An IL-5 Single-Nucleotide Polymorphism Influences Neuroinflammation and Prospective Disease Activity in Multiple Sclerosis
Abstract
:1. Introduction
2. Results
2.1. Clinical and Demographic Characteristics of Study Population
2.2. CSF Cytokine Levels Are Different in RR-MS, P-MS and Inflammatory Controls
2.3. rs2069812IL-5 SNP Is Associated with Prospective Disease Activity in MS
2.4. rs2069812 IL-5 SNP Influences Neuroinflammation in MS
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. SNP IL-5 rs2069812 Analysis
4.3. CSF Collection and Analysis
4.4. MRI
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef] [PubMed]
- Tavakolpour, S. Interleukin 7 receptor polymorphisms and the risk of multiple sclerosis: A meta-analysis. Mult. Scler. Relat. Disord. 2016, 8, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, V.; Husain, R.A.; Ahmed, S.S. Genetic predisposition of IL-10 promoter polymorphisms with risk of multiple sclerosis: A meta-analysis. J. Neuroimmunol. 2017, 306, 11–18. [Google Scholar] [CrossRef]
- Rossi, S.; Motta, C.; Studer, V.; Barbieri, F.; Buttari, F.; Bergami, A.; Sancesario, G.; Bernardini, S.; De Angelis, G.; Martino, G.; et al. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult. Scler. J. 2014, 20, 304–312. [Google Scholar] [CrossRef]
- Rossi, S.; Studer, V.; Motta, C.; Germani, G.; Macchiarulo, G.; Buttari, F.; Mancino, R.; Castelli, M.; De Chiara, V.; Weiss, S.; et al. Cerebrospinal fluid detection of interleukin-1β in phase of remission predicts disease progression in multiple sclerosis. J. Neuroinflamm. 2014, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Bruno, A.; Dolcetti, E.; Azzolini, F.; Moscatelli, A.; Gambardella, S.; Ferese, R.; Rizzo, F.R.; Gilio, L.; Iezzi, E.; Galifi, G.; et al. Interleukin 6 SNP rs1818879 Regulates Radiological and Inflammatory Activity in Multiple Sclerosis. Genes 2022, 13, 897. [Google Scholar] [CrossRef]
- Dolcetti, E.; Bruno, A.; Azzolini, F.; Gilio, L.; Pavone, L.; Iezzi, E.; Galifi, G.; Gambardella, S.; Ferese, R.; Buttari, F.; et al. Genetic regulation of IL-8 influences disease presentation of multiple sclerosis. Mult. Scler. J. 2023, 29, 512–520. [Google Scholar] [CrossRef]
- Charlon, T.; Martínez-Bueno, M.; Bossini-Castillo, L.; Carmona, F.D.; Di Cara, A.; Wojcik, J.; Voloshynovskiy, S.; Martín, J.; Alarcón-Riquelme, M.E. Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases. PLoS ONE 2016, 11, e0160270. [Google Scholar] [CrossRef]
- Farh, K.K.H.; Marson, A.; Zhu, J.; Kleinewietfeld, M.; Housley, W.J.; Beik, S.; Shoresh, N.; Whitton, H.; Ryan, R.J.; Shishkin, A.A.; et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 2015, 518, 337–343. [Google Scholar] [CrossRef]
- Fidancı, İ.D.; Zülfikar, B.; Kavaklı, K.; Ar, M.C.; Kılınç, Y.; Başlar, Z.; Çağlayan, S.H. A Polymorphism in the IL-5 Gene is Associated with Inhibitor Development in Severe Hemophilia A Patients. Turk. J. Hematol. 2014, 31, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Sawcer, S.; Hellenthal, G.; Pirinen, M.; Spencer, C.C.; Patsopoulos, N.A.; Moutsianas, L.; Dilthey, A.; Su, Z.; Freeman, C.; Hunt, S.E.; et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011, 476, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Rothenberg, M.E.; Hogan, S.P. The eosinophil. Annu. Rev. Immunol. 2006, 24, 147–174. [Google Scholar] [CrossRef]
