The Effects of Artificial Diets on the Expression of Molecular Marker Genes Related to Honey Bee Health
Abstract
:1. Introduction
2. Results
2.1. Protein Content in Diets and Its Transformation into Honey Bee Body
2.2. Influence of the Diets on Relative Expression Ratio of the Virus in Honey Bee Colonies in Spring
2.3. Selecting of the Nutrition-Related Markers Based on Statistical Scores
2.4. Influence of the Diets on the Defense System of Overwintered Honey Bees
2.5. Influence of the Diets on the Nutrition Rate of Overwintered Honey Bees
3. Discussion
4. Material and Methods
4.1. Experimental Honey Bees
4.2. Preparation of Diets
4.3. Protein Concentration
4.4. Protein Digestion
4.5. RNA Extraction and cDNA Synthesis
4.6. Quantitative Real-Time PCR
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonk-Rügen, M.; Vilcinskas, A.; Wagner, A.E. Insect Models in Nutrition Research. Biomolecules 2022, 12, 1668. [Google Scholar] [CrossRef] [PubMed]
- Kröncke, N.; Benning, R. Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.). Insects 2023, 14, 261. [Google Scholar] [CrossRef]
- Liu, X. Overstimulation Can Create Health Problems due to Increases in PI3K/Akt/GSK3 Insensitivity and GSK3 Activity. Springerplus 2014, 14, 356. [Google Scholar] [CrossRef]
- Kandel, S. An Evidence-based Look at the Effects of Diet on Health. Cureus 2019, 11, e4715. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Amcoff, M.; Nässel, D.R. Impact of High-Fat Diet on Lifespan, Metabolism, Fecundity and Behavioral Senescence in Drosophila. Insect Biochem. Mol. Biol. 2021, 133, 103495. [Google Scholar] [CrossRef]
- Brodschneider, R.; Crailsheim, K. Nutrition and Health in Honey Bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Brandt, A.; Vilcinskas, A. The Fruit Fly Drosophila melanogaster as a Model for Aging Research. Adv. Biochem. Eng. Biotechnol. 2013, 135, 63–77. [Google Scholar]
- Wright, G.A.; Nicholson, S.W.; Shafir, S. Nutritional Physiology and Ecology of Honey Bees. Annu. Rev. Entomol. 2018, 63, 327–334. [Google Scholar] [CrossRef]
- Aggarwal, K.; Silverman, N. Positive and Negative Regulation of the Drosophila Immune Response. BMB Rep. 2008, 41, 267–277. [Google Scholar] [CrossRef]
- Aylanc, V.; Falcão, S.I.; Vilas-Boas, M. Bee Pollen and Bee Bread Nutritional Potential: Chemical Composition and Macronutrient Digestibility under in vitro Gastrointestinal System. Food Chem. 2023, 413, 135597. [Google Scholar] [CrossRef]
- Albers, R.; Bourdet-Sicard, R.; Braun, D.; Calder, P.C.; Herz, U.; Lambert, C.; Lenoir-Wijnkoop, I.; Méheust, A.; Ouwehand, A.; Phothirath, P.; et al. Monitoring Immune Modulation by Nutrition in the General Population: Identifying and Substantiating Effects on Human Health. Br. J. Nutr. 2013, 110, 1–30. [Google Scholar] [CrossRef]
- Tawfik, A.I.; Ahmed, Z.H.; Abdel-Rahman, M.F.; Moustafa, A.M. Effect of Some Bee Bread Quality on Protein Content and Antioxidant System of Honeybee Workers. Int. J. Trop. Insect. Sci. 2023, 43, 93–105. [Google Scholar] [CrossRef]
- Haydak, M.H. Brood Rearing by Honeybees Confined to a Pure Carbohydrate Diet. J. Econ. Entomol. 1935, 28, 657–660. [Google Scholar] [CrossRef]
- Schmickl, T.; Crailsheim, K. Cannibalism and Early Capping: Strategy of Honeybee Colonies in Times of Experimental Pollen Shortages. J. Comp. Physiol. A 2001, 187, 541–547. [Google Scholar] [PubMed]
- Maurizio, A.; Hodges, F.E.D. The Influence of Pollen Feeding and Brood Rearing on the Length of Life and Physiological Condition of the Honeybee Preliminary Report. Bee World 1950, 31, 9–12. [Google Scholar] [CrossRef]
