The Role of Protein Degradation in Estimation Postmortem Interval and Confirmation of Cause of Death in Forensic Pathology: A Literature Review
Abstract
:1. Introduction
2. Metarials and Methods
- Quantitative or qualitative postmortem evaluation of proteins or its metabolites on animal or human tissues;
- English language;
- Year of publication from 2003 to 2023.
3. Results
3.1. Immunohistochemistry (IHC) Assay
3.2. Enzyme-Linked Immunosorbent Assay (ELISA) and Western Blot
3.3. Proteomics
3.4. Peptidomics
3.5. Metabolomics
3.6. Fourier Transform Infrared Spectroscopy (FT-IR)
Method | Advantage | Limitation |
---|---|---|
Morphological method | Simple, low-consuming, common | Not quantitative, false positive in the putrefied tissue |
ELISA | High sensitive, high selective, quantitative | Susceptible to interference by putrefaction, poor coverage of target substance |
Western bolt assay | High sensitive, high selective, quantitative | Poor repeatability, complex experimental procedure |
Proteomics | High identification accuracy, high throughput, massive data | High cost, complex experimental procedure, complex data processing |
Peptidomics | Systematic, high throughput, high sensitive, massive data, less destructive for samples | High cost, complex data processing complex interpretation [144] |
Untargeted Metabolomics | Systematic, high throughput, massive metabolites data, massive metabolic pathway | Complex data processing, unquantifiable |
Targeted metabolomics | Accuracy of quantification and qualification | High cost, complex experimental procedure, strict quality control condition, poor coverage of metabolites |
FI-TR method | Non-invasive, robustness, low cost, massive data [145] | Finickiness in test sample, instrument-dependable, incomplete molecular information in single spectrum [146] |
4. Discussion
4.1. Confirming the Cause of Death
4.2. Estimation of PMI
Forensic Issue | Forensic Problem | Sample | Technology |
---|---|---|---|
Cause of death | Insulin overdose | Vitreous humor [81] | Proteomics |
Protein toxin (snake venom, ricin) | Blood plasma [82] | Proteomics | |
DAI biomarkers | Cerebral tissue [83,84,85] | Proteomics | |
DKA biomarkers | Pulmonary edema fluid [131] | FT-IR | |
Heatstroke | Plasma, lung tissue, etc. [134,135] | FT-IR | |
Diabetic cardiomyopathy | Body fluid (plasma, saliva, and urine) [133] | FT-IR | |
Asphyxia | Lung tissue [138] | FT-IR | |
Diabetes and its complication | Postmortem plasma [107] | Metabolomics | |
PMI estimation | The attenuated total reflectance in decomposed tissue | Vitreous humor and annular cartilage [139,140] | FT-IR |
Degradation of protein | Skeletal muscle and skeleton [91,92,93,94,95,96] | Proteomics | |
Identify the polypeptide | Decomposed body fluid [100,101] | Peptidomics | |
Metabolomics profiles of body fluid | Plasma, aqueous humor and vitreous humor [124] | Metabolomics based on NMR * | |
Violate metabolites | Brain [119,129,157] | Metabolomics based on GC-MS |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Correction Statement
References
- Stollar, E.J.; Smith, D.P. Uncovering protein structure. Essays Biochem. 2020, 64, 649–680. [Google Scholar] [CrossRef]
- Reis, G.J.; Kaufman, H.W.; Horowitz, G.L.; Pasternak, R.C. Usefulness of lactate dehydrogenase and lactate dehydrogenase isoenzymes for diagnosis of acute myocardial infarction. Am. J. Cardiol. 1988, 61, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Bailo, P.; Andreola, S.; Collini, F.; Gentile, G.; Maciocco, F.; Piccinini, A.; Zoja, R. Histomorphological aspects of cadaveric skin and its possible use in forensic genetics. Med. Sci. Law 2021, 61 (Suppl. S1), 46–53. [Google Scholar] [CrossRef]
- Sun, T.; Pan, M.; Zhu, W.; Liu, H.; Yang, C.; Dong, H. Application of P/VB staining to identify antemortem injury in a decomposed cadaver. Forensic Sci. Med. Pathol. 2023, 19, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.J.; McKiernan, H.E.; Legg, K.M.; Goecker, Z.C. Forensic proteomics. Forensic Sci. Int. Genet. 2021, 54, 102529. [Google Scholar] [CrossRef]
- Jacoby-Alner, T.E.; Stephens, N.; Davern, K.M.; Balmer, L.; Brown, S.G.; Swindells, K. Histopathological analysis and in situ localisation of Australian tiger snake venom in two clinically envenomed domestic animals. Toxicon 2011, 58, 304–314. [Google Scholar] [CrossRef]
- Kondo, T.; Takahashi, M.; Yamasaki, G.; Sugimoto, M.; Kuse, A.; Morichika, M.; Nakagawa, K.; Sakurada, M.; Asano, M.; Ueno, Y. Immunohistochemical analysis of vimentin expression in myocardial tissue from autopsy cases of ischemic heart disease. Leg. Med. 2022, 54, 102003. [Google Scholar] [CrossRef]
- Kondo, T.; Takahashi, M.; Yamasaki, G.; Sugimoto, M.; Kuse, A.; Morichika, M.; Nakagawa, K.; Sakurada, M.; Asano, M.; Ueno, Y. Immunohistochemical analysis of von Willebrand factor expression in myocardial tissues from autopsies of patients with ischemic heart disease. Leg. Med. 2022, 54, 101997. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Takahashi, M.; Yamasaki, G.; Sugimoto, M.; Kuse, A.; Morichika, M.; Nakagawa, K.; Sakurada, M.; Asano, M.; Ueno, Y. Immunohistochemical analysis of thrombomodulin expression in myocardial tissue from autopsy cases of ischemic heart disease. Leg. Med. 2021, 51, 101897. [Google Scholar] [CrossRef]
- Kondo, T.; Takahashi, M.; Yamasaki, G.; Sugimoto, M.; Kuse, A.; Morichika, M.; Nakagawa, K.; Sakurada, M.; Asano, M.; Ueno, Y. Immunohistochemical analysis of CD31 expression in myocardial tissues from autopsies of patients with ischemic heart disease. Leg. Med. 2022, 59, 102127. [Google Scholar] [CrossRef]
- Mondello, C.; Cardia, L.; Bartoloni, G.; Asmundo, A.; Ventura Spagnolo, E. Immunohistochemical study on dystrophin expression in CAD-related sudden cardiac death: A marker of early myocardial ischaemia. Int. J. Leg. Med. 2018, 132, 1333–1339. [Google Scholar] [CrossRef]
