Higher Seasonal Variation of Systemic Inflammation in Bipolar Disorder
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Törmälehto, S.; Svirskis, T.; Partonen, T.; Isometsä, E.; Pirkola, S.; Virtanen, M.; Sund, R. Seasonal effects on hospitalizations due to mood and psychotic disorders: A nationwide 31-year register study. Clin. Epidemiol. 2022, 14, 1177–1191. [Google Scholar] [CrossRef]
- Lambert, G.W.; Reid, C.; Kaye, D.M.; Jennings, G.L.; Esler, M.D. Effect of sunlight and season on serotonin turnover in the brain. Lancet 2002, 360, 1840–1842. [Google Scholar] [CrossRef]
- Praschak-Rieder, N.; Willeit, M.; Wilson, A.A.; Houle, S.; Meyer, J.H. Seasonal variation in human brain serotonin transporter binding. Arch. Gen. Psychiatry 2008, 65, 1072–1078. [Google Scholar] [CrossRef]
- Willeit, M.; Sitte, H.H.; Thierry, N.; Michalek, K.; Praschak-Rieder, N.; Zill, P.; Winkler, D.; Brannath, W.; Fischer, M.B.; Bondy, B. Enhanced serotonin transporter function during depression in seasonal affective disorder. Neuropsychopharmacology 2008, 33, 1503–1513. [Google Scholar] [CrossRef]
- Mc Mahon, B.; Andersen, S.B.; Madsen, M.K.; Hjordt, L.V.; Hageman, I.; Dam, H.; Svarer, C.; da Cunha-Bang, S.; Baare, W.; Madsen, J.; et al. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder. Brain 2016, 139, 1605–1614. [Google Scholar] [CrossRef]
- Benedetti, F.; Aggio, V.; Pratesi, M.L.; Greco, G.; Furlan, R. Neuroinflammation in bipolar depression. Front. Psychiatry 2020, 11, 71. [Google Scholar] [CrossRef]
- Comai, S.; Melloni, E.; Lorenzi, C.; Bollettini, I.; Vai, B.; Zanardi, R.; Colombo, C.; Valtorta, F.; Benedetti, F.; Poletti, S. Selective association of cytokine levels and kynurenine/tryptophan ratio with alterations in white matter microstructure in bipolar but not in unipolar depression. Eur. Neuropsychopharmacol. 2022, 55, 96–109. [Google Scholar] [CrossRef]
- Snijders, G.; Schiweck, C.; Mesman, E.; Grosse, L.; De Wit, H.; Nolen, W.A.; Drexhage, H.A.; Hillegers, M.H.J. A dynamic course of T cell defects in individuals at risk for mood disorders. Brain. Behav. Immun. 2016, 58, 11–17. [Google Scholar] [CrossRef]
- Dantzer, R. Depression and inflammation: An intricate relationship. Biol. Psychiatry 2012, 71, 4–5. [Google Scholar] [CrossRef]
- Leonard, B.; Maes, M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci. Biobehav. Rev. 2012, 36, 764–785. [Google Scholar] [CrossRef]
- Bergink, V.; Gibney, S.M.; Drexhage, H.A. Autoimmunity, inflammation, and psychosis: A search for peripheral markers. Biol. Psychiatry 2014, 75, 324–331. [Google Scholar] [CrossRef]
- Anderson, G.; Maes, M. Bipolar disorder: Role of immune-inflammatory cytokines, oxidative and nitrosative stress and tryptophan catabolites. Curr. Psychiatry Rep. 2015, 17, 541. [Google Scholar] [CrossRef]
- Raison, C.L.; Capuron, L.; Miller, A.H. Cytokines sing the blues: Inflammation and the pathogenesis of depression. Trends Immunol. 2006, 27, 24–31. [Google Scholar] [CrossRef]
- Benedetti, F.; Vai, B. New biomarkers in mood disorders: Insights from immunopsychiatry and neuroimaging. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2023, 69, 56–57. [Google Scholar] [CrossRef]
- Aggio, V.; Fabbella, L.; Poletti, S.; Lorenzi, C.; Finardi, A.; Colombo, C.; Zanardi, R.; Furlan, R.; Benedetti, F. Circulating cytotoxic immune cell composition, activation status and toxins expression associate with white matter microstructure in bipolar disorder. Sci. Rep. 2023, 13, 22209. [Google Scholar] [CrossRef]
- Benedetti, F.; Poletti, S.; Hoogenboezem, T.A.; Mazza, E.; Ambree, O.; de Wit, H.; Wijkhuijs, A.J.; Locatelli, C.; Bollettini, I.; Colombo, C.; et al. Inflammatory cytokines influence measures of white matter integrity in Bipolar Disorder. J. Affect. Disord. 2016, 202, 1–9. [Google Scholar] [CrossRef]
