Advancements in Telomerase-Targeted Therapies for Glioblastoma: A Systematic Review
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Molecules That Inhibit hTERT Transcriptional Activity
Author | In Vitro | In Vivo | Drug | Mechanism of Action |
---|---|---|---|---|
Mirzazadeh et al. [14] | ✔ | Resveratrol (RSV) | Inhibition of hTERT transcription | |
Gurung et al. [15] | ✔ | Thymoquinone (TQ) | Inhibition of hTERT transcription | |
Khaw et al. [16] | ✔ | Curcumin | Inhibition of hTERT transcription | |
Khaw et al. [17] | ✔ | Plumbagin | Inhibition of hTERT transcription | |
Khaw et al. [18] | ✔ | Genistein | Inhibition of hTERT transcription | |
Khaw et al. [19] | ✔ | Trichostatin A (TSA) | Inhibition of hTERT transcription | |
Lin et al. [20] | ✔ | ✔ | Butylidenephthalide (BP) | Inhibition of hTERT transcription |
Kiaris and Schally et al. [21] | ✔ | ✔ | MZ-5-156 (GH-RH antagonist) | Inhibition of hTERT transcription |
Udroiu et al. [22] | ✔ | Epigallocatechingallate (EGCG) | Inhibition of hTERT transcription | |
Das et al. [23] | ✔ | Retinoids | Inhibition of hTERT transcription | |
Aquilanti et al. [5] | ✔ | ✔ | CRISPRi approach | Inhibition of hTERT transcription |
Ergüven et al. [24] | ✔ | ✔ | Suramin | Inhibition of hTERT transcription |
3.2. Molecules That Inhibit Direct or Indirect the hTERT
Author | In Vitro | In Vivo | Drug | Mechanism of Action |
---|---|---|---|---|
Lavanya et al. [26] | ✔ | BIBR1532 | Direct Inhibition hTERT | |
Biray Avci et al. [28] | ✔ | BIBR1532 | Direct Inhibition hTERT | |
Ahmad et al. [29] | ✔ | ✔ | Costunolide | Indirect hTERT Inhibition |
Gurung et al. [30] | ✔ | MST-312 | Indirect hTERT Inhibition | |
Takahashi et al. [32] | ✔ | ✔ | Eribulin | Indirect hTERT Inhibition |
Cheng et al. [33] | ✔ | Arsenico | Indirect hTERT Inhibition |
3.3. Molecules Acting through hTR Inhibition
3.4. Molecules That Inhibit Shelterin and/or Stabilize the G-Quadruplex Structure at the 3′ Telomere End
Author | In Vitro | In Vivo | Drug | Mechanism of Action |
---|---|---|---|---|
Bejarano et al. [43] | ✔ | ✔ | TRF1 Inhibition | Sheltering proteins Inhibition |
Zhou et al. [44] | ✔ | BRACO-19 | G-quadruplex stabilization | |
Lagah et al. [45] | ✔ | RHPS4 | G-quadruplex stabilization | |
Berardinelli et al. [46] | ✔ | RHPS4 | G-quadruplex stabilization | |
Hasegawa et al. [47] | ✔ | ✔ | Telomestatin | G-quadruplex stabilization |
Merle et al. [48] | ✔ | N-methylated triflate (TAC) | G-quadruplex stabilization |
3.5. Direct Modulation Therapies for hTERT Gene Expression
Author | In Vitro | In Vivo | Gene Interference Strategy | Mechanism of Action through Gene Interfernce |
---|---|---|---|---|
Mancini et al. [55] | ✔ | ✔ | siRNA GABPβ1L inhibition | Inhibition of hTERT transcription |
George et al. [52] | ✔ | ✔ | hTERT siRNA + IFN-γ | Indirect hTERT Inhibition |
Falchetti et al. [53,54] | ✔ | ✔ | hTERT siRNA | Indirect hTERT Inhibition |
Lavanya et al. [26] | ✔ | hTERT siRNA | Indirect hTERT Inhibition | |