- Campobasso, C.P.; Dell’Erba, A.S.; Addante, A.; Zotti, F.; Marzullo, A.; Colonna, M.F. Sudden cardiac death and myocardial ischemia indicators: A comparative study of four immunohistochemical markers. Am. J. Forensic Med. Pathol. 2008, 29, 154–161. [Google Scholar] [CrossRef]
- Yang, S.; Sun, R.; Zhou, Z.; Zhou, J.; Liang, J.; Mu, H. Expression of amyloid-β protein and amyloid-β precursor protein after primary brain-stem injury in rats. Am. J. Forensic Med. Pathol. 2014, 35, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Sieber, M.; Dreßler, J.; Franke, H.; Pohlers, D.; Ondruschka, B. Post-mortem biochemistry of NSE and S100B: A supplemental tool for detecting a lethal traumatic brain injury? J. Forensic Leg. Med. 2018, 55, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Maiese, A.; Spina, F.; Visi, G.; Del Duca, F.; De Matteis, A.; La Russa, R.; Di Paolo, M.; Frati, P.; Fineschi, V. The Expression of FOXO3a as a Forensic Diagnostic Tool in Cases of Traumatic Brain Injury: An Immunohistochemical Study. Int. J. Mol. Sci. 2023, 24, 2584. [Google Scholar] [CrossRef] [PubMed]
- Imada, H.; Sakatani, T.; Sawada, M.; Matsuura, T.; Fukushima, N.; Nakano, I. A lethal intracranial Rosai-Dorfman disease of the brainstem diagnosed at autopsy. Pathol. Int. 2015, 65, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Bohnert, S.; Trella, S.; Preiß, U.; Heinsen, H.; Bohnert, M.; Zwirner, J.; Tremblay, M.È.; Monoranu, C.M.; Ondruschka, B. Density of TMEM119-positive microglial cells in postmortem cerebrospinal fluid as a surrogate marker for assessing complex neuropathological processes in the CNS. Int. J. Leg. Med. 2022, 136, 1841–1850. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Eom, Y.B. Applicable Forensic Biomarker for Drowning Diagnosis: Extracellular Signal-Regulated Kinase 2 (ERK2). Int. J. Leg. Med. 2023, 137, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Stemberga, V.; Stifter, S.; Cuculić, D.; Coklo, M.; Bosnar, A. Immunohistochemical surfactant protein-A expression: Fatal drowning vs. postmortem immersion. Med. Hypotheses 2009, 72, 413–415. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Ha, E.J.; Cho, H.W.; Kim, H.R.; Lee, D.; Eom, Y.B. Potential forensic application of receptor for advanced glycation end products (RAGE) and aquaporin 5 (AQP5) as novel biomarkers for diagnosis of drowning. J. Forensic Leg. Med. 2019, 62, 56–62. [Google Scholar] [CrossRef]
- Cecchi, R.; Sestili, C.; Prosperini, G.; Cecchetto, G.; Vicini, E.; Viel, G.; Muciaccia, B. Markers of mechanical asphyxia: Immunohistochemical study on autoptic lung tissues. Int. J. Leg. Med. 2014, 128, 117–125. [Google Scholar] [CrossRef]
- Doberentz, E.; Genneper, L.; Wagner, R.; Madea, B. Expression times for hsp27 and hsp70 as an indicator of thermal stress during death due to fire. Int. J. Leg. Med. 2017, 131, 1707–1718. [Google Scholar] [CrossRef] [PubMed]
- Perskvist, N.; Edston, E. Differential accumulation of pulmonary and cardiac mast cell-subsets and eosinophils between fatal anaphylaxis and asthma death: A postmortem comparative study. Forensic Sci. Int. 2007, 169, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Montana, A.; Liberto, A.; Filetti, V.; Nunno, N.D.; Amico, F.; Salerno, M.; Loreto, C.; Sessa, F. Anaphylactic Death: A New Forensic Workflow for Diagnosis. Healthcare 2021, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Reggiani Bonetti, L.; Maccio, L.; Trani, N.; Radheshi, E.; Palmiere, C. Splenic hypereosinophilia in anaphylaxis-related death: Different assessments depending on different types of allergens? Int. J. Leg. Med. 2015, 129, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Inoue, H.; Shinone, K.; Ikemura, M.; Nata, M. Molecular biological analysis of cardiac effect of high temperature in rats. Leg. Med. 2012, 14, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Tsokos, M.; Rothschild, M.A.; Madea, B.; Rie, M.; Sperhake, J.P. Histological and immunohistochemical study of Wischnewsky spots in fatal hypothermia. Am. J. Forensic Med. Pathol. 2006, 27, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Preuss, J.; Dettmeyer, R.; Poster, S.; Lignitz, E.; Madea, B. The expression of heat shock protein 70 in kidneys in cases of death due to hypothermia. Forensic Sci. Int. 2008, 176, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Tombolini, A.; Broglia, I.; Ferrara, G. Technical note: Double immunohistochemical stain (anti-CD31 and anti-cytokeratins) as a tool for a confident forensic post-mortem diagnosis of amniotic fluid embolism. Int. J. Leg. Med. 2021, 135, 355–357. [Google Scholar] [CrossRef]
- Wang, J.; Lai, Q.; Pan, H.; Sun, D.; Yu, C.; Zhang, W.; Chen, J.; Ma, L.; Li, L.; Zhou, R. Evaluation of specific marker CK13 and CK10/13 combined with APM staining for the diagnosis of amniotic fluid embolism and aspiration. Forensic Sci. Int. 2014, 238, 108–112. [Google Scholar] [CrossRef]
- Argo, A.; Spatola, G.F.; Zerbo, S.; Sortino, C.; Lanzarone, A.; Uzzo, M.L.; Pitruzzella, A.; Farè, F.; Roda, G.; Gambaro, V.; et al. A possible biomarker for methadone related deaths. J. Forensic Leg. Med. 2017, 49, 8–14. [Google Scholar] [CrossRef]
- Welte, T.; Bohnert, M.; Pollak, S. Prevalence of rhabdomyolysis in drug deaths. Forensic Sci. Int. 2004, 139, 21–25. [Google Scholar] [CrossRef]
- Dettmeyer, R.; Friedrich, K.; Schmidt, P.; Madea, B. Heroin-associated myocardial damages—Conventional and immunohistochemical investigations. Forensic Sci. Int. 2009, 187, 42–46. [Google Scholar] [CrossRef]
- Cecchi, R.; Muciaccia, B.; Ciallella, C.; Di Luca, N.M.; Kimura, A.; Sestili, C.; Nosaka, M.; Kondo, T. Ventricular androgenic-anabolic steroid-related remodeling: An immunohistochemical study. Int. J. Leg. Med. 2017, 131, 1589–1595. [Google Scholar] [CrossRef]
- Ortmann, J.; Doberentz, E.; Madea, B. Immunohistochemical methods as an aid in estimating the time since death. Forensic Sci. Int. 2017, 273, 71–79. [Google Scholar] [CrossRef]
