Supraphysiological Dose of Testosterone Impairs the Expression and Distribution of Sex Steroid Receptors during Endometrial Receptivity Development in Female Sprague–Dawley Rats
Abstract
:1. Introduction
2. Results
2.1. Effects of Supraphysiological Dose of Testosterone on Serum Levels of Sex Steroid Hormones
2.2. Effects of Supraphysiological Dose of Testosterone on Protein Distribution and mRNA Expression of Androgen Receptor (AR)
2.3. Effects of Supraphysiological Dose of Testosterone on Protein Distribution and mRNA Expression of Oestrogen Receptor-α (ERα)
2.4. Effects of Supraphysiological Dose of Testosterone on Protein Distribution and mRNA Expression of Progesterone Receptor (PR)
3. Discussion
4. Materials and Methods
4.1. Animal Preparation and Hormonal Treatment
4.2. Determination of Serum Hormone Levels by Enzyme-Linked Immunosorbent Assay (ELISA) Technique
4.3. Histological Examination and Immunohistochemical Staining
4.4. RNA Isolation and Quantitative Polymerase Chain Reaction (qPCR)
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gates, M.A.; Mekary, R.A.; Chiu, G.R.; Ding, E.L.; Wittert, G.A.; Araujo, A.B. Sex steroid hormone levels and body composition in men. J. Clin. Endocrinol. Metab. 2013, 98, 2442–2450. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.R.; Wahlin-Jacobsen, S. Testosterone in women—The clinical significance. Lancet Diabetes Endocrinol. 2015, 3, 980–992. [Google Scholar] [CrossRef] [PubMed]
- Hammes, S.R.; Levin, E.R. Impact of estrogens in males and androgens in females. J. Clin. Investig. 2019, 129, 1818–1826. [Google Scholar] [CrossRef] [PubMed]
- Glaser, R.; Dimitrakakis, C. Testosterone therapy in women: Myths and misconceptions. Maturitas 2013, 74, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Jeffcoate, S.; Brooks, R.; Lim, N.; London, D.; Prunty, F.; Spathis, G. Androgen production in hypogonadal men. J. Endocrinol. 1967, 37, 401–411. [Google Scholar] [CrossRef]
- Brooks, R. Androgens: Physiology and pathology. In Biochemistry of Steroids Hormones; Blackwell Scientific: Oxford, UK, 1984; pp. 565–594. [Google Scholar]
- Yusuf, A.N.M.; Amri, M.F.; Ugusman, A.; Hamid, A.A.; Wahab, N.A.; Mokhtar, M.H. Hyperandrogenism and Its Possible Effects on Endometrial Receptivity: A Review. Int. J. Mol. Sci. 2023, 24, 12026. [Google Scholar] [CrossRef]
- Reed, B.G.; Carr, B.R. The Normal Menstrual Cycle and the Control of Ovulation; MDText.com, Inc.: South Dartmouth, MA, USA, 2015. [Google Scholar]
- Walters, K.; Paris, V.R.; Aflatounian, A.; Handelsman, D.J. Androgens and ovarian function: Translation from basic discovery research to clinical impact. J. Endocrinol. 2019, 242, R23–R50. [Google Scholar] [CrossRef]
- Bianchi, V.E.; Bresciani, E.; Meanti, R.; Rizzi, L.; Omeljaniuk, R.J.; Torsello, A. The role of androgens in women’s health and wellbeing. Pharmacol. Res. 2021, 171, 105758. [Google Scholar] [CrossRef]
- Rosenfield, R.L.; Ehrmann, D.A. The pathogenesis of polycystic ovary syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr. Rev. 2016, 37, 467–520. [Google Scholar] [CrossRef]
- Barontini, M.; García-Rudaz, M.C.; Veldhuis, J.D. Mechanisms of hypothalamic-pituitary-gonadal disruption in polycystic ovarian syndrome. Arch. Med. Res. 2001, 32, 544–552. [Google Scholar] [CrossRef]
