 1308–1320. [Google Scholar] [CrossRef] [PubMed]
- Marian, A.J.; Braunwald, E. Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 2017, 121, 749–770. [Google Scholar] [CrossRef] [PubMed]
- Pasipoularides, A. Challenges and Controversies in Hypertrophic Cardiomyopathy: Clinical, Genomic and Basic Science Perspectives. Rev. Esp. Cardiol. (Engl. Ed.) 2018, 71, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Elliott, P. The genetics of hypertrophic cardiomyopathy. Glob. Cardiol. Sci. Pract. 2018, 2018, 36. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Li, Y.; Tchao, J.; Kaplan, A.D.; Lin, B.; Li, Y.; Mich-Basso, J.; Lis, A.; Hassan, N.; London, B.; et al. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc. Res. 2014, 104, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Lan, F.; Lee, A.S.; Liang, P.; Sanchez-Freire, V.; Nguyen, P.K.; Wang, L.; Han, L.; Yen, M.; Wang, Y.; Sun, N.; et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell 2013, 12, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Ojala, M.; Prajapati, C.; Pölönen, R.P.; Rajala, K.; Pekkanen-Mattila, M.; Rasku, J.; Larsson, K.; Aalto-Setälä, K. Mutation-specific phenotypes in hiPSC-derived cardiomyocytes carrying either myosin-binding protein C or α-tropomyosin mutation for hypertrophic cardiomyopathy. Stem Cells Int. 2016, 2016, 1684792. [Google Scholar] [CrossRef] [PubMed]
- Ramachandra, C.J.A.; Kp, M.M.J.; Chua, J.; Hernandez-Resendiz, S.; Liehn, E.A.; Knöll, R.; Gan, L.M.; Michaëlsson, E.; Jonsson, M.K.B.; Ryden-Markinhuhta, K.; et al. Inhibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes. Cardiovasc. Res. 2022, 118, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Naito, A.T.; Kuramoto, Y.; Ito, M.; Okada, K.; Higo, T.; Nakagawa, A.; Shibamoto, M.; Yamaguchi, T.; Sumida, T.; et al. Phenotypic screening using patient-derived induced pluripotent stem cells identified Pyr3 as a candidate compound for the treatment of infantile hypertrophic cardiomyopathy. Int. Heart J. 2018, 59, 1096–1105. [Google Scholar] [CrossRef]
- Zhou, W.; Bos, J.M.; Ye, D.; Tester, D.J.; Hrstka, S.; Maleszewski, J.J.; Ommen, S.R.; Nishimura, R.A.; Schaff, H.V.; Kim, C.S.; et al. Induced Pluripotent Stem Cell–Derived Cardiomyocytes from a Patient with MYL2-R58Q-Mediated Apical Hypertrophic Cardiomyopathy Show Hypertrophy, Myofibrillar Disarray, and Calcium Perturbations. J. Cardiovasc. Transl. Res. 2019, 12, 394–403. [Google Scholar] [CrossRef]
- Guo, H.; Liu, L.; Nishiga, M.; Cong, L.; Wu, J.C. Deciphering pathogenicity of variants of uncertain significance with CRISPR-edited iPSCs. Trends Genet. 2021, 37, 1109–1123. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Olson, E.N. CRISPR Modeling and Correction of Cardiovascular Disease. Circ. Res. 2022, 130, 1827–1850. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.; Lim, K.R.Q.; Yokota, T. Genome editing for the understanding and treatment of inherited cardiomyopathies. Int. J. Mol. Sci. 2020, 21, 733. [Google Scholar] [CrossRef]