- De-Giorgio, F.; Bergamin, E.; Baldi, A.; Gatta, R.; Pascali, V.L. Immunohistochemical expression of HMGB1 and related proteins in the skin as a possible tool for determining post-mortem interval: A preclinical study. Forensic Sci. Med. Pathol. 2023. [Google Scholar] [CrossRef]
- Malinoski, D.J.; Slater, M.S.; Mullins, R.J. Crush injury and rhabdomyolysis. Crit. Care Clin. 2004, 20, 171–192. [Google Scholar] [CrossRef]
- Tong, F.; Wu, R.; Huang, W.; Yang, Y.; Zhang, L.; Zhang, B.; Chen, X.; Tang, X.; Zhou, Y. Forensic aspects of homicides by insulin overdose. Forensic Sci. Int. 2017, 278, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Wisnewski, A.V.; Cooney, R.; Hodgson, M.; Giese, K.; Liu, J.; Redlich, C.A. Severe asthma and death in a worker using methylene diphenyl diisocyanate MDI asthma death. Am. J. Ind. Med. 2022, 65, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Kawai, C.; Miyao, M.; Kotani, H.; Minami, H.; Abiru, H.; Hamayasu, H.; Yamamoto, A.; Tamaki, K. Systemic amyloidosis with amyloid goiter: An autopsy report. Leg. Med. 2023, 60, 102167. [Google Scholar] [CrossRef] [PubMed]
- Dettmeyer, R.; Sperhake, J.P.; Müller, J.; Madea, B. Cytomegalovirus-induced pneumonia and myocarditis in three cases of suspected sudden infant death syndrome (SIDS): Diagnosis by immunohistochemical techniques and molecularpathologic methods. Forensic Sci. Int. 2008, 174, 229–233. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y. Myocardial Cx43 expression in the cases of sudden death due to dilated cardiomyopathy. Forensic Sci. Int. 2006, 162, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Menezes, R.G.; Rizwan, T.; Saad Ali, S.; Hassan, W.; Khetpal, A.; Aqil, M.; Madadin, M.; Jamal Siddiqi, T.; Shariq Usman, M. Postmortem findings in COVID-19 fatalities: A systematic review of current evidence. Leg. Med. 2022, 54, 102001. [Google Scholar] [CrossRef]
- ivković, V.; Gačić, E.M.; Djukić, D.; Nikolić, S. Guillain-Barré syndrome as a fatal complication of SARS-CoV-2 infection—An autopsy case. Leg. Med. 2022, 57, 102074. [Google Scholar] [CrossRef]
- Ikeda, T.; Tani, N.; Aoki, Y.; Shida, A.; Morioka, F.; Ishikawa, T. Immunohistochemical detection of respiratory syncytial virus at autopsy. Pediatr. Int. 2019, 61, 781–791. [Google Scholar] [CrossRef]
- Weisheng, H.; Hui, Z.; Shuang, W.; Qing, G.; Tianying, S.; Chenguang, Y.; Hongmei, D. A sudden death due to acute necrotizing encephalopathy associated with influenza A virus infection: An autopsy case report. Leg. Med. 2022, 58, 102098. [Google Scholar] [CrossRef] [PubMed]
- Mazzotti, M.C.; Fais, P.; Palazzo, C.; Fersini, F.; Ruggeri, A.; Falconi, M.; Pelotti, S.; Teti, G. Determining the time of death by morphological and immunohistochemical evaluation of collagen fibers in postmortem gingival tissues. Leg. Med. 2019, 39, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Madea, B.; Ortmann, J.; Doberentz, E. Estimation of the time since death—Even methods with a low precision may be helpful in forensic casework. Forensic Sci. Int. 2019, 302, 109879. [Google Scholar] [CrossRef]
- Madea, B.; Doberentz, E. Commentary on De-Giorgio, F.; Bergamin E, Baldi A, Gatta R, Pascali VL. Immunohistochemical expression of HMGB1 and related proteins in the skin as a possible tool for determining post-mortem interval: A preclinical study. Forensic Sci. Med. Pathol. 2023. [Google Scholar] [CrossRef]
- Maeda, H.; Ishikawa, T.; Michiue, T. Forensic molecular pathology: Its impacts on routine work, education and training. Leg. Med. 2014, 16, 61–69. [Google Scholar] [CrossRef]
- Huang, F.; Zhao, S.; Tong, F.; Liang, Y.; Le Grange, J.M.; Kuang, W.; Zhou, Y. Unexpected death in a young man associated with a unilateral swollen leg: Pathological and toxicological findings in a fatal snakebite from Deinagkistrodon acutus (Chinese moccasin). J. Forensic Sci. 2021, 66, 786–792. [Google Scholar] [CrossRef]
- Sharif, A.F.; Elsheikh, E.; Al-Asmari, A.Z.; Gameel, D.E. Potential Role of Serum S-100β Protein as a Predictor of Cardiotoxicity and Clinical Poor Outcome in Acute Amphetamine Intoxication. Cardiovasc. Toxicol. 2021, 21, 375–386. [Google Scholar] [CrossRef]
- Xiong, K.; Liao, H.; Long, L.; Ding, Y.; Huang, J.; Yan, J. Necroptosis contributes to metham-phetamine-induced cytotoxicity in rat cortical neurons. Toxicol. Vitr. 2016, 35, 163–168. [Google Scholar] [CrossRef]
- Wei, Y.; Xiao, L.; Fan, W.; Zou, J.; Yang, H.; Liu, B.; Ye, Y.; Wen, D.; Liao, L. Astrocyte Activation, but not Microglia, Is Associated with the Experimental Mouse Model of Schizophrenia Induced by Chronic Ketamine. J. Mol. Neurosci. 2022, 72, 1902–1915. [Google Scholar] [CrossRef]
- Li, D.R.; Zhu, B.L.; Ishikawa, T.; Zhao, D.; Michiue, T.; Maeda, H. Postmortem serum protein S100B levels with regard to the cause of death involving brain damage in medicolegal autopsy cases. Leg. Med. 2006, 8, 71–77. [Google Scholar] [CrossRef]
- Olczak, M.; Poniatowski, Ł.A.; Niderla-Bielińska, J.; Kwiatkowska, M.; Chutorański, D.; Tarka, S.; Wierzba-Bobrowicz, T. Concentration of microtubule associated protein tau (MAPT) in urine and saliva as a potential biomarker of traumatic brain injury in relationship with blood-brain barrier disruption in postmortem examination. Forensic Sci. Int. 2019, 301, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Olczak, M.; Kwiatkowska, M.; Niderla-Bielińska, J.; Chutorański, D.; Tarka, S.; Wierzba-Bobrowicz, T. Brain-originated peptides as possible biochemical markers of traumatic brain injury in cerebrospinal fluid post-mortem examination. Folia Neuropathol. 2018, 56, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Olczak, M.; Poniatowski, Ł.A.; Siwińska, A.; Kwiatkowska, M. Post-mortem detection of neuronal and astroglial biochemical markers in serum and urine for diagnostics of traumatic brain injury. Int. J. Leg. Med. 2023, 137, 1441–1452. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Ming, M.; Wang, E. Heart fatty acid binding protein as a marker for postmortem detection of early myocardial damage. Forensic Sci. Int. 2006, 160, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Sapouna, R.; Gourgiotis, D.; Athanaselis, S.; Papadodima, S.; Spiliopoulou, C. Diagnostic value of cardiac troponin I in postmortem diagnosis of myocardial infarction. Am. J. Forensic Med. Pathol. 2013, 34, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Xu, C.; Tang, X.; Liu, Z.; Lin, X.; Meng, H.; Shi, C.; Ma, K.; Xiao, B.; Li, L. Endoplasmic reticulum stress-related secretory proteins as biomarkers of early myocardial ischemia-induced sudden cardiac deaths. Int. J. Leg. Med. 2022, 136, 159–168. [Google Scholar] [CrossRef]