- Baskind, N.E.; Balen, A.H. Hypothalamic–pituitary, ovarian and adrenal contributions to polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 2016, 37, 80–97. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-D.; Wu, Y.-Q. Anabolic-androgenic steroids and cardiovascular risk. Chin. Med. J. 2019, 132, 2229–2236. [Google Scholar] [CrossRef] [PubMed]
- Nieschlag, E.; Vorona, E. Mechanisms in endocrinology: Medical consequences of doping with anabolic androgenic steroids: Effects on reproductive functions. Eur. J. Endocrinol. 2015, 173, R47–R58. [Google Scholar] [CrossRef] [PubMed]
- Governini, L.; Luongo, F.P.; Haxhiu, A.; Piomboni, P.; Luddi, A. Main actors behind the endometrial receptivity and successful implantation. Tissue Cell 2021, 73, 101656. [Google Scholar] [CrossRef]
- Filicori, M. The role of luteinizing hormone in folliculogenesis and ovulation induction. Fertil. Steril. 1999, 71, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Paria, B.C.; Dey, S.K.; Das, S.K. Differential uterine expression of estrogen and progesterone receptors correlates with uterine preparation for implantation and decidualization in the mouse. Endocrinology 1999, 140, 5310–5321. [Google Scholar] [CrossRef]
- Jiang, N.-X.; Li, X.-L. The disorders of endometrial receptivity in PCOS and its mechanisms. Reprod. Sci. 2022, 29, 2465–2476. [Google Scholar] [CrossRef]
- Yoshinaga, K. Uterine receptivity for blastocyst implantation. Ann. N. Y. Acad Sci. 1988, 541, 424–431. [Google Scholar] [CrossRef]
- Shahzad, H.; Giribabu, N.; Karim, K.; Kassim, N.; Muniandy, S.; Kumar, K.E.; Salleh, N. Quercetin interferes with the fluid volume and receptivity development of the uterus in rats during the peri-implantation period. Reprod. Toxicol. 2017, 71, 42–54. [Google Scholar] [CrossRef]
- Lessey, B.A.; Young, S.L. What exactly is endometrial receptivity? Fertil. Steril. 2019, 111, 611–617. [Google Scholar] [CrossRef]
- Bhurke, A.S.; Bagchi, I.C.; Bagchi, M.K. Progesterone-regulated endometrial factors controlling implantation. Am. J. Reprod. Immunol. 2016, 75, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Abdul Hamid, F.; Abu, M.A.; Abdul Karim, A.K.; Ahmad, M.F.; Aziz, N.H.A.; Mohd Kamal, D.A.; Mokhtar, M.H. Sex steroid receptors in polycystic ovary syndrome and endometriosis: Insights from laboratory studies to clinical trials. Biomedicines 2022, 10, 1705. [Google Scholar] [CrossRef] [PubMed]
- Dowsett, M.; Donaldson, K.; Tsuboi, M.; Wong, J.; Yates, R. Effects of the aromatase inhibitor anastrozole on serum oestrogens in Japanese and Caucasian women. Cancer Chemother. Pharmacol. 2000, 46, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Li, J.; Feng, J.; Han, H.; Zhao, J.; Zhang, J.; Han, Y.; Wu, X.; Zhang, Y. Research Progress on the Mechanism Between Polycystic Ovary Syndrome and Abnormal Endometrium. Front. Physiol. 2021, 12, 788772. [Google Scholar] [CrossRef] [PubMed]
- Markopoulos, M.C.; Rizos, D.; Valsamakis, G.; Deligeoroglou, E.; Grigoriou, O.; Chrousos, G.P.; Creatsas, G.; Mastorakos, G. Hyperandrogenism in women with polycystic ovary syndrome persists after menopause. J. Clin. Endocrinol. Metab. 2011, 96, 623–631. [Google Scholar] [CrossRef]