Wang et al. [56] | ✔ | ✔ | Anti-miR21 | Inhibition of hTERT transcription |
Kim et al. [57] | ✔ | shMUC1 | Indirect hTERT Inhibition | |
Vinchure et al. [58] | ✔ | miR-490 | Sheltering proteins Inhibition |
4. Discussion
Author | Drug | hTERT Inhibition Alone | Combined Therapies | ||
---|---|---|---|---|---|
Chemo Therapies | Radio Therapies | Others Drug | |||
Mirzazadeh et al. [14] | Resveratrol (RSV) | ✔ | |||
Gurung et al. [15] | Thymoquinone (TQ) | ✔ | |||
Khaw et al. [16] | Curcumin | ✔ | |||
Khaw et al. [17] | Plumbagin | ✔ | |||
Khaw et al. [18] | Genistein | ✔ | |||
Khaw et al. [19] | Trichostatin A (TSA) | ✔ | |||
Lin et al. [20] | Butylidenephthalide (BP) | ✔ | |||
Kiaris and Schally et al. [21] | MZ-5-156 (GH-RH antagonist) | ✔ | |||
Udroiu et al. [22] | Epigallocatechingallate (EGCG) | ✔ | |||
Das et al. [23] | Retinoids | ✔ | ✔ (Improved IFN-γ and Taxol sensitivity) | ||
Aquilanti et al. [5] | CRISPRi approach | ✔ | |||
Ergüven et al. [24] | Suramin | ✔ | |||
Lavanya et al. [26] | BIBR1532 | ✔ | |||
Biray Avci et al. [28] | BIBR1532 | ✔ | |||
Ahmad et al. [29] | Costunolide | ✔ | |||
Gurung et al. [30] | MST-312 | ✔ | |||
Takahashi et al. [32] | Eribulin | ✔ | |||
Cheng et al. [33] | Arsenico | ✔ | |||
Marian et al. [38] | Imetelstat | ✔ | ✔ (TMZ) | ✔ | |
Ferrandon et al. [39] | Imetelstat | ✔ | ✔ | ||
Ozawa et al. [40] | GRN163 | ✔ | |||
Hashizume et al. [41] | GRN163 | ✔ | |||
Bejarano et al. [43] | TRF1 Inhibition | ✔ | ✔ (TMZ) | ✔ | |
Zhou et al. [44] | BRACO-19 | ✔ | |||
Lagah et al. [45] | RHPS4 | ✔ | |||
Berardinelli et al. [46] | RHPS4 | ✔ | ✔ | ||
Hasegawa et al. [47] | Telomestatin | ✔ | |||
Merle et al. [48] | N-methylated triflate (TAC) | ✔ | ✔ | ||
Mancini et al. [55] | siRNA GABPβ1L inhibition | ✔ | |||
George et al. [52] | hTERT siRNA + IFN-γ | ✔ | ✔ (IFN-γ) | ||
Falchetti et al. [53,54] | hTERT siRNA | ✔ | |||
Lavanya et al. [26] | hTERT siRNA | ✔ | |||
Wang et al. [56] | Anti-miR21 | ✔ | |||
Kim et al. [57] | shMUC1 | ✔ | |||
Vinchure et al. [58] | miR-490 | ✔ |
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BIBR1532 | 2-[(E)-3-Naphtalen-2-yl-but-2-enoylamino]-benzoic acid |
GRN163 | 13-mer oligonucleotide N3′¡P5′ thio-phosphoramidate |
TRF1 | Telomeric repeat binding factor 1 |
TRF2 | Telomeric repeat binding factor 2 |
TPP1 | Ripeptidyl Peptidase 1 |
RAP1 | Repressor/activator protein 1 |
POT1 | Protection Of Telomeres 1 |
GABP | Binding protein transcription factor subunit beta 1 |
TAC | N-methylated triflate derivatives of 4,6-bis-(6-(acrid-9-yl)-pyridin-2-yl)-pyrimidine. |
RHPS4 | (3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl] acridinium methosulfate) |
TUNEL | Terminal deoxynucleotidyl transferasedUTP nick end labeling |
RT-PCR | Reverse transcription polymerase chain reaction |
TRAP | Translating Ribosome Affinity Purification |
FACS | Fluorescence-Activated Cell Sorting |
MTT assay | (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) |
MTS assay | (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) |