- Mosqueira, D.; Mannhardt, I.; Bhagwan, J.R.; Lis-Slimak, K.; Katili, P.; Scott, E.; Hassan, M.; Prondzynski, M.; Harmer, S.C.; Tinker, A.; et al. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur. Heart J. 2018, 39, 3879–3892. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Kim, K.; Parikh, S.; Cadar, A.G.; Bersell, K.R.; He, H.; Pinto, J.R.; Kryshtal, D.O.; Knollmann, B.C. Hypertrophic cardiomyopathy-linked mutation in troponin T causes myofibrillar disarray and pro-arrhythmic action potential changes in human iPSC cardiomyocytes. J. Mol. Cell. Cardiol. 2018, 114, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.C.; Breitbart, A.; De Lange, W.J.; Hofsteen, P.; Futakuchi-Tsuchida, A.; Xu, J.; Schopf, C.; Razumova, M.V.; Jiao, A.; Boucek, R.; et al. Novel Adult-Onset Systolic Cardiomyopathy Due to MYH7 E848G Mutation in Patient-Derived Induced Pluripotent Stem Cells. JACC Basic Transl. Sci. 2018, 3, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Cohn, R.; Thakar, K.; Lowe, A.; Ladha, F.A.; Pettinato, A.M.; Romano, R.; Meredith, E.; Chen, Y.S.; Atamanuk, K.; Huey, B.D.; et al. A Contraction Stress Model of Hypertrophic Cardiomyopathy due to Sarcomere Mutations. Stem Cell Rep. 2019, 12, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Vander Roest, A.S.; Liu, C.; Morck, M.M.; Kooiker, K.B.; Jung, G.; Song, D.; Dawood, A.; Jhingran, A.; Pardon, G.; Ranjbarvaziri, S.; et al. Hypertrophic cardiomyopathy β-cardiac myosin mutation (P710R) leads to hypercontractility by disrupting super relaxed state. Proc. Natl. Acad. Sci. USA 2021, 118, e2025030118. [Google Scholar] [CrossRef] [PubMed]
- Bhagwan, J.R.; Mosqueira, D.; Chairez-Cantu, K.; Mannhardt, I.; Bodbin, S.E.; Bakar, M.; Smith, J.G.W.; Denning, C. Isogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics. J. Mol. Cell. Cardiol. 2020, 145, 43–53. [Google Scholar] [CrossRef]
- Chai, A.C.; Cui, M.; Chemello, F.; Li, H.; Chen, K.; Tan, W.; Atmanli, A.; McAnally, J.R.; Zhang, Y.; Xu, L.; et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat. Med. 2023, 29, 401–411. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, J.Z.; Itzhaki, I.; Zhang, S.L.; Chen, H.; Haddad, F.; Kitani, T.; Wilson, K.D.; Tian, L.; Shrestha, R.; et al. Determining the pathogenicity of a genomic variant of uncertain significance using CRISPR/Cas9 and human-induced pluripotent stem cells. Circulation 2018, 138, 2666–2681. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.G.W.; Owen, T.; Bhagwan, J.R.; Mosqueira, D.; Scott, E.; Mannhardt, I.; Patel, A.; Barriales-Villa, R.; Monserrat, L.; Hansen, A.; et al. Isogenic Pairs of hiPSC-CMs with Hypertrophic Cardiomyopathy/LVNC-Associated ACTC1 E99K Mutation Unveil Differential Functional Deficits. Stem Cell Rep. 2018, 11, 1226–1243. [Google Scholar] [CrossRef]
- Dementyeva, E.V.; Vyatkin, Y.V.; Kretov, E.I.; Elisaphenko, E.A.; Medvedev, S.P.; Zakian, S.M. Genetic analysis of patients with hypertrophic cardiomyopathy. Genes Cells 2020, 15, 68–73. [Google Scholar] [CrossRef]
- Bashyam, M.D.; Purushotham, G.; Chaudhary, A.K.; Rao, K.M.; Acharya, V.; Mohammad, T.A.; Nagarajaram, H.A.; Hariram, V.; Narasimhan, C. A low prevalence of MYH7/MYBPC3 mutations among Familial Hypertrophic Cardiomyopathy patients in India. Mol. Cell. Biochem. 2012, 360, 373–382. [Google Scholar] [CrossRef]