- Maxeiner, H.-G.; Schneider, E.M.; Kurfiss, S.-T.; Brettschneider, J.; Tumani, H.; Bechter, K. Cerebrospinal fluid and serum cytokine profiling to detect immune control of infectious and inflammatory neurological and psychiatric diseases. Cytokine 2014, 69, 62–67. [Google Scholar] [CrossRef]
- Koper-Lenkiewicz, O.M.; Sutkowska, K.; Wawrusiewicz-Kurylonek, N.; Kowalewska, E.; Matowicka-Karna, J. Proinflammatory Cytokines (IL-1, -6, -8, -15, -17, -18, -23, TNF-α) Single Nucleotide Polymorphisms in Rheumatoid Arthritis—A Literature Review. Int. J. Mol. Sci. 2022, 23, 2106. [Google Scholar] [CrossRef]
- Tran, G.T.; Hodgkinson, S.J.; Carter, N.M.; Verma, N.D.; Plain, K.M.; Boyd, R.; Robinson, C.M.; Nomura, M.; Killingsworth, M.; Hall, B.M. IL-5 promotes induction of antigen-specific CD4+CD25+ T regulatory cells that suppress autoimmunity. Blood 2012, 119, 4441–4450. [Google Scholar] [CrossRef]
- Weir, C. IL-5-deficient mice are susceptible to experimental autoimmune encephalomyelitis. Int. Immunol. 2003, 15, 1283–1289. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, T.; Lan, Q.; Foss, F.; Kim, C.; Chen, X.; Dai, M.; Li, Y.; Holford, T.; Leaderer, B.; et al. Cytokine polymorphisms in Th1/Th2 pathway genes, body mass index, and risk of non-Hodgkin lymphoma. Blood 2011, 117, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q. Cytokine polymorphisms in the Th1/Th2 pathway and susceptibility to non-Hodgkin lymphoma. Blood 2006, 107, 4101–4108. [Google Scholar] [CrossRef]
- Mahajan, R.; El-Omar, E.M.; Lissowska, J.; Grillo, P.; Rabkin, C.S.; Baccarelli, A.; Yeager, M.; Sobin, L.H.; Zatonski, W.; Channock, S.J.; et al. Genetic Variants in T Helper Cell Type 1, 2 and 3 Pathways and Gastric Cancer Risk in a Polish Population. Jpn. J. Clin. Oncol. 2008, 38, 626–633. [Google Scholar] [CrossRef]
- Hsing, A.W.; Sakoda, L.C.; Rashid, A.; Andreotti, G.; Chen, J.; Wang, B.S.; Shen, M.C.; Chen, B.E.; Rosenberg, P.S.; Zhang, M.; et al. Variants in Inflammation Genes and the Risk of Biliary Tract Cancers and Stones: A Population-Based Study in China. Cancer Res. 2008, 68, 6442–6452. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, N.; Zhao, Y.; Jia, H.; Cui, B.; Ning, G. Association analysis of polymorphisms in IL-3, IL-4, IL-5, IL-9, and IL-13 with Graves’ disease. J. Endocrinol. Investig. 2010, 33, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Mestiri, S.; Zaaber, I.; Inoubli, O.; Abid, N.; Omrani, A.; Nejehi, H.; Marmouch, H. Association of cytokine Th2 gene polymorphisms with autoimmune thyroid diseases in Tunisian population. Int. J. Immunogenet. 2020, 47, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Biały, S.; Iwaszko, M.; Świerkot, J.; Bugaj, B.; Kolossa, K.; Jeka, S.; Bogunia-Kubik, K. Th2 Cytokines (Interleukin-5 and -9) Polymorphism Affects the Response to Anti-TNF Treatment in Polish Patients with Ankylosing Spondylitis. Int. J. Mol. Sci. 2022, 23, 13177. [Google Scholar] [CrossRef]