STAT3 | Signal transducer and activator of transcription 3 |
TNKS2 | tankyrase 2 |
SMG1 | Serine/threonine-protein kinase |
PIN1 | Peptidyl-prolyl cis/trans isomerase |
References
- Preusser, M.; de Ribaupierre, S.; Wöhrer, A.; Erridge, S.C.; Hegi, M.; Weller, M.; Stupp, R. Current Concepts and Management of Glioblastoma. Ann. Neurol. 2011, 70, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; Weller, M.; Lee, E.Q.; Alexander, B.M.; Barnholtz-Sloan, J.S.; Barthel, F.P.; Batchelor, T.T.; Bindra, R.S.; Chang, S.M.; Chiocca, E.A.; et al. Glioblastoma in Adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) Consensus Review on Current Management and Future Directions. Neuro-Oncology 2020, 22, 1073–1113. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Della Pepa, G.M.; Ius, T.; La Rocca, G.; Gaudino, S.; Isola, M.; Pignotti, F.; Rapisarda, A.; Mazzucchi, E.; Giordano, C.; Dragonetti, V.; et al. 5-Aminolevulinic Acid and Contrast-Enhanced Ultrasound: The Combination of the Two Techniques to Optimize the Extent of Resection in Glioblastoma Surgery. Neurosurgery 2020, 86, E529–E540. [Google Scholar] [CrossRef] [PubMed]
- Aquilanti, E.; Kageler, L.; Wen, P.Y.; Meyerson, M. Telomerase as a Therapeutic Target in Glioblastoma. Neuro-Oncology 2021, 23, 2004–2013. [Google Scholar] [CrossRef]
- D’alessandris, Q.G.; Martini, M.; Cenci, T.; Bonaventura, R.; Lauretti, L.; Stumpo, V.; Olivi, A.; Larocca, L.M.; Pallini, R.; Montano, N. Tailored Therapy for Recurrent Glioblastoma: Report of a personalized molecular approach. J. Neurosurg. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Feigon, J. Telomerase Structural Biology Comes of Age. Curr. Opin. Struct. Biol. 2022, 76, 102446. [Google Scholar] [CrossRef]
- D’Alessandris, Q.G.; Battistelli, M.; Pennisi, G.; Offi, M.; Martini, M.; Cenci, T.; Falchetti, M.L.; Lauretti, L.; Olivi, A.; Pallini, R.; et al. Telomerase Inhibition in Malignant Gliomas: A Systematic Review. Expert. Rev. Mol. Med. 2023, 25, e10. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.W.; Hodis, E.; Xu, M.J.; Kryukov, G.V.; Chin, L.; Garraway, L.A. Highly Recurrent TERT Promoter Mutations in Human Melanoma. Science 2013, 339, 957–959. [Google Scholar] [CrossRef]
- Horn, S.; Figl, A.; Rachakonda, P.S.; Fischer, C.; Sucker, A.; Gast, A.; Kadel, S.; Moll, I.; Nagore, E.; Hemminki, K.; et al. TERT Promoter Mutations in Familial and Sporadic Melanoma. Science 2013, 339, 959–961. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Zhang, J.G.; Kruse, C.A.; Driggers, L.; Hoa, N.; Wisoff, J.; Allen, J.C.; Zagzag, D.; Newcomb, E.W.; Jadus, M.R. Tumor Antigen Precursor Protein Profiles of Adult and Pediatric Brain Tumors Identify Potential Targets for Immunotherapy. J. Neuro-Oncol. 2008, 88, 65–76. [Google Scholar] [CrossRef]
- Olympios, N.; Gilard, V.; Marguet, F.; Clatot, F.; Di Fiore, F.; Fontanilles, M. TERT Promoter Alterations in Glioblastoma: A Systematic Review. Cancers 2021, 13, 1147. [Google Scholar] [CrossRef]