- Bollettini, I.; Poletti, S.; Locatelli, C.; Vai, B.; Smeraldi, E.; Colombo, C.; Benedetti, F. Disruption of white matter integrity marks poor antidepressant response in bipolar disorder. J. Affect. Disord. 2015, 174, 233–240. [Google Scholar] [CrossRef]
- Poletti, S.; Bollettini, I.; Mazza, E.; Locatelli, C.; Radaelli, D.; Vai, B.; Smeraldi, E.; Colombo, C.; Benedetti, F. Cognitive performances associate with measures of white matter integrity in bipolar disorder. J. Affect. Disord. 2015, 174, 342–352. [Google Scholar] [CrossRef]
- Benedetti, F.; Poletti, S.; Vai, B.; Mazza, M.G.; Lorenzi, C.; Brioschi, S.; Aggio, V.; Branchi, I.; Colombo, C.; Furlan, R. Higher baseline interleukin-1β and TNF-α hamper antidepressant response in major depressive disorder. Eur. Neuropsychopharmacol. 2021, 42, 35–44. [Google Scholar] [CrossRef]
- Paolini, M.; Harrington, Y.; Colombo, F.; Bettonagli, V.; Poletti, S.; Carminati, M.; Colombo, C.; Benedetti, F.; Zanardi, R. Hippocampal and parahippocampal volume and function predict antidepressant response in patients with major depression: A multimodal neuroimaging study. J. Psychopharmacol. 2023, 37, 1070–1081. [Google Scholar] [CrossRef]
- Paolini, M.; Harrington, Y.; Raffaelli, L.; Poletti, S.; Zanardi, R.; Colombo, C.; Benedetti, F. Neutrophil to lymphocyte ratio and antidepressant treatment response in patients with major depressive disorder: Effect of sex and hippocampal volume. Eur. Neuropsychopharmacol. 2023, 76, 52–60. [Google Scholar] [CrossRef]
- Poletti, S.; Zanardi, R.; Mandelli, A.; Aggio, V.; Finardi, A.; Lorenzi, C.; Borsellino, G.; Carminati, M.; Manfredi, E.; Tomasi, E. Low-dose interleukin 2 antidepressant potentiation in unipolar and bipolar depression: Safety, efficacy, and immunological biomarkers. Brain Behav. Immun. 2024, 118, 52–68. [Google Scholar] [CrossRef]
- Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. JAMA Psychiatry 2013, 70, 31–41. [Google Scholar] [CrossRef]
- Gędek, A.; Szular, Z.; Antosik, A.Z.; Mierzejewski, P.; Dominiak, M. Celecoxib for Mood Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2023, 12, 3497. [Google Scholar] [CrossRef]
- Nettis, M.A.; Lombardo, G.; Hastings, C.; Zajkowska, Z.; Mariani, N.; Nikkheslat, N.; Worrell, C.; Enache, D.; McLaughlin, A.; Kose, M.; et al. Augmentation therapy with minocycline in treatment-resistant depression patients with low-grade peripheral inflammation: Results from a double-blind randomised clinical trial. Neuropsychopharmacology 2021, 46, 939–948. [Google Scholar] [CrossRef]
- Hellmann-Regen, J.; Clemens, V.; Grözinger, M.; Kornhuber, J.; Reif, A.; Prvulovic, D.; Goya-Maldonado, R.; Wiltfang, J.; Gruber, O.; Schüle, C. Effect of minocycline on depressive symptoms in patients with treatment-resistant depression: A randomized clinical trial. JAMA Netw. Open 2022, 5, e2230367. [Google Scholar] [CrossRef]
- Lombardo, G.; Nettis, M.A.; Hastings, C.; Zajkowska, Z.; Mariani, N.; Nikkheslat, N.; Worrell, C.; Enache, D.; McLaughlin, A.; Kose, M. Sex differences in a double-blind randomized clinical trial with minocycline in treatment-resistant depressed patients: CRP and IL-6 as sex-specific predictors of treatment response. Brain Behav. Immun. -Health 2022, 26, 100561. [Google Scholar] [CrossRef]
- Benedetti, F.; Zanardi, R.; Mazza, M.G. Antidepressant psychopharmacology: Is inflammation a future target? Int. Clin. Psychopharmacol. 2022, 37, 79–81. [Google Scholar] [CrossRef]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016, 16, 22. [Google Scholar] [CrossRef]
- Post, R.M.; Leverich, G.S.; Altshuler, L.L.; Frye, M.A.; Suppes, T.; McElroy, S.L.; Keck, P.E., Jr.; Nolen, W.A.; Rowe, M.; Kupka, R.W.; et al. Relationship of prior antidepressant exposure to long-term prospective outcome in bipolar I disorder outpatients. J. Clin. Psychiatry 2012, 73, 17351. [Google Scholar] [CrossRef]