- Keltanen, T.; Walta, A.M.; Salonen, S.; Sajantila, A.; Lindroos, K. Renal markers cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) in postmortem samples. Forensic Sci. Med. Pathol. 2016, 12, 189–192. [Google Scholar] [CrossRef]
- Haynes, R.L.; Frelinger, A.L., 3rd; Giles, E.K.; Goldstein, R.D.; Tran, H.; Kozakewich, H.P.; Haas, E.A.; Gerrits, A.J.; Mena, O.J.; Trachtenberg, F.L.; et al. High serum serotonin in sudden infant death syndrome. Proc. Natl. Acad. Sci. USA 2017, 114, 7695–7700. [Google Scholar] [CrossRef]
- Kasuda, S.; Kudo, R.; Morimura, Y.; Tatsumi, K.; Sakurai, Y.; Shima, M.; Hatake, K. Avon Willebrand factor in cadaveric urine for forensic investigation. Leg. Med. 2009, 11, 245–247. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.; Zhang, J.; Guan, C.; Liu, L.; Ren, L. Biomarkers of myocardial injury in rats after cantharidin poisoning: Application for postmortem diagnosis and estimation of postmortem interval. Sci. Rep. 2020, 10, 12069. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Wang, Y.; Guo, Y.; Ren, L.; Zhang, X.; Wang, S.; Zhang, C.; Cai, J. Analysis of the risk of traumatic brain injury and evaluation neurogranin and myelin basic protein as potential biomarkers of traumatic brain injury in postmortem examination. Forensic Sci. Med. Pathol. 2022, 18, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Mimasaka, S.; Ohtsu, Y.; Tsunenari, S.; Funayama, M. Postmortem cytokine levels and severity of traumatic injuries. Int. J. Leg. Med. 2006, 120, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Ohtsu, Y.; Sasao, A.; Yonemitsu, K.; Nishitani, Y. Postmortem serum tenascin-C (TN-C) concentrations in forensic autopsy cases: A pilot study. Leg. Med. 2013, 15, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Panwar, R.; Shekhawat, R.S.; Shukla, K.K.; Rao, M.; Rathore, M.; Kanchan, T. Quantitative estimation of TNF-α and IL-3 by using ELISA from human lung tissue in fatal asphyxial deaths. J. Forensic Leg. Med. 2023, 98, 102559. [Google Scholar] [CrossRef] [PubMed]
- Kimura, A.; Ishida, Y.; Nosaka, M.; Shiraki, M.; Hama, M.; Kawaguchi, T.; Kuninaka, Y.; Shimada, E.; Yamamoto, H.; Takayasu, T.; et al. Autophagy in skin wounds: A novel marker for vital reactions. Int. J. Leg. Med. 2015, 129, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Sabucedo, A.J.; Furton, K.G. Estimation of postmortem interval using the protein marker cardiac Troponin I. Forensic Sci. Int. 2003, 134, 11–16. [Google Scholar] [CrossRef]
- Pittner, S.; Monticelli, F.C.; Pfisterer, A.; Zissler, A.; Sänger, A.M.; Stoiber, W.; Steinbacher, P. Postmortem degradation of skeletal muscle proteins: A novel approach to determine the time since death. Int. J. Leg. Med. 2016, 130, 421–431. [Google Scholar] [CrossRef]
- Ehrenfellner, B.; Zissler, A.; Steinbacher, P.; Monticelli, F.C.; Pittner, S. Are animal models predictive for human postmortem muscle protein degradation? Int. J. Leg. Med. 2017, 131, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Pittner, S.; Gotsmy, W.; Zissler, A.; Ehrenfellner, B.; Baumgartner, D.; Schrüfer, A.; Steinbacher, P.; Monticelli, F. Intra- and intermuscular variations of postmortem protein degradation for PMI estimation. Int. J. Leg. Med. 2020, 134, 1775–1782. [Google Scholar] [CrossRef]
- Kumar, S.; Ali, W.; Singh, U.S.; Kumar, A.; Bhattacharya, S.; Verma, A.K.; Rupani, R. Temperature-Dependent Postmortem Changes in Human Cardiac Troponin-T (cTnT): An Approach in Estimation of Time Since Death. J. Forensic Sci. 2016, 61 (Suppl. S1), S241–S245. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.G.; Yang, K.E.; Hwang, J.W.; Kang, H.S.; Lee, S.Y.; Choi, S.; Shin, J.; Jang, I.S.; An, H.J.; Chung, H.; et al. Degradation of Kidney and Psoas Muscle Proteins as Indicators of Post-Mortem Interval in a Rat Model, with Use of Lateral Flow Technology. PLoS ONE 2016, 11, e0160557. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef]
- Nie, X.; Qian, L.; Sun, R.; Huang, B.; Dong, X.; Xiao, Q.; Zhang, Q.; Lu, T.; Yue, L.; Chen, S.; et al. Multi-organ proteomic landscape of COVID-19 autopsies. Cell 2021, 184, 775–791. [Google Scholar] [CrossRef] [PubMed]
- Deininger, L.; Patel, E.; Clench, M.R.; Sears, V.; Sammon, C.; Francese, S. Proteomics goes forensic: Detection and mapping of blood signatures in fingermarks. Proteomics 2016, 16, 1707–1717. [Google Scholar] [CrossRef]
- Wilke, C. Proteomics Offers New Clues for Forensic Investigations. ACS Cent. Sci. 2021, 7, 1595–1598. [Google Scholar] [CrossRef]
- Beckett, N.; Tidy, R.; Douglas, B.; Priddis, C. Detection of intact insulin analogues in post-mortem vitreous humour—Application to forensic toxicology casework. Drug Test. Anal. 2021, 13, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Chan, Q.W.T.; Rogalski, J.; Moon, K.M.; Foster, L.J. The application of forensic proteomics to identify an unknown snake venom in a deceased toddler. Forensic Sci. Int. 2021, 323, 110820. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, S.; Li, Y.; Zhao, M.; Liu, M.; Gao, J.; Ding, S.; Li, J. Quantitative proteomics analysis to identify diffuse axonal injury biomarkers in rats using iTRAQ coupled LC-MS/MS. J. Proteom. 2016, 133, 93–99. [Google Scholar] [CrossRef]
- Liang, Y.; Tong, F.; Zhang, L.; Zhu, L.; Li, W.; Huang, W.; Zhao, S.; He, G.; Zhou, Y. iTRAQ-based proteomic analysis discovers potential biomarkers of diffuse axonal injury in rats. Brain Res. Bull. 2019, 153, 289–304. [Google Scholar] [CrossRef]