- Mirzazadeh, A. Assessment Effects of Resveratrol on Human Telomerase Reverse Transcriptase Messenger Ribonucleic Acid Transcript in Human Glioblastoma. Adv. Biomed. Res. 2017, 6, 73. [Google Scholar]
- Gurung, R.L.; Lim, S.N.; Khaw, A.K.; Soon, J.F.F.; Shenoy, K.; Mohamed Ali, S.; Jayapal, M.; Sethu, S.; Baskar, R.; Hande, M.P. Thymoquinone Induces Telomere Shortening, DNA Damage and Apoptosis in Human Glioblastoma Cells. PLoS ONE 2010, 5, e12124. [Google Scholar] [CrossRef]
- Khaw, A.K.; Hande, M.P.; Kalthur, G.; Hande, M.P. Curcumin Inhibits Telomerase and Induces Telomere Shortening and Apoptosis in Brain Tumour Cells. J. Cell. Biochem. 2013, 114, 1257–1270. [Google Scholar] [CrossRef]
- Khaw, A.K. Plumbagin Alters Telomere Dynamics, Induces DNA Damage and Cell Death in Human Brain Tumour Cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015, 793, 86–95. [Google Scholar] [CrossRef]
- Khaw, A.K.; Yong, J.W.Y.; Kalthur, G.; Hande, M.P. Genistein Induces Growth Arrest and Suppresses Telomerase Activity in Brain Tumor Cells. Genes Chromosomes Cancer 2012, 51, 961–974. [Google Scholar] [CrossRef]
- Khaw, A.K. Inhibition of Telomerase Activity and Human Telomerase Reverse Transcriptase Gene Expression by Histone Deacetylase Inhibitor in Human Brain Cancer Cells. Mutat. Res. 2007, 625, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-C.; Lin, S.-Z.; Chen, Y.-L.; Chang, J.-S.; Ho, L.-I.; Liu, P.-Y.; Chang, L.-F.; Harn, Y.-C.; Chen, S.-P.; Sun, L.-Y.; et al. Butylidenephthalide Suppresses Human Telomerase Reverse Transcriptase (TERT) in Human Glioblastomas. Ann. Surg. Oncol. 2011, 18, 3514–3527. [Google Scholar] [CrossRef] [PubMed]
- Kiaris, H.; Schally, A.V. Decrease in Telomerase Activity in U-87MG Human Glioblastomas after Treatment with an Antagonist of Growth Hormone-Releasing Hormone. Proc. Natl. Acad. Sci. USA 1999, 96, 226–231. [Google Scholar] [CrossRef]
- Udroiu, I. Epigallocatechin-3-gallateInduces Telomere Shortening and Clastogenic Damage in Glioblastoma Cells. Environ. Mol. Mutagen. 2019, 60, 683–692. [Google Scholar] [CrossRef]
- Das, A. Differentiation Decreased Telomerase Activity in Rat Glioblastoma C6 Cells and Increased Sensitivity to IFN-c and Taxol for Apoptosis. Neurochem. Res. 2007, 32, 2167–2183. [Google Scholar] [CrossRef]
- Ergüven, M.; Bilir, A.; Altug, T.; Aktar, F.; Akev, N. Suramin Increased Telomerase Activity in the C6 Glioma/Wistar Experimental Brain Tumor Model. Int. J. Biomed. Sci. 2007, 3, 104–111. [Google Scholar] [CrossRef]
- Anderson, L.M. Cancer Biology and Hormesis: Comments on Calabrese (2005). Crit. Rev. Toxicol. 2005, 35, 583–586. [Google Scholar] [CrossRef]
- Lavanya, C.; Venkataswamy, M.M.; Sibin, M.K.; Srinivas Bharath, M.M.; Chetan, G.K. Down Regulation of Human Telomerase Reverse Transcriptase (hTERT) Expression by BIBR1532 in Human Glioblastoma LN18 Cells. Cytotechnology 2018, 70, 1143–1154. [Google Scholar] [CrossRef]