- Alqarni, A.S. Influence of Some Protein Diets on the Longevity and Some Physiological Conditions of Honeybee Apis mellifera L. Workers. J. Biol. Sci. 2006, 6, 734–737. [Google Scholar]
- Saffari, A.; Kevan, P.G.; Atkinson, J.L. Palatability and Consumption of Patty-formulated Pollen and Pollen Substitutes and their Effects on Honeybee Colony Performance. J. Apic. Sci. 2010, 54, 63–71. [Google Scholar]
- Kim, H.J.; Hwang, J.; Ullah, Z.; Mustafa, B.; Kwon, H.W. Comparison of Physicochemical Properties of Pollen Substitute Diet for Honey Bee (Apis mellifera). J. Asia-Pac. Entomol. 2022, 25, 101967. [Google Scholar] [CrossRef]
- Kim, H.; Frunze, O.; Maigoro, A.Y.; Lee, M.-L.; Lee, J.-H.; Kwon, H.-W. Comparative Study of the Effect of Pollen Substitute Diets on Honey Bees during Early Spring. Insects 2024, 15, 101. [Google Scholar] [CrossRef]
- Noordyke, E.R.; Ellis, J.D. Reviewing the Efficacy of Pollen Substitutes as a Management Tool for Improving the Health and Productivity of Western Honey Bee (Apis mellifera) Colonies. Front. Sustain. Food Syst. 2021, 5, 772897. [Google Scholar] [CrossRef]
- Sihag, R.C.; Gupta, M. Development of an Artificial Pollen Substitute/supplement Diet to Help Tide the Colonies of Honeybee (Apis mellifera L.) over the Dearth Season. J. Apic. Sci. 2011, 55, 15–29. [Google Scholar]
- Manning, R. Artificial Feeding of Honeybees Based on an Understanding of Nutritional Principles. Anim. Prod. Sci. 2018, 58, 689–703. [Google Scholar] [CrossRef]
- Tang, Y.; Li, J.; Liao, S.; Qi, M.; Kong, X.; Tan, B.; Yin, Y.; Wang, J. The Effect of Dietary Protein Intake on Immune Status in Pigs of Different Genotypes. Food Agric. Immunol. 2018, 29, 776–784. [Google Scholar] [CrossRef]
- Cotter, S.C.; Reavey, C.E.; Tummala, Y.; Randall, J.L.; Holdbrook, R.; Ponton, F.; Simpson, S.J.; Smith, J.A.; Wilson, K. Diet Modulates the Relationship between Immune Gene Expression and Functional Immune Responses. Insect Biochem. Mol. Biol. 2019, 109, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, C.; Schwartz, B. The Relationship between Nutrition and the Immune System. Front. Nutr. 2022, 9, 1082500. [Google Scholar] [CrossRef] [PubMed]
- Tourkochristou, E.; Triantos, C.; Mouzaki, A. The Influence of Nutritional Factors on Immunological Outcomes. Front. Immunol. 2021, 12, 665968. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Patiño, C.; Bossowski, J.P.; De Donatis, G.M.; Mondragón, L.; Villa, E.; Aira, L.E.; Chiche, J.; Mhaidly, R.; Lebeaupin, C.; Marchetti, S.; et al. Low-Protein Diet Induces IRE1α-Dependent Anticancer Immunosurveillance. Cell Metab. 2018, 27, 828–842. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, B.; Wang, Y.; Feng, Q.; Yang, W. Effects of Dietary Crude Protein Levels on Development, Antioxidant Status, and Total Midgut Protease Activity of Honey Bee (Apis mellifera ligustica). Apidologie 2012, 43, 576–586. [Google Scholar] [CrossRef]
- Barth, J.; Szabad, J.; Hafen, E.; Köhler, K. Autophagy in Drosophila Ovaries is Induced by Starvation and is Required for Oogenesis. Cell. Death Differ. 2011, 18, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Dietary Protein Intake and Human Health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef]
- Moritz, B.; Crailsheim, K. Physiology of Protein Digestion in the Midgut of the Honeybee (Apis mellifera L.). J. Insect Physiol. 1987, 33, 923–931. [Google Scholar] [CrossRef]
- Dranca, F.; Ursachi, F.; Oroian, M. Bee Bread: Physicochemical Characterization and Phenolic Content Extraction Optimization. Foods 2020, 9, 1358. [Google Scholar] [CrossRef] [PubMed]