- Bishop, C.V.; Mishler, E.C.; Takahashi, D.L.; Reiter, T.E.; Bond, K.R.; True, C.A.; Slayden, O.D.; Stouffer, R.L. Chronic hyperandrogenemia in the presence and absence of a western-style diet impairs ovarian and uterine structure/function in young adult rhesus monkeys. Hum. Reprod. 2018, 33, 128–139. [Google Scholar] [CrossRef]
- Parisi, F.; Fenizia, C.; Introini, A.; Zavatta, A.; Scaccabarozzi, C.; Biasin, M.; Savasi, V. The pathophysiological role of estrogens in the initial stages of pregnancy: Molecular mechanisms and clinical implications for pregnancy outcome from the periconceptional period to end of the first trimester. Hum. Reprod. Update 2023, 29, 699–720. [Google Scholar] [CrossRef]
- Dorostghoal, M.; Moramezi, F.; Keikhah, N. Overexpression of endometrial estrogen receptor-alpha in the window of implantation in women with unexplained infertility. Int. J. Fertil. Steril. 2018, 12, 37. [Google Scholar]
- Talbi, S.; Hamilton, A.; Vo, K.; Tulac, S.; Overgaard, M.T.; Dosiou, C.; Le Shay, N.; Nezhat, C.; Kempson, R.; Lessey, B.; et al. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology 2006, 147, 1097–1121. [Google Scholar] [CrossRef]
- Zhang, S.; Kong, S.; Lu, J.; Wang, Q.; Chen, Y.; Wang, W.; Wang, B.; Wang, H. Deciphering the molecular basis of uterine receptivity. Mol. Reprod. Dev. 2013, 80, 8–21. [Google Scholar] [CrossRef]
- Gibson, D.A.; Simitsidellis, I.; Saunders, P.T. Regulation of androgen action during establishment of pregnancy. J. Mol. Endocrinol. 2016, 57, R35–R47. [Google Scholar] [CrossRef] [PubMed]
- Zang, H.; Sahlin, L.; Masironi, B.; Hirschberg, A.L. Effects of testosterone and estrogen treatment on the distribution of sex hormone receptors in the endometrium of postmenopausal women. Menopause 2008, 15, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Ran, H.; Zhang, S.; Xia, G.; Wang, B.; Wang, H. Molecular determinants of uterine receptivity. Int. J. Dev. Biol. 2014, 58, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Kalakota, N.R.; George, L.C.; Morelli, S.S.; Douglas, N.C.; Babwah, A.V. Towards an improved understanding of the effects of elevated progesterone levels on human endometrial receptivity and oocyte/embryo quality during assisted reproductive technologies. Cells 2022, 11, 1405. [Google Scholar] [CrossRef] [PubMed]
- Massimiani, M.; Lacconi, V.; La Civita, F.; Ticconi, C.; Rago, R.; Campagnolo, L. Molecular signaling regulating endometrium–blastocyst crosstalk. Int. J. Mol. Sci. 2019, 21, 23. [Google Scholar] [CrossRef]
- Cloke, B.; Christian, M. The role of androgens and the androgen receptor in cycling endometrium. Mol. Cell. Endocrinol. 2012, 358, 166–175. [Google Scholar] [CrossRef]
- Burton, K.A. Studies on the Androgen Receptor and Steroid Metabolising Enzymes in the Human Endometrium; University of Glasgow: Glasgow, UK, 2004. [Google Scholar]
- Rzeszotek, S.; Kolasa, A.; Pilutin, A.; Misiakiewicz-Has, K.; Sielatycka, K.; Wiszniewska, B. The Interplay between Finasteride-Induced Androgen Imbalance, Endoplasmic Reticulum Stress, Oxidative Stress, and Liver Disorders in Paternal and Filial Generation. Biomedicines 2022, 10, 2725. [Google Scholar] [CrossRef]
- Wu, Y.; Chhipa, R.R.; Zhang, H.; Ip, C. The antiandrogenic effect of finasteride against a mutant androgen receptor. Cancer Biol. Ther. 2011, 11, 902–909. [Google Scholar] [CrossRef]