- Richard, P.; Charron, P.; Carrier, L.; Ledeuil, C.; Cheav, T.; Pichereau, C.; Benaiche, A.; Isnard, R.; Dubourg, O.; Burban, M.; et al. Hypertrophic cardiomyopathy: Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 2003, 107, 2227–2232. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Novati, G.; Pan, J.; Bycroft, C.; Žemgulyte, A.; Applebaum, T.; Pritzel, A.; Wong, L.H.; Zielinski, M.; Sargeant, T.; et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 2023, 381, eadg7492. [Google Scholar] [CrossRef] [PubMed]
- Malakhova, A.A.; Grigor’eva, E.V.; Pavlova, S.V.; Malankhanova, T.B.; Valetdinova, K.R.; Vyatkin, Y.V.; Khabarova, E.A.; Rzaev, J.A.; Zakian, S.M.; Medvedev, S.P. Generation of induced pluripotent stem cell lines ICGi021-A and ICGi022-A from peripheral blood mononuclear cells of two healthy individuals from Siberian population. Stem Cell Res. 2020, 48, 101952. [Google Scholar] [CrossRef] [PubMed]
- Dementyeva, E.V.; Kovalenko, V.R.; Zhiven, M.K.; Ustyantseva, E.I.; Kretov, E.I.; Vyatkin, Y.V.; Zakian, S.M. Generation of two clonal iPSC lines, ICGi019-A and ICGi019-B, by reprogramming peripheral blood mononuclear cells of a patient suffering from hypertrophic cardiomyopathy and carrying a heterozygous p.M659I mutation in MYH7. Stem Cell Res. 2020, 46, 101840. [Google Scholar] [CrossRef] [PubMed]
- Burridge, P.W.; Matsa, E.; Shukla, P.; Lin, Z.C.; Churko, J.M.; Ebert, A.D.; Lan, F.; Diecke, S.; Huber, B.; Mordwinkin, N.M.; et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 2014, 11, 855–860. [Google Scholar] [CrossRef]
- Guo, G.; Wang, L.; Li, X.; Fu, W.; Cao, J.; Zhang, J.; Liu, Y.; Liu, M.; Wang, M.; Zhao, G.; et al. Enhanced myofilament calcium sensitivity aggravates abnormal calcium handling and diastolic dysfunction in patient-specific induced pluripotent stem cell-derived cardiomyocytes with MYH7 mutation. Cell Calcium 2024, 117, 102822. [Google Scholar] [CrossRef]
- Shafaattalab, S.; Li, A.Y.; Gunawan, M.G.; Kim, B.; Jayousi, F.; Maaref, Y.; Song, Z.; Weiss, J.N.; Solaro, R.J.; Qu, Z.; et al. Mechanisms of arrhythmogenicity of hypertrophic cardiomyopathy-associated troponin T (TNNT2) variant I79N. Front. Cell Dev. Biol. 2021, 9, 787581. [Google Scholar] [CrossRef]
- Feyen, D.A.M.; McKeithan, W.L.; Bruyneel, A.A.N.; Spiering, S.; Hörmann, L.; Ulmer, B.; Zhang, H.; Briganti, F.; Schweizer, M.; Hegyi, B.; et al. Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes. Cell Rep. 2020, 32, 107925. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.M.; Maltagliati, A.J. Nrf2 at the heart of oxidative stress and cardiac protection. Physiol. Genomics 2018, 50, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Menezes Junior, A.D.S.; França-E-Silva, A.L.G.; Oliveira, H.L.; Lima, K.B.A.; Porto, I.O.P.; Pedroso, T.M.A.; Silva, D.M.E.; Freitas, A.F., Jr. Genetic mutations and mitochondrial redox signaling as modulating factors in hypertrophic cardiomyopathy: A scoping review. Int. J. Mol. Sci. 2024, 25, 5855. [Google Scholar] [CrossRef] [PubMed]
- Hesaraki, M.; Bora, U.; Pahlavan, S.; Salehi, N.; Mousavi, S.A.; Barekat, M.; Rasouli, S.J.; Baharvand, H.; Ozhan, G.; Totonchi, M. A Novel Missense Variant in Actin Binding Domain of MYH7 Is Associated With Left Ventricular Noncompaction. Front. Cardiovasc. Med. 2022, 9, 839862. [Google Scholar] [CrossRef] [PubMed]