- DeGrandi-Hoffman, G.; Chen, Y.; Rivera, R.; Carroll, M.; Chambers, M.; Hidalgo, G.; Watkins de Jong, E. Honey Bee Colonies Provided with Natural Forage Have Lower Pathogen Loads and Higher Overwinter Survival than those Fed Protein Supplements. Apidologie 2016, 47, 186–196. [Google Scholar] [CrossRef]
- Paiva, J.P.L.M.; Esposito, E.; de Souza, M.H.; Francoy, G.I.; Morais, M.M. Effect of Ensiling on the Quality of Protein Supplements for Honey Bees Apis mellifera. Apidologie 2019, 50, 414–424. [Google Scholar] [CrossRef]
- Alhosin, M. Epigenetics Mechanisms of Honeybees: Secrets of Royal Jelly. Epigenet Insights 2023, 16, 25168657231213717. [Google Scholar] [CrossRef] [PubMed]
- Amro, A.; Omar, M.; Al-Ghamdi, A. Influence of Different Proteinaceous Diets on Consumption, Brood Rearing, and Honey Bee Quality Parameters under Isolation Conditions. Turk. J. Vet. Anim. Sci. 2016, 40, 468–475. [Google Scholar] [CrossRef]
- Martin, S.J.; Brettell, L.E. Deformed Wing Virus in Honeybees and Other Insects. Annu. Rev. Virol. 2019, 6, 49–69. [Google Scholar] [CrossRef] [PubMed]
- Alshukri, B.M.; Al-Esawy, M.T. Reduced Deformed Wing Virus of Apis mellifera L. Nurses by High Fat Diets under Laboratory Conditions. J. Plant Prot. Res. 2021, 61, 57–62. [Google Scholar]
- Watkins de Jong, E.; DeGrandi-Hoffman, G.; Chen, Y.; Graham, H.; Ziolkowski, N. Effects of Diets Containing Different Concentrations of Pollen and Pollen Substitutes on Physiology, Nosema burden, and Virus Titers in the Honey Bee (Apis mellifera L.). Apidologie 2019, 50, 845–858. [Google Scholar] [CrossRef]
- Pascual, G.; Silva, D.; Vargas, M.; Aranda, M.; Cañumir, J.A.; López, M.D. Dietary Supplement of Grape Wastes Enhances Honeybee Immune System and Reduces Deformed Wing Virus (DWV) Load. Antioxidants 2022, 12, 54. [Google Scholar] [CrossRef]
- Penn, H.J.; Simone-Finstrom, M.D.; de Guzman, L.I.; Tokarz, P.G.; Dickens, R. Viral Species Differentially Influence Macronutrient Preferences Based on Honey Bee Genotype. Biol. Open 2022, 11, bio059039. [Google Scholar] [CrossRef] [PubMed]
- Corona, M.; Branchiccela, B.; Alburaki, M.; Palmer-Young, E.C.; Madella, S.; Chen, Y.; Evans, J.D. Decoupling the Effects of Nutrition, Age, and Behavioral Caste on Honey Bee Physiology, Immunity, and Colony Health. Front. Physiol. 2023, 14, 1149840. [Google Scholar] [CrossRef]
- Ricigliano, V.A.; Simone-Finstrom, M. Nutritional and Prebiotic Efficacy of the Microalga Arthrospira platensis (spirulina) in Honey Bees. Apidologie 2020, 51, 898–910. [Google Scholar] [CrossRef]
- Li, C.; Xu, B.; Wang, Y.; Yang, Z.; Yang, W. Protein Content in Larval Diet Affects Adult Longevity and Antioxidant Gene Expression in Honey Bee Workers. Entomol. Exp. Appl. 2014, 151, 19–26. [Google Scholar] [CrossRef]
- Danihlík, J.; Škrabišová, M.; Lenobel, R.; Šebela, M.; Omar, E.; Petřivalský, M.; Crailsheim, K.; Brodschneider, R. Does the Pollen Diet Influence the Production and Expression of Antimicrobial Peptides in Individual Honey Bees? Insects 2018, 9, 79. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, L.; He, Q.; Zhou, S. Regulatory Mechanisms of Vitellogenesis in Insects. Front. Cell. Dev. Biol. 2021, 8, 593613. [Google Scholar] [CrossRef]
- Münch, D.; Amdam, G.V. The Curious Case of Aging Plasticity in Honey Bees. FEBS Lett. 2010, 584, 2496–2503. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-Y.; Li, Y.-Y.; Tan, L.; Li, Y.; Pang, B.-P. Juvenile Hormone Regulates the Reproductive Diapause through Methoprene-tolerant Gene in Galeruca daurica. Insect Mol. Biol. 2021, 30, 446–458. [Google Scholar] [CrossRef]
- Salmela, H.; Stark, T.; Stucki, D.; Fuchs, S.; Freitak, D.; Dey, A.; Kent, C.F.; Zayed, A.; Dhaygude, K.; Hokkanen, H.; et al. Ancient Duplications Have Led to Functional Divergence of Vitellogenin-Like Genes Potentially Involved in Inflammation and Oxidative Stress in Honey Bees. Genome Biol. Evol. 2016, 8, 495–506. [Google Scholar] [CrossRef]