- Chen, Q.; Li, L.; Xu, L.; Yang, B.; Huang, Y.; Qiao, D.; Yue, X. Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int. J. Leg. Med. 2024, 138, 207–227. [Google Scholar] [CrossRef]
- Kakimoto, Y.; Ueda, A.; Ito, M.; Tanaka, M.; Kubota, T.; Isozaki, S.; Osawa, M. Proteomic profiling of sudden cardiac death with acquired cardiac hypertrophy. Int. J. Leg. Med. 2023, 137, 1453–1461. [Google Scholar] [CrossRef]
- Ma, X.; Liao, Z.; Li, R.; Xia, W.; Guo, H.; Luo, J.; Sheng, H.; Tian, M.; Cao, Z. Myocardial Injury Caused by Chronic Alcohol Exposure—A Pilot Study Based on Proteomics. Molecules 2022, 27, 4284. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, K.; Sun, J.; Huang, Z.; Shi, P. The relationship between postmortem interval and protein changes in mice. J. Forensic Leg. Med. 2023, 101, 102618. [Google Scholar] [CrossRef]
- Choi, K.M.; Zissler, A.; Kim, E.; Ehrenfellner, B.; Cho, E.; Lee, S.I.; Steinbacher, P.; Yun, K.N.; Shin, J.H.; Kim, J.Y.; et al. Postmortem proteomics to discover biomarkers for forensic PMI estimation. Int. J. Leg. Med. 2019, 133, 899–908. [Google Scholar] [CrossRef]
- Battistini, A.; Capitanio, D.; Bailo, P.; Moriggi, M.; Tambuzzi, S.; Gelfi, C.; Piccinini, A. Proteomic analysis by mass spectrometry of postmortem muscle protein degradation for PMI estimation: A pilot study. Forensic Sci. Int. 2023, 349, 111774. [Google Scholar] [CrossRef] [PubMed]
- Mizukami, H.; Hathway, B.; Procopio, N. Aquatic Decomposition of Mammalian Corpses: A Forensic Proteomic Approach. J. Proteome Res. 2020, 19, 2122–2135. [Google Scholar] [CrossRef] [PubMed]
- Brockbals, L.; Garrett-Rickman, S.; Fu, S.; Ueland, M.; McNevin, D.; Padula, M.P. Estimating the time of human decomposition based on skeletal muscle biopsy samples utilizing an untargeted LC-MS/MS-based proteomics approach. Anal. Bioanal. Chem. 2023, 415, 5487–5498. [Google Scholar] [CrossRef]
- Procopio, N.; Williams, A.; Chamberlain, A.T.; Buckley, M. Forensic proteomics for the evaluation of the post-mortem decay in bones. J. Proteom. 2018, 177, 21–30. [Google Scholar] [CrossRef]
- Mickleburgh, H.L.; Schwalbe, E.C.; Bonicelli, A.; Mizukami, H.; Sellitto, F.; Starace, S.; Wescott, D.J.; Carter, D.O.; Procopio, N. Human Bone Proteomes before and after Decomposition: Investigating the Effects of Biological Variation and Taphonomic Alteration on Bone Protein Profiles and the Implications for Forensic Proteomics. J. Proteome Res. 2021, 20, 2533–2546. [Google Scholar] [CrossRef]
- Prieto-Bonete, G.; Pérez-Cárceles, M.D.; Maurandi-López, A.; Pérez-Martínez, C.; Luna, A. Association between protein profile and postmortem interval in human bone remains. J. Proteom. 2019, 192, 54–63. [Google Scholar] [CrossRef]
- Bonicelli, A.; Di Nunzio, A.; Di Nunzio, C.; Procopio, N. Insights into the Differential Preservation of Bone Proteomes in Inhumed and Entombed Cadavers from Italian Forensic Caseworks. J. Proteome Res. 2022, 21, 1285–1298. [Google Scholar] [CrossRef] [PubMed]
- Dammeier, S.; Nahnsen, S.; Veit, J.; Wehner, F.; Ueffing, M.; Kohlbacher, O. Mass-Spectrometry-Based Proteomics Reveals Organ-Specific Expression Patterns to Be Used as Forensic Evidence. J. Proteome Res. 2016, 15, 182–192. [Google Scholar] [CrossRef]
- Ziganshin, R.H.; Berezina, N.Y.; Alexandrov, P.L.; Ryabinin, V.V.; Buzhilova, A.P. Optimization of Method for Human Sex Determination Using Peptidome Analysis of Teeth Enamel from Teeth of Different Biological Generation, Archeological Age, and Degrees of Taphonomic Preservation. Biochemistry 2020, 85, 614–622. [Google Scholar] [CrossRef]
- Brown, C.O.; Robbins, B.L.; McKiernan, H.E.; Danielson, P.B.; Legg, K.M. Direct seminal fluid identification by protease-free high-resolution mass spectrometry. J. Forensic Sci. 2021, 66, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Nolan, A.N.; Mead, R.J.; Maker, G.; Bringans, S.; Speers, S.J. The impact of environmental factors on the production of peptides in mammalian decomposition fluid in relation to the estimation of post-mortem interval: A summer/winter comparison in Western Australia. Forensic Sci. Int. 2019, 303, 109957. [Google Scholar] [CrossRef] [PubMed]
- Nolan, A.N.; Maker, G.; Mead, R.J.; Bringans, S.; Speers, S.J. Peptide analysis of mammalian decomposition fluid in relation to the post-mortem interval. Forensic Sci. Int. 2020, 311, 110269. [Google Scholar] [CrossRef] [PubMed]
- Jacob, M.; Lopata, A.L.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics toward personalized medicine. Mass Spectrom. Rev. 2019, 38, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J. Clin. 2021, 71, 333–358. [Google Scholar] [CrossRef]
- Murray, K.O.; Brant, J.O.; Kladde, M.P.; Clanton, T.L. Long-term epigenetic and metabolomic changes in the mouse ventricular myocardium after exertional heat stroke. Physiol. Genom. 2022, 54, 486–500. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Ma, R.C.W. Metabolomics in Diabetes and Diabetic Complications: Insights from Epidemiological Studies. Cells 2021, 10, 2832. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Kong, J.; Wu, J.; Wang, X.; Lai, M. GC-MS-based metabolomics identifies an amino acid signature of acute ischemic stroke. Neurosci. Lett. 2017, 642, 7–13. [Google Scholar] [CrossRef]
- Zhang, K.; Yan, H.; Liu, R.; Xiang, P.; Deng, K.; Zhang, J.; Tuo, Y.; Wang, Z.; Huang, P. Exploring metabolic alterations associated with death from asphyxia and the differentiation of asphyxia from sudden cardiac death by GC-HRMS-based untargeted metabolomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1171, 122638. [Google Scholar] [CrossRef]