- Antoniutti, G.; Caimi-Martinez, F.G.; Álvarez-Rubio, J.; Morlanes-Gracia, P.; Pons-Llinares, J.; Rodríguez-Picón, B.; Fortuny-Frau, E.; Torres-Juan, L.; Heine-Suner, D.; Ripoll-Vera, T. Genotype-Phenotype Correlation in Hypertrophic Cardiomyopathy: New Variant p.Arg652Lys in MYH7. Genes 2022, 13, 320. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, S.V.; Shayakhmetova, L.S.; Pronyaeva, K.A.; Shulgina, A.E.; Zakian, S.M.; Dementyeva, E.V. Generation of Induced Pluripotent Stem Cell Lines ICGi022-A-3, ICGi022-A-4, and ICGi022-A-5 with p.Asn515del Mutation Introduced in MYBPC3 Using CRISPR/Cas9. Russ. J. Dev. Biol. 2023, 54, 96–103. [Google Scholar] [CrossRef]
- Watkins, H.; Ashrafian, H.; Redwood, C. Inherited cardiomyopathies. N. Engl. J. Med. 2011, 364, 1643–1656. [Google Scholar] [CrossRef] [PubMed]
- Ramachandra, C.J.A.; Mai Ja, K.P.M.; Lin, Y.-H.; Shim, W.; Boisvert, W.A.; Hausenloy, D.J. Induced pluripotent stem cells for modelling energetic alterations in hypertrophic cardiomyopathy. Cond. Med. 2019, 2, 142–151. [Google Scholar]
- Malgija, B.; Kumar, N.S.; Piramanayagam, S. Collective transcriptomic deregulation of hypertrophic and dilated cardiomyopathy—Importance of fibrotic mechanism in heart failure. Comput. Biol. Chem. 2018, 73, 85–94. [Google Scholar] [CrossRef]
- Pei, J.; Schuldt, M.; Nagyova, E.; Gu, Z.; El Bouhaddani, S.; Yiangou, L.; Jansen, M.; Calis, J.J.A.; Dorsch, L.M.; Blok, C.S.; et al. Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations. Clin. Epigenet. 2021, 13, 61. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, X.; Dai, Q. Integration of transcriptomic data identifies key hallmark genes in hypertrophic cardiomyopathy. BMC Cardiovasc. Disord. 2021, 21, 330. [Google Scholar] [CrossRef] [PubMed]
- Wehrens, M.; de Leeuw, A.E.; Wright-Clark, M.; Eding, J.E.C.; Boogerd, C.J.; Molenaar, B.; van der Kraak, P.H.; Kuster, D.W.D.; van der Velden, J.; Michels, M.; et al. Single-cell transcriptomics provides insights into hypertrophic cardiomyopathy. Cell Rep. 2022, 39, 110809. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ren, J.; Liu, J.; Lu, M.; Cui, Y.; Liao, Y.; Zhou, Y.; Gao, Y.; Tang, F.; Wang, J.; et al. High-resolution single-cell transcriptomic survey of cardiomyocytes from patients with hypertrophic cardiomyopathy. Cell Prolif. 2024, 57, e13557. [Google Scholar] [CrossRef] [PubMed]
- Tanosaki, S.; Tohyama, S.; Kishino, Y.; Fujita, J.; Fukuda, K. Metabolism of human pluripotent stem cells and differentiated cells for regenerative therapy: A focus on cardiomyocytes. Inflamm. Regen. 2021, 41, 5. [Google Scholar] [CrossRef] [PubMed]
- Smolina, N.; Khudiakov, A.; Kostareva, A. Assaying Mitochondrial Respiration as an Indicator of Cellular Metabolism and Fitness. Methods Mol. Biol. 2023, 2644, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Dementyeva, E.V.; Pavlova, S.V.; Chernyavsky, A.M.; Zakian, S.M. Generation of an induced pluripotent stem cell line, ICGi029-A, by reprogramming peripheral blood mononuclear cells of a patient suffering from hypertrophic cardiomyopathy and carrying a heterozygous p.N515del mutation in MYBPC3. Stem Cell Res. 2021, 53, 102344. [Google Scholar] [CrossRef]