- Pearce, A.N.; Huang, Z.Y.; Breed, M.D. Juvenile Hormone and Aggression in Honey Bees. J. Insect Physiol. 2001, 47, 1243–1247. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, A.; Chang, E.; Han, B.; Xu, J.; Fu, Y.; Dong, X.; Miao, S. Effects of Dietary Tryptophan on the Antioxidant Capacity and Immune Response Associated with TOR and TLRs/MyD88/NF-kB Signaling Pathways in Northern Snakehead, Channa argus (Cantor, 1842). Front. Immunol. 2023, 14, 1149151. [Google Scholar] [CrossRef] [PubMed]
- Bocian, A.; Sławek, S.; Jaromin, M.; Hus, K.K.; Buczkowicz, J.; Łysiak, D.; Petrílla, V.; Petrillova, M.; Legáth, J. Comparison of Methods for Measuring Protein Concentration in Venom Samples. Animals 2020, 10, 448. [Google Scholar] [CrossRef] [PubMed]
- Boisen, S.; Eggum, B.O. Critical Evaluation of in vitro Methods for Estimating Digestibility in Simple-stomach Animals. Nutr. Res. Rev. 1991, 4, 141–162. [Google Scholar] [CrossRef] [PubMed]
- Omar, E.M.; Darwish, H.Y.A.; Othman, A.A.; El-Seedi, H.R.; Al Naggar, Y. Crushing Corn Pollen Grains Increased Diet Digestibility and Hemolymph Protein Content While Decreasing Honey Bee Consumption. Apidologie 2022, 53, 52. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data using Real-time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Sultan, S.A.; Ghanim, M.F. Comprehensive Study and Evaluation of Commonly used Dimensionality Reduction Techniques in Biometrics Field. Al-Rafidain Eng. J. 2020, 25, 152–163. [Google Scholar] [CrossRef]
- Wang, P.; Chen, S.; Yang, S. Recent Advances on Penalized Regression Models for Biological Data. Mathematics 2022, 10, 3695. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MA, USA, 2003; p. 756. [Google Scholar]
Ingredients | Diet 1 (Soytide) | Diet 2 (SAC) | Control-N (Apple Juice) |
---|---|---|---|
Brewer’s yeast | 39.69 | 39.69 | 39.69 |
Egg yolk | 2.21 | 2.21 | 2.21 |
Defatted soybean powder | - | - | 2.21 |
Sugar | 35.36 | 35.36 | 35.36 |
Boiled water | 5.16 | 7.16 | 7.16 |
Canola oil | 1.01 | 1.01 | 1.01 |
Cellulose | 0.88 | 0.88 | 0.88 |
Wheat bran powder | 0.88 | 0.88 | 0.88 |
Multiple vitamins | 0.44 | 0.44 | 0.44 |
L-methionine | 0.1 | 0.1 | 0.1 |
L-lysine | 0.24 | 0.24 | 0.24 |
Citric acid | 1.85 | 1.85 | 1.85 |
IMP | 0.0002 | 0.0002 | 0.0002 |
GMP | 0.0002 | 0.0002 | 0.0002 |
Tangerine juice | 10 | 4 | 4 |
Soytide powder | 2.21 | 2.21 | - |
Apple juice | - | 4 | 4 |
Chlorella powder | - | 0.08 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frunze, O.; Kim, H.; Lee, J.-H.; Kwon, H.-W. The Effects of Artificial Diets on the Expression of Molecular Marker Genes Related to Honey Bee Health. Int. J. Mol. Sci. 2024, 25, 4271. https://doi.org/10.3390/ijms25084271
Frunze O, Kim H, Lee J-H, Kwon H-W. The Effects of Artificial Diets on the Expression of Molecular Marker Genes Related to Honey Bee Health. International Journal of Molecular Sciences. 2024; 25(8):4271. https://doi.org/10.3390/ijms25084271
Chicago/Turabian StyleFrunze, Olga, Hyunjee Kim, Jeong-Hyeon Lee, and Hyung-Wook Kwon. 2024. "The Effects of Artificial Diets on the Expression of Molecular Marker Genes Related to Honey Bee Health" International Journal of Molecular Sciences 25, no. 8: 4271. https://doi.org/10.3390/ijms25084271
APA StyleFrunze, O., Kim, H., Lee, J.-H., & Kwon, H.-W. (2024). The Effects of Artificial Diets on the Expression of Molecular Marker Genes Related to Honey Bee Health. International Journal of Molecular Sciences, 25(8), 4271. https://doi.org/10.3390/ijms25084271