- Nariai, M.; Abe, H.; Hoshioka, Y.; Makino, Y.; Iwase, H. Biomarker profiling of postmortem blood for diabetes mellitus and discussion of possible applications of metabolomics for forensic casework. Int. J. Leg. Med. 2022, 136, 1075–1090. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Wang, L.L.; Dong, W.W.; Zhang, M.; Tash, D.; Li, X.J.; Du, S.K.; Yuan, H.M.; Zhao, R.; Guan, D.W. A preliminary study on early postmortem submersion interval (PMSI) estimation and cause-of-death discrimination based on nontargeted metabolomics and machine learning algorithms. Int. J. Leg. Med. 2022, 136, 941–954. [Google Scholar] [CrossRef]
- Araújo, A.M.; Carvalho, M.; Costa, V.M.; Duarte, J.A.; Dinis-Oliveira, R.J.; Bastos, M.L.; Guedes de Pinho, P.; Carvalho, F. In vivo toxicometabolomics reveals multi-organ and urine metabolic changes in mice upon acute exposure to human-relevant doses of 3,4-methylenedioxypyrovalerone (MDPV). Arch. Toxicol. 2021, 95, 509–527. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Wang, Q.; Shen, M.; Han, W.; Yang, X.; Chen, L.; Ma, A.; Zhou, Z. Simultaneous determination of metabolic and elemental markers in methamphetamine-induced hepatic injury to rats using LC-MS/MS and ICP-MS. Anal. Bioanal. Chem. 2019, 411, 3361–3372. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Cao, H.; Wang, Q.; Zhou, Z.; Zhao, H.; Kuang, H. Determination of metabolic phenotype and potential biomarkers in the liver of heroin addicted mice with hepatotoxicity. Life Sci. 2021, 287, 120103. [Google Scholar] [CrossRef]
- Zhu, S.S.; Long, R.; Song, T.; Zhang, L.; Dai, Y.L.; Liu, S.W.; Zhang, P. UPLC-Q-TOF/MS Based Metabolomics Approach to Study the Hepatotoxicity of Cantharidin on Mice. Chem. Res. Toxicol. 2019, 32, 2204–2213. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, T.; Xia, W.; Zhu, B.; Tian, M.; Zhao, R.; Guan, D. A Pilot Metabolomic Study on Myocardial Injury Caused by Chronic Alcohol Consumption-Alcoholic Cardiomyopathy. Molecules 2021, 26, 2177. [Google Scholar] [CrossRef]
- Bi, D.; Shi, M.; Hu, Q.; Wang, H.; Lou, D.; Zhang, A.; Hu, Y. LC/MS/MS-Based Liver Metabolomics to Identify Chronic Liver Injury Biomarkers Following Exposure to Arsenic in Rats. Biol. Trace Elem. Res. 2022, 200, 4355–4369. [Google Scholar] [CrossRef]
- Ward, L.J.; Engvall, G.; Green, H.; Kugelberg, F.C.; Söderberg, C.; Elmsjö, A. Postmortem Metabolomics of Insulin Intoxications and the Potential Application to Find Hypoglycemia-Related Deaths. Metabolites 2022, 13, 5. [Google Scholar] [CrossRef]
- Dai, X.; Bai, R.; Xie, B.; Xiang, J.; Miao, X.; Shi, Y.; Yu, F.; Cong, B.; Wen, D.; Ma, C. A Metabolomics-Based Study on the Discriminative Classification Models and Toxicological Mechanism of Estazolam Fatal Intoxication. Metabolites 2023, 13, 567. [Google Scholar] [CrossRef]
- Dent, B.; Forbes, S.; Stuart, B. Environmental. Geology 2004, 45, 576. [Google Scholar]
- Statheropoulos, M.; Spiliopoulou, C.; Agapiou, A. A study of volatile organic compounds evolved from the decaying human body. Forensic Sci. Int. 2005, 153, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Szeremeta, M.; Samczuk, P.; Pietrowska, K.; Kowalczyk, T.; Przeslaw, K.; Sieminska, J.; Kretowski, A.; Niemcunowicz-Janica, A.; Ciborowski, M. In Vitro Animal Model for Estimating the Time since Death with Attention to Early Postmortem Stage. Metabolites 2022, 13, 26. [Google Scholar] [CrossRef]
- Fang, S.; Dai, X.; Shi, X.; Xiao, L.; Ye, Y.; Liao, L. A pilot study investigating early postmortem interval of rats based on ambient temperature and postmortem interval-related metabolites in blood. Forensic Sci. Med. Pathol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Chighine, A.; Stocchero, M.; Ferino, G.; De-Giorgio, F.; Conte, C.; Nioi, M.; d’Aloja, E.; Locci, E. Metabolomics investigation of post-mortem human pericardial fluid. Int. J. Leg. Med. 2023, 137, 1875–1885. [Google Scholar] [CrossRef]
- Zelentsova, E.A.; Yanshole, L.V.; Melnikov, A.D.; Kudryavtsev, I.S.; Novoselov, V.P.; Tsentalovich, Y.P. Post-mortem changes in metabolomic profiles of human serum, aqueous humor and vitreous humor. Metabolomics 2020, 16, 80. [Google Scholar] [CrossRef]
- Locci, E.; Stocchero, M.; Gottardo, R.; De-Giorgio, F.; Demontis, R.; Nioi, M.; Chighine, A.; Tagliaro, F.; d’Aloja, E. Comparative use of aqueous humour H NMR metabolomics and potassium concentration for PMI estimation in an animal model. Int. J. Leg. Med. 2021, 135, 845–852. [Google Scholar] [CrossRef]
- Aiello, D.; Lucà, F.; Siciliano, C.; Frati, P.; Fineschi, V.; Rongo, R.; Napoli, A. Analytical Strategy for MS-Based Thanatochemistry to Estimate Postmortem Interval. J. Proteome Res. 2021, 20, 2607–2617. [Google Scholar] [CrossRef]
- Du, T.; Lin, Z.; Xie, Y.; Ye, X.; Tu, C.; Jin, K.; Xie, J.; Shen, Y. Metabolic profiling of femoral muscle from rats at different periods of time after death. PLoS ONE 2018, 13, e0203920. [Google Scholar] [CrossRef]
- Lu, X.J.; Li, J.; Wei, X.; Li, N.; Dang, L.H.; An, G.S.; Du, Q.X.; Jin, Q.Q.; Cao, J.; Wang, Y.Y.; et al. A novel method for determining postmortem interval based on the metabolomics of multiple organs combined with ensemble learning techniques. Int. J. Leg. Med. 2023, 137, 237–249. [Google Scholar] [CrossRef]
- Sato, T.; Zaitsu, K.; Tsuboi, K.; Nomura, M.; Kusano, M.; Shima, N.; Abe, S.; Ishii, A.; Tsuchihashi, H.; Suzuki, K. A preliminary study on postmortem interval estimation of suffocated rats by GC-MS/MS-based plasma metabolic profiling. Anal. Bioanal. Chem. 2015, 407, 3659–3665. [Google Scholar] [CrossRef]
- Richard, D.; Ling, B.; Authier, N.; Faict, T.W.; Eschalier, A.; Coudoré, F. GC/MS profiling of gamma-hydroxybutyrate and precursors in various animal tissues using automatic solid-phase extraction. Preliminary investigations of its potential interest in postmortem interval determination. Anal. Chem. 2005, 77, 1354–1360. [Google Scholar] [CrossRef]
- Yang, T.; He, G.; Zhang, X.; Chang, L.; Zhang, H.; Ripple, M.G.; Fowler, D.R.; Li, L. Preliminary study on diffuse axonal injury by Fourier transform infrared spectroscopy histopathology imaging. J. Forensic Sci. 2014, 59, 231–235. [Google Scholar] [CrossRef]