- Sorogina, D.A.; Grigor’eva, E.V.; Malakhova, A.A.; Pavlova, S.V.; Medvedev, S.P.; Vyatkin, Y.V.; Khabarova, E.A.; Rzaev, J.A.; Zakian, S.M. Creation of Induced Pluripotent Stem Cells ICGi044-B and ICGi044-C Using Reprogramming of Peripheral Blood Mononuclear Cells of a Patient with Parkinson’s Disease Associated with c.1492T>G Mutation in the GLUD2 Gene. Russ. J. Dev. Biol. 2023, 54, 104–111. [Google Scholar] [CrossRef]
Tool | Score | Prediction |
---|---|---|
SIFT | 0.001 | Deleterious |
PolyPhen2 HDIV | 0.957 | Damaging |
PolyPhen2 HVAR | 0.996 | Damaging |
MutationTaster | 1 | Deleterious |
MutationAssessor | 2.815 | Medium deleterious probability |
FATHMM | −3.74 | Deleterious |
PROVEAN | −3.38 | Deleterious |
fathmm-MKL | 0.992 | Deleterious |
MetaSVM | 1.069 | Deleterious |
MetaLR | 0.935 | Deleterious |
Oligonucleotides | |||
---|---|---|---|
Gene/Locus | Product Size | Nucleotide Sequence (5′-3′) | |
Protospacer for introducing p.M659I (c.1977G > A) mutation | MYH7, Exon 18 | 20 b | GGGATGGGTGGAGCGCAAGT |
Donor oligonucleotide with p.M659I (c.1977G > A) mutation | MYH7, Exon 18 | 89 b | TATTGCATTTTTGGCCACAGGAAAATCTGAACAAGCTGATAACAAACTTGCGCTCCACCCATCCCCACTTTGTACGTTGTATCATCCCT |
Donor oligonucleotide without p.M659I (c.1977G > A) mutation | MYH7, Exon 18 | 89 b | TATTGCATTTTTGGCCACAGGAAAATCTGAACAAGCTGATGACAAACTTGCGCTCCACCCATCCCCACTTTGTACGTTGTATCATCCCT |
Mutation analysis | MYH7, Exon 18 | 258 bp | TCCTTCCTTCTTCTCCTCTCTT/GTGGTGGTAGGTAGGGAGAT |
CRISPR/Cas9 off-target activity analysis | chr4:14217409-14217428 | 559 bp | TCTGGTAAGAGCCTGACTTCTG/TCCCACCTGCCATTGGAATA |
chr7:57819587-57819606 | 378 bp | ACGATACTCAAGGCCCAATCT/TGGTGTTTCCTCATCCTGGT | |
chr8:139343032-139343051 | 535 bp | GCCAGGAAAGTTCAGTGGTTAG/CCCTCTCTCTTCCTGCTCTTAT | |
chr20:9996001-9996020 | 575 bp | GACTTGTAATAACTCTCACTCACCTAAA/CCAGGCAATGTTAAGCCTTCAT | |
chr2:241709069-241709088 | 541 bp | TCCCGTGTGGATTTCTTTAGGT/TGTAGGCGTTCTGGATCTTCTG | |
Mycoplasma detection | 16S ribosomal RNA gene | 280 bp | GGGAGCAAACAGGATTAGATACCCT/TGCACCATCTGTCACTCTGTTAACCTC |
Reference genes (RT-qPCR) | B2M | 90 bp | TAGCTGTGCTCGCGCTACT/TCTCTGCTGGATGACGTGAG |
GAPDH | 202 bp | TGTTGCCATCAATGACCCCTT/CTCCACGACGTACTCAGCG | |
Pluripotency markers (RT-qPCR) | OCT4 | 144 bp | GGGAGATTGATAACTGGTGTGTT/GTGTATATCCCAGGGTGATCCTC |
NANOG | 116 bp | TTTGTGGGCCTGAAGAAAACT/AGGGCTGTCCTGAATAAGCAG | |
SOX2 | 100 bp | GCTTAGCCTCGTCGATGAAC/AACCCCAAGATGCACAACTC | |
HCM-associated genes (RT-qPCR) | NPPA | 95 bp | GATAACAGCCAGGGAGGACAAG/CAAGATGACACAAATGCAGCAGAG |
GATA4 | 99 bp | CCTGTGAGTTGGAGACTTCTTT/CCTCGGTGCTAGAAACACAA | |
MEF2C | 117 bp | CTGGTCTCACCTGGTAACTTGAAC/CTTGCTGCCTGGTGGAATAAGA | |
Sarcomere genes (RT-qPCR) | MYH7 | 83 bp | TCGTGCCTGATGACAAACAGGAGT/ATACTCGGTCTCGGCAGTGACTTT |
MYL2 | 93 bp | GGACCCTGAGGAAACCATTCT/GTCAGCATTTCCCGAACGTAATC | |
TNNT2 | 89 bp | GGCCATTGACCACCTGAATGA/CGAACTTCTCTGCCTCCAAGTTATAG | |
Calcium homeostasis regulation genes (RT-qPCR) | RYR2 | 86 bp | GTTGCTCCATCGGCAGTATGA/CCTCCACGGACACACCATTTAT |
ATP2A2 | 89 bp | CCACGAGCTGTCAACCAAGATA/GTTGCTACCACCACTCCCATAG | |
PLN | 98 bp | GCTGCCAAGGCTACCTAAA/CAGGACAGGAAGTCTGAAGTTT | |
Antioxidant defense genes (RT-qPCR) | NFE2L2 | 125 bp | TCTGCCAACTACTCCCAGGT/AACGTAGCCGAAGAAACCTCA |
SOD1 | 194 bp | CTAGCGAGTTATGGCGACGA/CTGCACTGGTACAGCCTGC | |
Antibodies | |||
Antibody | Dilution | Company, Cat #, and RRID | |