- Simitsidellis, I.; Gibson, D.A.; Cousins, F.L.; Esnal-Zufiaurre, A.; Saunders, P.T. A role for androgens in epithelial proliferation and formation of glands in the mouse uterus. Endocrinology 2016, 157, 2116–2128. [Google Scholar] [CrossRef]
- Xu, J.; Li, M.; Zhang, L.; Xiong, H.; Lai, L.; Guo, M.; Zong, T.; Zhang, D.; Yang, B.; Wu, L.; et al. Expression and regulation of androgen receptor in the mouse uterus during early pregnancy and decidualization. Mol. Reprod. Dev. 2015, 82, 898–906. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, M.; Yang, F.; Zhang, Y.; Ma, S.; Zhang, D.; Wang, X.; Sferruzzi-Perri, A.N.; Wu, X.; Brännström, M.; et al. Increased uterine androgen receptor protein abundance results in implantation and mitochondrial defects in pregnant rats with hyperandrogenism and insulin resistance. J. Mol. Med. 2021, 99, 1427–1446. [Google Scholar] [CrossRef] [PubMed]
- Quarmby, V.E.; Yarbrough, W.G.; Lubahn, D.B.; French, F.S.; Wilson, E.M. Autologous down-regulation of androgen receptor messenger ribonucleic acid. Mol. Endocrinol. 1990, 4, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Tilley, W.D.; Marcelli, M.; McPhaul, M. Expression of the human androgen receptor gene utilizes a common promoter in diverse human tissues and cell lines. J. Biol. Chem. 1990, 265, 13776–13781. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Nagasue, N.; Makino, Y.; Nakamura, T. Effect of androgens and their manipulation on cell growth and androgen receptor (AR) levels in AR-positive and-negative human hepatocellular carcinomas. J. Hepatol. 1995, 22, 295–302. [Google Scholar] [CrossRef]
- Gad, Y.Z.; Berkovitz, G.D.; Migeon, C.J.; Brown, T.R. Studies of up-regulation of androgen receptors in genital skin fibroblasts. Mol. Cell. Endocrinol. 1988, 57, 205–213. [Google Scholar] [CrossRef]
- Takeda, H.; Nakamoto, T.; Kokontis, J.; Chodak, G.W.; Chang, C. Autoregulation of androgen receptor expression in rodent prostate: Immunohistochemical and in situ hybridization analysis. Biochem. Biophys. Res. Commun. 1991, 177, 488–496. [Google Scholar] [CrossRef]
- Kerr, J.E.; Allore, R.J.; Beck, S.G.; Handa, R.J. Distribution and hormonal regulation of androgen receptor (AR) and AR messenger ribonucleic acid in the rat hippocampus. Endocrinology 1995, 136, 3213–3221. [Google Scholar] [CrossRef]
- Wiren, K.M.; Zhang, X.; Chang, C.; Keenan, E.; Orwoll, E.S. Transcriptional up-regulation of the human androgen receptor by androgen in bone cells. Endocrinology 1997, 138, 2291–2300. [Google Scholar] [CrossRef]
- Mokhtar, H.M.; Giribabu, N.; Muniandy, S.; Salleh, N. Testosterone decreases the expression of endometrial pinopode and L-selectin ligand (MECA-79) in adult female rats during uterine receptivity period. Int. J. Clin. Exp. Pathol. 2014, 7, 1967. [Google Scholar]
- Gibson, D.A.; Simitsidellis, I.; Cousins, F.L.; Critchley, H.O.; Saunders, P.T. Intracrine androgens enhance decidualization and modulate expression of human endometrial receptivity genes. Sci. Rep. 2016, 6, 19970. [Google Scholar] [CrossRef]