- Wu, D.; Luo, Y.W.; Zhang, J.; Luo, B.; Zhang, K.; Yu, K.; Liu, R.N.; Lin, H.C.; Wei, X.; Wang, Z.Y.; et al. Fourier-transform infrared microspectroscopy of pulmonary edema fluid for postmortem diagnosis of diabetic ketoacidosis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 258, 119882. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhu, Y.; Deng, K.; Qin, Z.; Zhang, J.; Zhang, J.; Huang, P.; Wan, C. Label-Free Diagnosis of Pulmonary Fat Embolism Using Fourier Transform Infrared (FT-IR) Spectroscopic Imaging. Appl. Spectrosc. 2022, 76, 352–360. [Google Scholar] [CrossRef]
- Lin, H.; Wang, Z.; Luo, Y.; Lin, Z.; Hong, G.; Deng, K.; Huang, P.; Shen, Y. Non/mini-invasive monitoring of diabetes-induced myocardial damage by Fourier transform infrared spectroscopy: Evidence from biofluids. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166445. [Google Scholar] [CrossRef]
- Lin, H.; Zou, D.; Luo, Y.; Wang, L.; Zhang, Z.; Zhang, J.; Chen, Y.; Wang, Z.; Huang, P. Postmortem diagnosis of fatal hypothermia/hyperthermia by spectrochemical analysis of plasma. Forensic Sci. Med. Pathol. 2019, 15, 332–341. [Google Scholar] [CrossRef]
- Lin, H.; Guo, X.; Luo, Y.; Chen, Y.; Zhao, R.; Guan, D.; Wang, Z.; Huang, P. Postmortem Diagnosis of Fatal Hypothermia by Fourier Transform Infrared Spectroscopic Analysis of Edema Fluid in Formalin-Fixed, Paraffin-Embedded Lung Tissues. J. Forensic Sci. 2020, 65, 846–854. [Google Scholar] [CrossRef]
- Lin, H.; Luo, Y.; Wang, L.; Deng, K.; Sun, Q.; Fang, R.; Wei, X.; Zha, S.; Wang, Z.; Huang, P. Identification of pulmonary edema in forensic autopsy cases of fatal anaphylactic shock using Fourier transform infrared microspectroscopy. Int. J. Leg. Med. 2018, 132, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zou, D.; Deng, K.; Shao, Y.; Li, Z.; Luo, Y.; Sun, Q.; Xu, C.; Chen, Y.; Huang, P. Infrared (IR) spectral markers of bronchial epithelia in victims of fatal burns. Appl. Spectrosc. 2014, 68, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, R.; Tuo, Y.; Ma, K.; Zhang, D.; Wang, Z.; Huang, P. Distinguishing Asphyxia from Sudden Cardiac Death as the Cause of Death from the Lung Tissues of Rats and Humans Using Fourier Transform Infrared Spectroscopy. ACS Omega 2022, 7, 46859–46869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wei, X.; Huang, J.; Lin, H.; Deng, K.; Li, Z.; Shao, Y.; Zou, D.; Chen, Y.; Huang, P.; et al. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectral prediction of postmortem interval from vitreous humor samples. Anal. Bioanal. Chem. 2018, 410, 7611–7620. [Google Scholar] [CrossRef]
- Li, Z.; Huang, J.; Wang, Z.; Zhang, J.; Huang, P. An investigation on annular cartilage samples for post-mortem interval estimation using Fourier transform infrared spectroscopy. Forensic Sci. Med. Pathol. 2019, 15, 521–527. [Google Scholar] [CrossRef]
- Baptista, A.; Pedrosa, M.; Curate, F.; Ferreira, M.T.; Marques, M.P.M. Estimation of the post-mortem interval in human bones by infrared spectroscopy. Int. J. Leg. Med. 2022, 136, 309–317. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, A.; Liu, R.; Zhang, H.; Lin, H.; Zhang, P.; Huang, P.; Wang, Z. Identifying muscle hemorrhage in rat cadavers with advanced decomposition by FT-IR microspectroscopy combined with chemometrics. Leg. Med. 2020, 47, 101748. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Wu, H.; Shen, C.; Li, H.; Wei, X.; Liu, R.; Cai, W.; Wang, G.; Sun, Q.; Wang, Z. Identification of antemortem and postmortem fractures in a complex environment by FTIR spectroscopy based on a rabbit tibial fracture self-control model. Int. J. Leg. Med. 2021, 135, 2385–2394. [Google Scholar] [CrossRef]
- Fricker, L. Quantitative Peptidomics: General Considerations. Methods Mol. Biol. 2018, 1719, 121–140. [Google Scholar] [CrossRef]
- John, D.K.; Dos Santos Souza, K.; Ferrão, M.F. Overview of cocaine identification by vibrational spectroscopy and chemometrics. Forensic Sci. Int. 2023, 342, 111540. [Google Scholar] [CrossRef]
- Leng, H.; Chen, C.; Chen, C.; Chen, F.; Du, Z.; Chen, J.; Yang, B.; Zuo, E.; Xiao, M.; Lv, X.; et al. Raman spectroscopy and FTIR spectroscopy fusion technology combined with deep learning: A novel cancer prediction method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 285, 121839. [Google Scholar] [CrossRef]
- Coe, J.I. Postmortem chemistry update. Emphasis on forensic application. Am. J. Forensic Med. Pathol. 1993, 14, 91–117. [Google Scholar] [CrossRef]
- Radheshi, E.; Reggiani Bonetti, L.; Confortini, A.; Silingardi, E.; Palmiere, C. Postmortem diagnosis of anaphylaxis in presence of decompositional changes. J. Forensic Leg. Med. 2016, 38, 97–100. [Google Scholar] [CrossRef]
- Li, Z.; Li, K.; Xu, B.; Chen, J.; Zhang, Y.; Guo, L.; Xie, J. Identification evidence unraveled by strict proteomics rules toward forensic samples. Electrophoresis 2023, 44, 337–348. [Google Scholar] [CrossRef]
- Liu, C.C.; Liang, L.H.; Yang, Y.; Yu, H.L.; Yan, L.; Li, X.S.; Chen, B.; Liu, S.L.; Xi, H.L. Direct Acetonitrile-Assisted Trypsin Digestion Method Combined with LC-MS/MS-Targeted Peptide Analysis for Unambiguous Identification of Intact Ricin. J. Proteome Res. 2021, 20, 369–380. [Google Scholar] [CrossRef]
- Graham, S.F.; Chevallier, O.P.; Kumar, P.; Türko Gcaron Lu, O.; Bahado-Singh, R.O. Metabolomic profiling of brain from infants who died from Sudden Infant Death Syndrome reveals novel predictive biomarkers. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2017, 37, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Wu, J.; Wu, Q.; Zhang, X.; Zhou, D.; Dai, W.; Zhu, M.; Wang, D. Integrating proteomic, lipidomic and metabolomic data to construct a global metabolic network of lethal ventricular tachyarrhythmias (LVTA) induced by aconitine. J. Proteom. 2021, 232, 104043. [Google Scholar] [CrossRef] [PubMed]