- Lavanya, C.; Sibin, M.K.; Srinivas Bharath, M.M.; Manoj, M.J.; Venkataswamy, M.M.; Bhat, D.I.; Narasinga Rao, K.V.L.; Chetan, G.K. RNA Interference Mediated Downregulation of Human Telomerase Reverse Transcriptase (hTERT) in LN18 Cells. Cytotechnology 2016, 68, 2311–2321. [Google Scholar] [CrossRef]
- Biray Avci, C.; Dogan, F.; Ozates Ay, N.P.; Goker Bagca, B.; Abbaszadeh, Z.; Gunduz, C. Effects of Telomerase Inhibitor on Epigenetic Chromatin Modification Enzymes in Malignancies. J. Cell. Biochem. 2018, 119, 9817–9824. [Google Scholar] [CrossRef]
- Ahmad, F.; Dixit, D.; Sharma, V.; Kumar, A.; Joshi, S.D.; Sarkar, C.; Sen, E. Nrf2-Driven TERT Regulates Pentose Phosphate Pathway in Glioblastoma. Cell Death Dis. 2016, 7, e2213. [Google Scholar] [CrossRef]
- Gurung, R.L.; Lim, H.K.; Venkatesan, S.; Lee, P.S.W.; Hande, M.P. Targeting DNA-PKcs and Telomerase in Brain Tumour Cells. Mol. Cancer 2014, 13, 232. [Google Scholar] [CrossRef]
- Li, Q. Antitumor Activity and Mechanism of Costunolide and Dehydrocostus Lactone: Two Natural Sesquiterpene Lactones from the Asteraceae Family. Biomed. Pharmacother. 2020, 125, 109955. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Miki, S.; Fujimoto, K.; Fukuoka, K.; Matsushita, Y.; Maida, Y.; Yasukawa, M.; Hayashi, M.; Shinkyo, R.; Kikuchi, K.; et al. Eribulin Penetrates Brain Tumor Tissue and Prolongs Survival of Mice Harboring Intracerebral Glioblastoma Xenografts. Cancer Sci. 2019, 110, 2247–2257. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Li, Y.; Ma, C.; Song, Y.; Xu, H.; Yu, H.; Xu, S.; Mu, Q.; Li, H.; Chen, Y.; et al. Arsenic Trioxide Inhibits Glioma Cell Growth through Induction of Telomerase Displacement and Telomere Dysfunction. Oncotarget 2016, 7, 12682–12692. [Google Scholar] [CrossRef]
- Lin, X.; Peng, Z.; Su, C. Potential Anti-Cancer Activities and Mechanisms of Costunolide and Dehydrocostuslactone. Int. J. Mol. Sci. 2015, 16, 10888–10906. [Google Scholar] [CrossRef] [PubMed]
- Dybdal-Hargreaves, N.F.; Risinger, A.L.; Mooberry, S.L. Eribulin Mesylate: Mechanism of Action of a Unique Microtubule-Targeting Agent. Clin. Cancer Res. 2015, 21, 2445–2452. [Google Scholar] [CrossRef] [PubMed]
- Bollam, S.R.; Berens, M.E.; Dhruv, H.D. When the Ends Are Really the Beginnings: Targeting Telomerase for Treatment of GBM. Curr. Neurol. Neurosci. Rep. 2018, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, S.H.; Yousefi, M.; Dizaji, M.Z.; Momeny, M.; Bashash, D.; Zekri, A.; Alimoghaddam, K.; Ghavamzadeh, A. Arsenic Trioxide Induces Apoptosis and Incapacitates Proliferation and Invasive Properties of U87MG Glioblastoma Cells through a Possible NF-κB-Mediated Mechanism. Asian Pac. J. Cancer Prev. 2016, 17, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
- Marian, C.O.; Cho, S.K.; McEllin, B.M.; Maher, E.A.; Hatanpaa, K.J.; Madden, C.J.; Mickey, B.E.; Wright, W.E.; Shay, J.W.; Bachoo, R.M. The Telomerase Antagonist, Imetelstat, Efficiently Targets Glioblastoma Tumor-Initiating Cells Leading to Decreased Proliferation and Tumor Growth. Clin. Cancer Res. 2010, 16, 154–163. [Google Scholar] [CrossRef]