- Parks, N.E.; Flanagan, E.P.; Lucchinetti, C.F.; Wingerchuk, D.M. NEDA treatment target? No evident disease activity as an actionable outcome in practice. J. Neurol. Sci. 2017, 383, 31–34. [Google Scholar] [CrossRef]
- Havrdova, E.; Galetta, S.; Hutchinson, M.; Stefoski, D.; Bates, D.; Polman, C.H.; O’Connor, P.W.; Giovannoni, G.; Phillips, J.T.; Lublin, F.D.; et al. Effect of natalizumab on clinical and radiological disease activity in multiple sclerosis: A retrospective analysis of the Natalizumab Safety and Efficacy in Relapsing-Remitting Multiple Sclerosis (AFFIRM) study. Lancet Neurol. 2009, 8, 254–260. [Google Scholar] [CrossRef]
- Kaufmann, M.; Schaupp, A.L.; Sun, R.; Coscia, F.; Dendrou, C.A.; Cortes, A.; Kaur, G.; Evans, H.G.; Mollbrink, A.; Navarro, J.F.; et al. Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nat. Neurosci. 2022, 25, 944–955. [Google Scholar] [CrossRef]
- Matsushita, T.; Tateishi, T.; Isobe, N.; Yonekawa, T.; Yamasaki, R.; Matsuse, D.; Murai, H.; Kira, J.I. Characteristic Cerebrospinal Fluid Cytokine/Chemokine Profiles in Neuromyelitis Optica, Relapsing Remitting or Primary Progressive Multiple Sclerosis. PLoS ONE 2013, 8, e61835. [Google Scholar] [CrossRef] [PubMed]
- Stampanoni Bassi, M.; Iezzi, E.; Drulovic, J.; Pekmezovic, T.; Gilio, L.; Furlan, R.; Finardi, A.; Marfia, G.A.; Sica, F.; Centonze, D.; et al. IL-6 in the Cerebrospinal Fluid Signals Disease Activity in Multiple Sclerosis. Front. Cell. Neurosci. 2020, 14, 120. [Google Scholar] [CrossRef]
- Gilio, L.; Buttari, F.; Pavone, L.; Iezzi, E.; Galifi, G.; Dolcetti, E.; Azzolini, F.; Bruno, A.; Borrelli, A.; Storto, M.; et al. Fatigue in Multiple Sclerosis Is Associated with Reduced Expression of Interleukin-10 and Worse Prospective Disease Activity. Biomedicines 2022, 10, 2058. [Google Scholar] [CrossRef]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2017, 13, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Polman, C.H.; Reingold, S.C.; Edan, G.; Filippi, M.; Hartung, H.P.; Kappos, L.; Lublin, F.D.; Metz, L.M.; McFarland, H.F.; O’Connor, P.W.; et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the ‘McDonald Criteria’. Ann. Neurol. 2005, 58, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, G.; Tomic, D.; Bright, J.R.; Havrdová, E. ‘No evident disease activity’: The use of combined assessments in the management of patients with multiple sclerosis. Mult. Scler. J. 2017, 23, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
N (230) | RR-MS (157) | P-MS (38) | IC (35) |
---|---|---|---|
Age at LP (Median, IQR) | 33.9 (25.7–44.0) | 50.3 (45.6–56.8) | 41.8 (32.3–49.7) |
Sex, F/M (N, %) | 108/49 (68.8) | 19/38 (50) | 23/12 (65.7) |
Disease duration, months (Median, IQR) | 5 (1.1–24.3) | 24.6 (11.8–72.6) | - |
Radiological activity (yes = 1, no = 0) (N/tot, %) | 66/153 (43.1) * | 10/34 (29.4) * | - |
OCBs (yes = 1, no = 0) (N/tot, %) | 120/154 (77.9) * | 31/37 (83.8) * | - |
EDSS at LP (Median, IQR) | 2 (1.0–2.5) | 3.5 (2.5–5.5) | - |
EDSS at first year after LP (Median, IQR) | 1 (1.0–2.0) * | 5 (3.5–6.0) * | - |