- Hunsucker, S.W.; Solomon, B.; Gawryluk, J.; Geiger, J.D.; Vacano, G.N.; Duncan, M.W.; Patterson, D. Assessment of post-mortem-induced changes to the mouse brain proteome. J. Neurochem. 2008, 105, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Tavichakorntrakool, R.; Prasongwattana, V.; Sriboonlue, P.; Puapairoj, A.; Pongskul, J.; Khuntikeo, N.; Hanpanich, W.; Yenchitsomanus, P.T.; Wongkham, C.; Thongboonkerd, V. Serial analyses of postmortem changes in human skeletal muscle: A case study of alterations in proteome profile, histology, electrolyte contents, water composition, and enzyme activity. Proteom. Clin. Appl. 2008, 2, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Li, H.; Yang, T.; Ding, Z.; Wu, S.; Qiu, X.; Liu, Q. A Study on the Estimation of Postmortem Interval Based on Environmental Temperature and Concentrations of Substance in Vitreous Humor. J. Forensic Sci. 2018, 63, 745–751. [Google Scholar] [CrossRef]
- Kaszynski, R.H.; Nishiumi, S.; Azuma, T.; Yoshida, M.; Kondo, T.; Takahashi, M.; Asano, M.; Ueno, Y. Postmortem interval estimation: A novel approach utilizing gas chromatography/mass spectrometry-based biochemical profiling. Anal. Bioanal. Chem. 2016, 408, 3103–3112. [Google Scholar] [CrossRef]
- Pelletti, G.; Garagnani, M.; Barone, R.; Boscolo-Berto, R.; Rossi, F.; Morotti, A.; Roffi, R.; Fais, P.; Pelotti, S. Validation and preliminary application of a GC-MS method for the determination of putrescine and cadaverine in the human brain: A promising technique for PMI estimation. Forensic Sci. Int. 2019, 297, 221–227. [Google Scholar] [CrossRef]
Forensic Issue | Forensic Problem | Citation | Target Protein |
---|---|---|---|
Cause of death | Snake venom (toxin) | Jacoby-Alner et al. [6] | Notechis venom |
Acute myocardial ischemic | Kondo et al. [7,8,9,10], Mondello et al. [11], Campobasso et al. [12] | Thrombomodulin, von Willebrand factor (VWF), vimentin; CD31; C5b-9, fibronectin; fibronectin, fibrinogen, complement, myoglobi, actin, and desmin; | |
Fatal traumatic brain injury | Yang et al. [13], Sieber et al. [14], Maiese et al. [15], Imada et al. [16], Bohnert et al. [17], | Amyloid-β protein, amyloid-β precursor protein, neuron specific enolase (NSE), S100 calcium-binding protein B (S100B), Forkhead Box class O 3a (FOXO3a); CD68, S100; trans-membranous molecule 119 (TMEM119); | |
Mechanical asphyxiation | Kim et al. [18], Stemberga et al. [19], Lee et al. [20], Cecchi et al. [21] | Extracellular Signal-Regulated Kinase 2, receptor for advanced glycation end products, aquaporin 5; Surfactant protein-A (SP-A), Hypoxia-induced factor 1-α HIF1α; | |
Death due to fire | Doberentz et al. [22] | Heat shock protein 27 (HSP27), HSP70; | |
Fatal anaphylaxis and asthma death | Perskvist et al. [23] | Eosinophils (antibodies against human tryptase and chymase) | |
Anaphylactic Death: | Esposito et al. [24], Reggiani Bonetti et al. [25] | Tryptase (eosinophilis); | |
Heatstroke | Nakagawa et al. [26] | Fibronectin; | |
Hypothermia (Wischnewsky spots) | Tsokos et al. [27]; Preuss et al. [28]; | Hemoglobin; HSP 70 | |
Amniotic fluid embolism | Tombolini et al. [29], Wang et al. [30] | CD31, cytokeratins; CK13, CK10/13; | |
Drug death | Argo et al. [31], Welte et al. [32], Dettmeyer et al. [33], Cecchi et al. [34] | Caspase 9; myoglobin; leucocytes, T-lymphocytes and macrophages; CD68, Inducible NO synthase (iNOS), CD163, CD15, CD8, CD4, HIF1α; | |
PMI Estimation | The degeneration of gland | Ortmann et al. [35], De-Giorgio et al. [36] | Pancreatic tissue (insulin and glucagon), thyroid gland (thyreoglobulin and calcitonin); high mobility group box-1 (HMGB1); |
Forensic Issue | Forensic Problem | Citation | Target Protein | Samples |
---|---|---|---|---|
Toxicology | Exogenous protein Toxin | Huang et al. [51] | Snake venom | Multi-organ |
Cardiotoxicity | Sharif et al. [52] | S100β | Serum | |
Neurotoxicity | Xiong et al. [53]; Wei et al. [54] | Tumor necrosis facorα (TNFα); interleukin-1β (IL-1β), IL-6, | Serum | |
Postmortem detection of the cause of death | Traumatic brain injury | Li et al. [55], Olczak et al. [56,57,58] | S100β; microtubule associated protein tau (MAPT), tau, glial fibrillary acidic protein (GAFP); GAFP, MAPT, S100β, Spectrin Alpha, Non-Erythrocytic 1 (SPTAN1), pro-Brain-Derived Neurotrophic Factor (pro-BDNF); | Serum and urine |
Ischemic sudden cardiac death | Meng et al. [59], Sapouna et al. [60] Yu et al. [61] | heart fatty acid binding protein (H-FABP); cardiac troponin I c(TnI); vesicular integral membrane protein 36 (LMAN2), Calpain 1 (CAPN-1), valosin-containing protein; | Serum | |
Acute kidney injury | Keltanen et al. [62] | Cystatin C, neutrophil gelatinase-associated lipocalin; | Urine | |
Sudden infant death syndrome(SIDS) | Haynes et al. [63] | 5-hydroxytryptamine | Serum | |
PMI estimation | The degeneration of protein in body fluid | Kasuda et al. [64], Zhang et al. [65] | VWF; Vascular endothelial growth factor (VEGF)/HIF-1α | Serum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Zhao, S.; Liu, H.; Pan, M.; Dong, H. The Role of Protein Degradation in Estimation Postmortem Interval and Confirmation of Cause of Death in Forensic Pathology: A Literature Review. Int. J. Mol. Sci. 2024, 25, 1659. https://doi.org/10.3390/ijms25031659
Huang W, Zhao S, Liu H, Pan M, Dong H. The Role of Protein Degradation in Estimation Postmortem Interval and Confirmation of Cause of Death in Forensic Pathology: A Literature Review. International Journal of Molecular Sciences. 2024; 25(3):1659. https://doi.org/10.3390/ijms25031659
Chicago/Turabian StyleHuang, Weisheng, Shuquan Zhao, Huine Liu, Meichen Pan, and Hongmei Dong. 2024. "The Role of Protein Degradation in Estimation Postmortem Interval and Confirmation of Cause of Death in Forensic Pathology: A Literature Review" International Journal of Molecular Sciences 25, no. 3: 1659. https://doi.org/10.3390/ijms25031659
APA StyleHuang, W., Zhao, S., Liu, H., Pan, M., & Dong, H. (2024). The Role of Protein Degradation in Estimation Postmortem Interval and Confirmation of Cause of Death in Forensic Pathology: A Literature Review. International Journal of Molecular Sciences, 25(3), 1659. https://doi.org/10.3390/ijms25031659