- Awasthi, S.; Blesson, C.; Dwivedi, A. Expression of oestrogen receptors α and β during the period of uterine receptivity in rat: Effect of ormeloxifene, a selective oestrogen receptor modulator. Acta Physiol. 2007, 189, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.F.; Jin, X.H.; Cao, Z.F.; Hu, Y.; Ma, X. Micro RNA expression and regulation in the uterus during embryo implantation in rat. FEBS J. 2014, 281, 1872–1891. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, M.H.; Giribabu, N.; Salleh, N. Testosterone reduces tight junction complexity and down-regulates expression of claudin-4 and occludin in the endometrium in ovariectomized, sex-steroid replacement rats. Vivo 2020, 34, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Kamal, D.A.M.; Ibrahim, S.F.; Mokhtar, M.H. Effects of testosterone on the expression of Connexin 26 and Connexin 43 in the uterus of rats during early pregnancy. Vivo 2020, 34, 1863–1870. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dey, S.K. Roadmap to embryo implantation: Clues from mouse models. Nat. Rev. Genet. 2006, 7, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Detre, S.; Jotti, G.S.; Dowsett, M. A “quickscore” method for immunohistochemical semiquantitation: Validation for oestrogen receptor in breast carcinomas. J. Clin. Pathol. 1995, 48, 876–878. [Google Scholar] [CrossRef]
- Allison, K.H.; Hammond, M.E.H.; Dowsett, M.; McKernin, S.E.; Carey, L.A.; Fitzgibbons, P.L.; Hayes, D.F.; Lakhani, S.R.; Chavez-MacGregor, M.; Perlmutter, J.; et al. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update. J. Clin. Oncol. 2020, 38, 1346–1366. [Google Scholar] [CrossRef]
- Fedchenko, N.; Reifenrath, J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue–a review. Diagn. Pathol. 2014, 9, 1–12. [Google Scholar] [CrossRef]
Proportion Score | % of Positive Cells | Intensity | Intensity Score |
---|---|---|---|
0 | 0 | None | 0 |
1 | <1 | Weak | 1 |
2 | 1 to 10 | Intermediate | 2 |
3 | 11 to 33 | Strong | 3 |
4 | 34 to 66 | QS (proportion score + intensity score): 0–8 | |
5 | >67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yusuf, A.N.M.; Amri, M.F.; Ugusman, A.; Hamid, A.A.; Mokhtar, M.H. Supraphysiological Dose of Testosterone Impairs the Expression and Distribution of Sex Steroid Receptors during Endometrial Receptivity Development in Female Sprague–Dawley Rats. Int. J. Mol. Sci. 2024, 25, 10202. https://doi.org/10.3390/ijms251810202
Yusuf ANM, Amri MF, Ugusman A, Hamid AA, Mokhtar MH. Supraphysiological Dose of Testosterone Impairs the Expression and Distribution of Sex Steroid Receptors during Endometrial Receptivity Development in Female Sprague–Dawley Rats. International Journal of Molecular Sciences. 2024; 25(18):10202. https://doi.org/10.3390/ijms251810202
Chicago/Turabian StyleYusuf, Allia Najmie Muhammad, Mohd Fariz Amri, Azizah Ugusman, Adila A Hamid, and Mohd Helmy Mokhtar. 2024. "Supraphysiological Dose of Testosterone Impairs the Expression and Distribution of Sex Steroid Receptors during Endometrial Receptivity Development in Female Sprague–Dawley Rats" International Journal of Molecular Sciences 25, no. 18: 10202. https://doi.org/10.3390/ijms251810202
APA StyleYusuf, A. N. M., Amri, M. F., Ugusman, A., Hamid, A. A., & Mokhtar, M. H. (2024). Supraphysiological Dose of Testosterone Impairs the Expression and Distribution of Sex Steroid Receptors during Endometrial Receptivity Development in Female Sprague–Dawley Rats. International Journal of Molecular Sciences, 25(18), 10202. https://doi.org/10.3390/ijms251810202