Pluripotency markers | Mouse IgG2b anti-OCT3/4 | 1:50 | Santa Cruz Biotechnology, Dallas, TX, USA, Cat # sc-5279, RRID:AB_628051 |
Rabbit IgG anti-NANOG | 1:200 | ReproCELL, Yokohama, Japan, Cat # RCAB003P, RRID: AB_2714012 | |
Rabbit IgG anti-SOX2 | 1:200 | Cell Signaling Technology, Danvers, MA, USA, Cat # 3579, RRID:AB_2195767 | |
Mouse IgM anti-TRA-1-60 | 1:200 | Abcam, Cambridge, UK, Cat # ab16288, RRID:AB_778563 | |
Markers of differentiated derivatives | Mouse IgG2a anti-TUBB3 | 1:500 | BioLegend, San Diego, CA, USA, Cat # 801201, RRID:AB_2313773 |
Mouse IgG2a anti-αSMA | 1:100 | Dako, Glostrup, Denmark, Cat # M0851, RRID:AB_2223500 | |
Mouse IgG1 anti-CK18 | 1:100 | Abcam, Cambridge, UK, Cat # ab668, RRID:AB_305647 | |
Cardiomyocyte markers | Mouse IgG1 anti-sarcomeric α-actinin | 1:200 | Abcam, Cambridge, UK, Cat # ab9465, RRID:AB_307264 |
Secondary antibodies | Goat anti-Mouse IgG (H + L) Secondary Antibody, Alexa Fluor 568 | 1:400 | Thermo Fisher Scientific, Waltham, MA, USA, Cat # A11031, RRID:AB_144696 |
Goat anti-Rabbit IgG (H + L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 | 1:400 | Thermo Fisher Scientific, Waltham, MA, USA, Cat # A11008, RRID:AB_143165 | |
Goat anti-Mouse IgM Heavy Chain Cross-Adsorbed Secondary Antibody, Alexa Fluor 568 | 1:400 | Thermo Fisher Scientific, Waltham, MA, USA, Cat # A21043, RRID:AB_2535712 | |
Goat anti-Mouse IgG2a Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 568 | 1:400 | Thermo Fisher Scientific, Waltham, MA, USA, Cat # A21134, RRID:AB_2535773 | |
Goat anti-Mouse IgG1 Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 488 | 1:400 | Thermo Fisher Scientific, Waltham, MA, USA, Cat # A21121, RRID:AB_2535764 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlova, S.V.; Shulgina, A.E.; Zakian, S.M.; Dementyeva, E.V. Studying Pathogenetic Contribution of a Variant of Unknown Significance, p.M659I (c.1977G > A) in MYH7, to the Development of Hypertrophic Cardiomyopathy Using CRISPR/Cas9-Engineered Isogenic Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2024, 25, 8695. https://doi.org/10.3390/ijms25168695
Pavlova SV, Shulgina AE, Zakian SM, Dementyeva EV. Studying Pathogenetic Contribution of a Variant of Unknown Significance, p.M659I (c.1977G > A) in MYH7, to the Development of Hypertrophic Cardiomyopathy Using CRISPR/Cas9-Engineered Isogenic Induced Pluripotent Stem Cells. International Journal of Molecular Sciences. 2024; 25(16):8695. https://doi.org/10.3390/ijms25168695
Chicago/Turabian StylePavlova, Sophia V., Angelina E. Shulgina, Suren M. Zakian, and Elena V. Dementyeva. 2024. "Studying Pathogenetic Contribution of a Variant of Unknown Significance, p.M659I (c.1977G > A) in MYH7, to the Development of Hypertrophic Cardiomyopathy Using CRISPR/Cas9-Engineered Isogenic Induced Pluripotent Stem Cells" International Journal of Molecular Sciences 25, no. 16: 8695. https://doi.org/10.3390/ijms25168695
APA StylePavlova, S. V., Shulgina, A. E., Zakian, S. M., & Dementyeva, E. V. (2024). Studying Pathogenetic Contribution of a Variant of Unknown Significance, p.M659I (c.1977G > A) in MYH7, to the Development of Hypertrophic Cardiomyopathy Using CRISPR/Cas9-Engineered Isogenic Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 25(16), 8695. https://doi.org/10.3390/ijms25168695