- Ferrandon, S. Telomerase Inhibition Improves Tumor Response to Radiotherapy in a Murine Orthotopic Model of Human Glioblastoma. Mol. Cancer 2015, 14, 134. [Google Scholar] [CrossRef]
- Ozawa, T.; Gryaznov, S.M.; Hu, L.J.; Pongracz, K.; Santos, R.A.; Bollen, A.W.; Lamborn, K.R.; Deen, D.F. Antitumor effects of specific telomerase inhibitor GRN163 in human glioblastoma xenografts. Neuro-Oncology 2004, 6, 218–226. [Google Scholar] [CrossRef]
- Hashizume, R.; Ozawa, T.; Gryaznov, S.M.; Bollen, A.W.; Lamborn, K.R.; Frey, W.H.; Deen, D.F. New Therapeutic Approach for Brain Tumors: Intranasal Delivery of Telomerase Inhibitor GRN163. Neuro-Oncology 2008, 10, 112–120. [Google Scholar] [CrossRef]
- De Lange, T. Shelterin: The Protein Complex That Shapes and Safeguards Human Telomeres. Genes Dev. 2005, 19, 2100–2110. [Google Scholar] [CrossRef] [PubMed]
- Bejarano, L.; Schuhmacher, A.J.; Méndez, M.; Megías, D.; Blanco-Aparicio, C.; Martínez, S.; Pastor, J.; Squatrito, M.; Blasco, M.A. Inhibition of TRF1 Telomere Protein Impairs Tumor Initiation and Progression in Glioblastoma Mouse Models and Patient-Derived Xenografts. Cancer Cell 2017, 32, 590–607.e4. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Liu, X.; Li, Y.; Xu, S.; Ma, C.; Wu, X.; Cheng, Y.; Yu, Z.; Zhao, G.; Chen, Y. Telomere Targeting with a Novel G-Quadruplex-Interactive Ligand BRACO-19 Induces T-Loop Disassembly and Telomerase Displacement in Human Glioblastoma Cells. Oncotarget 2016, 7, 14925–14939. [Google Scholar] [CrossRef] [PubMed]
- Lagah, S.; Tan, I.-L.; Radhakrishnan, P.; Hirst, R.A.; Ward, J.H.; O’Callaghan, C.; Smith, S.J.; Stevens, M.F.G.; Grundy, R.G.; Rahman, R. RHPS4 G-Quadruplex Ligand Induces Anti-Proliferative Effects in Brain Tumor Cells. PLoS ONE 2014, 9, e86187. [Google Scholar] [CrossRef] [PubMed]
- Berardinelli, F.; Siteni, S.; Tanzarella, C.; Stevens, M.F.; Sgura, A.; Antoccia, A. The G-Quadruplex-Stabilising Agent RHPS4 Induces Telomeric Dysfunction and Enhances Radiosensitivity in Glioblastoma Cells. DNA Repair. 2015, 25, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, D.; Okabe, S.; Okamoto, K.; Nakano, I.; Shin-ya, K.; Seimiya, H. G-Quadruplex Ligand-Induced DNA Damage Response Coupled with Telomere Dysfunction and Replication Stress in Glioma Stem Cells. Biochem. Biophys. Res. Commun. 2016, 471, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Merle, P.; Evrard, B.; Petitjean, A.; Lehn, J.-M.; Teulade-Fichou, M.-P.; Chautard, E.; De Cian, A.; Guittat, L.; Tran, P.L.T.; Mergny, J.-L.; et al. Telomere Targeting with a New G4 Ligand Enhances Radiation-Induced Killing of Human Glioblastoma Cells. Mol. Cancer Ther. 2011, 10, 1784–1795. [Google Scholar] [CrossRef] [PubMed]
- Martínez, P.; Blasco, M.A. Telomeric and Extra-Telomeric Roles for Telomerase and the Telomere-Binding Proteins. Nat. Rev. Cancer 2011, 11, 161–176. [Google Scholar] [CrossRef]
- Alberti, P.; Lacroix, L.; Guittat, L.; Helene, C.; Mergny, J.-L. Nucleic Acids as Targets for Antitelomerase Agents. Mini Rev. Med. Chem. 2003, 3, 23–36. [Google Scholar] [CrossRef]