EDSS at second year after LP (Median, IQR) | 1 (1.0–2.0) * | 5.5 (3.5–6.0) * | - |
NEDA-3 (yes = 1, no = 0) (N/tot, %) | 54/142 (40.0) * | - | - |
N (195) | CT/TT Allele (115) | CC Allele (80) | p |
---|---|---|---|
Age at LP (Median, IQR) | 38.8 (28.7–48.3) | 36.2 (25.4–51.6) | 0.604 |
Sex, F/M (N, %) | 77/38 (67.0) | 50/30 (62.5) | 0.312 |
OCBs (yes = 1, no = 0) (N/tot, %) | 93/115 (83) * | 58/79 (73.4) | 0.077 |
Disease duration, months (Median, IQR) | 11.6 (1.3–33.8) | 6.0 (1.7–36.0) | 0.661 |
Radiological activity (yes = 1, no = 0) (N/tot, %) | 43/109 (39.4) * | 33/78 (42.3) * | 0.404 |
EDSS at LP (Median, IQR) | 2 (1.0–3.0) | 2 (1–2.5) | 0.214 |
EDSS at first year after LP (Median, IQR) | 2 (1.0–3.0) * | 1.5 (1–2) * | 0.149 |
EDSS at second year after LP (Median, IQR) | 2 (1.0–3.5) * | 1 (1–2.5) * | 0.120 |
NEDA-3 (yes = 1, no = 0) (N/tot, %) | 24/81 (29.6) * | 30/61 (49.2) * | 0.023 |
B | S.E. | p | 95% C.I. | Exp (B) | |
---|---|---|---|---|---|
IL-5 rs2069812 groups (CT/TT, CC) | 1.146 | 0.426 | 0.007 | 1.364–7.248 | 3.144 |
Sex (F = 1, M = 0) | 0.408 | 0.455 | 0.370 | 0.616–3.668 | 1.503 |
Age | 0.016 | 0.018 | 0.376 | 0.981–1.052 | 1.016 |
EDSS at LP | 0.034 | 0.206 | 0.869 | 0.691–1.549 | 1.035 |
OCBs (1 = yes, 0 = no) | 1.480 | 0.690 | 0.053 | 1.148–16.673 | 4.375 |
DMTs (high efficacy = 1, low efficacy = 0) | 0.598 | 0.519 | 0.249 | 0.658–5.029 | 1.234 |
(Constant) | −3.463 | 1.093 | 0.002 | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolcetti, E.; Buttari, F.; Bruno, A.; Azzolini, F.; Gilio, L.; Borrelli, A.; Di Caprio, V.; Lauritano, G.; Galifi, G.; Gambardella, S.; et al. An IL-5 Single-Nucleotide Polymorphism Influences Neuroinflammation and Prospective Disease Activity in Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 9108. https://doi.org/10.3390/ijms25169108
Dolcetti E, Buttari F, Bruno A, Azzolini F, Gilio L, Borrelli A, Di Caprio V, Lauritano G, Galifi G, Gambardella S, et al. An IL-5 Single-Nucleotide Polymorphism Influences Neuroinflammation and Prospective Disease Activity in Multiple Sclerosis. International Journal of Molecular Sciences. 2024; 25(16):9108. https://doi.org/10.3390/ijms25169108
Chicago/Turabian StyleDolcetti, Ettore, Fabio Buttari, Antonio Bruno, Federica Azzolini, Luana Gilio, Angela Borrelli, Veronica Di Caprio, Gianluca Lauritano, Giovanni Galifi, Stefano Gambardella, and et al. 2024. "An IL-5 Single-Nucleotide Polymorphism Influences Neuroinflammation and Prospective Disease Activity in Multiple Sclerosis" International Journal of Molecular Sciences 25, no. 16: 9108. https://doi.org/10.3390/ijms25169108
APA StyleDolcetti, E., Buttari, F., Bruno, A., Azzolini, F., Gilio, L., Borrelli, A., Di Caprio, V., Lauritano, G., Galifi, G., Gambardella, S., Ferese, R., Giardina, E., Rovella, V., Furlan, R., Finardi, A., Musella, A., Balletta, S., Mandolesi, G., Centonze, D., & Stampanoni Bassi, M. (2024). An IL-5 Single-Nucleotide Polymorphism Influences Neuroinflammation and Prospective Disease Activity in Multiple Sclerosis. International Journal of Molecular Sciences, 25(16), 9108. https://doi.org/10.3390/ijms25169108