- Pennarun, G.; Granotier, C.; Gauthier, L.R.; Gomez, D.; Hoffschir, F.; Mandine, E.; Riou, J.-F.; Mergny, J.-L.; Mailliet, P.; Boussin, F.D. Apoptosis Related to Telomere Instability and Cell Cycle Alterations in Human Glioma Cells Treated by New Highly Selective G-Quadruplex Ligands. Oncogene 2005, 24, 2917–2928. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Banik, N.L.; Ray, S.K. Combination of hTERT Knockdown and IFN-Gamma Treatment Inhibited Angiogenesis and Tumor Progression in Glioblastoma. Clin. Cancer Res. 2009, 15, 7186–7195. [Google Scholar] [CrossRef] [PubMed]
- Falchetti, M.L.; Mongiardi, M.P.; Fiorenzo, P.; Petrucci, G.; Pierconti, F.; D’Agnano, I.; D’Alessandris, G.; Alessandri, G.; Gelati, M.; Ricci-Vitiani, L.; et al. Inhibition of Telomerase in the Endothelial Cells Disrupts Tumor Angiogenesis in Glioblastoma Xenografts. Int. J. Cancer 2008, 122, 1236–1242. [Google Scholar] [CrossRef]
- Falchetti, M.L.; Fiorenzo, P.; Mongiardi, M.P.; Petrucci, G.; Montano, N.; Maira, G.; Pierconti, F.; Larocca, L.M.; Levi, A.; Pallini, R. Telomerase Inhibition Impairs Tumor Growth in Glioblastoma Xenografts. Neurol. Res. 2006, 28, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Mancini, A.; Xavier-Magalhães, A.; Woods, W.S.; Nguyen, K.-T.; Amen, A.M.; Hayes, J.L.; Fellmann, C.; Gapinske, M.; McKinney, A.M.; Hong, C.; et al. Disruption of the β1L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter Mutation-Dependent Manner. Cancer Cell 2018, 34, 513–528.e8. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y.; Sun, G.; Luo, H.; Wang, X.-F.; Lan, F.-M.; Yue, X.; Fu, L.-S.; Pu, P.-Y.; Kang, C.-S.; Liu, N.; et al. MiR-21 Modulates hTERT through a STAT3-Dependent Manner on Glioblastoma Cell Growth. CNS Neurosci. Ther. 2012, 18, 722–728. [Google Scholar] [CrossRef]
- Kim, S.; Seo, Y.; Chowdhury, T.; Yu, H.J.; Lee, C.E.; Kim, K.-M.; Kang, H.; Kim, H.J.; Park, S.-J.; Kim, K.; et al. Inhibition of MUC1 Exerts Cell-cycle Arrest and Telomerase Suppression in Glioblastoma Cells. Sci. Rep. 2020, 10, 18238. [Google Scholar] [CrossRef]
- Vinchure, O.S. MiR-490 suppresses telomere maintenance program and associated hallmarks in glioblastoma. Cell. Mol. Life Sci. 2021, 78, 2299–2314. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Epel, E.; Cheon, J.; Kroenke, C.; Sinclair, E.; Bigos, M.; Wolkowitz, O.; Mellon, S.; Blackburn, E. Analyses and Comparisons of Telomerase Activity and Telomere Length in Human T and B Cells: Insights for Epidemiology of Telomere Maintenance. J. Immunol. Methods 2010, 352, 71–80. [Google Scholar] [CrossRef]
- Pallini, R.; Sorrentino, A.; Pierconti, F.; Maggiano, N.; Faggi, R.; Montano, N.; Maira, G.; Larocca, L.M.; Levi, A.; Falchetti, M.L. Telomerase Inhibition by Stable RNA Interference Impairs Tumor Growth and Angiogenesis in Glioblastoma Xenografts. Int. J. Cancer 2006, 118, 2158–2167. [Google Scholar] [CrossRef]
- Calin, G.A.; Croce, C.M. MicroRNA Signatures in Human Cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Manini, I.; Caponnetto, F.; Dalla, E.; Ius, T.; Pepa, G.M.D.; Pegolo, E.; Bartolini, A.; Rocca, G.L.; Menna, G.; Loreto, C.D.; et al. Heterogeneity Matters: Different Regions of Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways. Cancers 2020, 12, 2960. [Google Scholar] [CrossRef]
- Reardon, D.A.; Brem, S.; Desai, A.S.; Bagley, S.J.; Kurz, S.C.; De La Fuente, M.I.; Nagpal, S.; Welch, M.R.; Hormigo, A.; Forsyth, P.; et al. LTBK-01. INO-5401 and INO-9012 delivered intramuscularly (IM) with electroporation (EP) in combination with cemiplimab (REGN2810) in newly diagnosed glioblastoma. Neuro-Oncology 2020, 22, ii237. [Google Scholar] [CrossRef]
- Yan, J.; Pankhong, P.; Shin, T.H.; Obeng-Adjei, N.; Morrow, M.P.; Walters, J.N.; Khan, A.S.; Sardesai, N.Y.; Weiner, D.B. Highly Optimized DNA Vaccine Targeting Human Telomerase Reverse Transcriptase Stimulates Potent Antitumor Immunity. Cancer Immunol. Res. 2013, 1, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Maggio, J.; Cardama, G.A.; Armando, R.G.; Balcone, L.; Sobol, N.T.; Gomez, D.E.; Mengual Gómez, D.L. Key Role of PIN1 in Telomere Maintenance and Oncogenic Behavior in a Human Glioblastoma Model. Oncol. Rep. 2023, 49, 91. [Google Scholar] [CrossRef]
- Shi, Z.; Ge, X.; Li, M.; Yin, J.; Wang, X.; Zhang, J.; Chen, D.; Li, X.; Wang, X.; Ji, J.; et al. Argininosuccinate Lyase Drives Activation of Mutant TERT Promoter in Glioblastomas. Mol. Cell 2022, 82, 3919–3931.e7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pennisi, G.; Bruzzaniti, P.; Burattini, B.; Piaser Guerrato, G.; Della Pepa, G.M.; Sturiale, C.L.; Lapolla, P.; Familiari, P.; La Pira, B.; D’Andrea, G.; et al. Advancements in Telomerase-Targeted Therapies for Glioblastoma: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 8700. https://doi.org/10.3390/ijms25168700
Pennisi G, Bruzzaniti P, Burattini B, Piaser Guerrato G, Della Pepa GM, Sturiale CL, Lapolla P, Familiari P, La Pira B, D’Andrea G, et al. Advancements in Telomerase-Targeted Therapies for Glioblastoma: A Systematic Review. International Journal of Molecular Sciences. 2024; 25(16):8700. https://doi.org/10.3390/ijms25168700
Chicago/Turabian StylePennisi, Giovanni, Placido Bruzzaniti, Benedetta Burattini, Giacomo Piaser Guerrato, Giuseppe Maria Della Pepa, Carmelo Lucio Sturiale, Pierfrancesco Lapolla, Pietro Familiari, Biagia La Pira, Giancarlo D’Andrea, and et al. 2024. "Advancements in Telomerase-Targeted Therapies for Glioblastoma: A Systematic Review" International Journal of Molecular Sciences 25, no. 16: 8700. https://doi.org/10.3390/ijms25168700
APA StylePennisi, G., Bruzzaniti, P., Burattini, B., Piaser Guerrato, G., Della Pepa, G. M., Sturiale, C. L., Lapolla, P., Familiari, P., La Pira, B., D’Andrea, G., Olivi, A., D’Alessandris, Q. G., & Montano, N. (2024). Advancements in Telomerase-Targeted Therapies for Glioblastoma: A Systematic Review. International Journal of Molecular Sciences, 25(16), 8700. https://doi.org/10.3390/ijms25168700