- Post, R.M.; Leverich, G.S.; Altshuler, L.L.; Frye, M.A.; Suppes, T.; Keck, P.E.; McElroy, S.L.; Nolen, W.A.; Kupka, R.; Grunze, H.; et al. Differential clinical characteristics, medication usage, and treatment response of bipolar disorder in the US versus The Netherlands and Germany. Int. Clin. Psychopharmacol. 2011, 26, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Nierenberg, A.A.; Agustini, B.; Köhler-Forsberg, O.; Cusin, C.; Katz, D.; Sylvia, L.G.; Peters, A.; Berk, M. Diagnosis and treatment of bipolar disorder: A review. JAMA 2023, 330, 1370–1380. [Google Scholar] [CrossRef]
- Chen, Y.W.; Dilsaver, S.C. Lifetime rates of suicide attempts among subjects with bipolar and unipolar disorders relative to subjects with other Axis I disorders. Biol. Psychiatry 1996, 39, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Leverich, G.S.; Altshuler, L.L.; Frye, M.A.; Suppes, T.; Keck, P.E.; McElroy, S.L.; Denicoff, K.D.; Obrocea, G.; Nolen, W.A.; Kupka, R.; et al. Factors Associated with Suicide Attempts in 648 Patients with Bipolar Disorder in the Stanley Foundation Bipolar Network. J. Clin. Psychiatry 2003, 64, 506–515. [Google Scholar] [CrossRef]
- Osby, U.; Brandt, L.; Correia, N.; Ekbom, A.; Sparen, P. Excess mortality in bipolar and unipolar disorder in Sweden. Arch. Gen. Psychiatry 2001, 58, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Jamison, K.R. Suicide and bipolar disorders. Ann. N. Y. Acad. Sci. 1986, 487, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.; Bielau, H.; Brisch, R.; Danos, P.; Ullrich, O.; Mawrin, C.; Bernstein, H.G.; Bogerts, B. Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide. J. Psychiatr. Res. 2008, 42, 151–157. [Google Scholar] [CrossRef]
- Naggan, L.; Robinson, E.; Dinur, E.; Goldenberg, H.; Kozela, E.; Yirmiya, R. Suicide in bipolar disorder patients is associated with hippocampal microglia activation and reduction of lymphocytes-activation gene 3 (LAG3) microglial checkpoint expression. Brain Behav. Immun. 2023, 110, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yang, D.; Kim, Y.; Hashizume, M.; Gasparrini, A.; Armstrong, B.; Honda, Y.; Tobias, A.; Sera, F.; Vicedo-Cabrera, A.M. Seasonality of suicide: A multi-country multi-community observational study. Epidemiol. Psychiatr. Sci. 2020, 29, e163. [Google Scholar] [CrossRef]
- Sforzini, L.; Worrell, C.; Kose, M.; Anderson, I.M.; Aouizerate, B.; Arolt, V.; Bauer, M.; Baune, B.T.; Blier, P.; Cleare, A.J. A Delphi-method-based consensus guideline for definition of treatment-resistant depression for clinical trials. Mol. Psychiatry 2022, 27, 1286–1299. [Google Scholar] [CrossRef]
- Haldar, C.; Ahmad, R. Photoimmunomodulation and melatonin. J. Photochem. Photobiol. B Biol. 2010, 98, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Morrey, K.M.; McLachlan, J.A.; Serkin, C.D.; Bakouche, O. Activation of human monocytes by the pineal hormone melatonin. J. Immunol. 1994, 153, 2671–2680. [Google Scholar] [CrossRef] [PubMed]
- Calvo, J.R.; Gonzalez-Yanes, C.; Maldonado, M. The role of melatonin in the cells of the innate immunity: A review. J. Pineal Res. 2013, 55, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Wyse, C.; O’Malley, G.; Coogan, A.N.; McConkey, S.; Smith, D.J. Seasonal and daytime variation in multiple immune parameters in humans: Evidence from 329,261 participants of the UK Biobank cohort. iScience 2021, 24, 102255. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Luchtman, D.; Kang, Z.; Tam, E.M.; Yatham, L.N.; Su, K.-P.; Lam, R.W. Enhanced inflammatory and T-helper-1 type responses but suppressed lymphocyte proliferation in patients with seasonal affective disorder and treated by light therapy. J. Affect. Disord. 2015, 185, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.J.; Tyrer, A.E.; Levitan, R.D.; Xu, X.; Houle, S.; Wilson, A.A.; Nobrega, J.N.; Rusjan, P.M.; Meyer, J.H. Light therapy and serotonin transporter binding in the anterior cingulate and prefrontal cortex. Acta Psychiatr. Scand. 2015, 132, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Taioli, E. Seasonal variations of complete blood count and inflammatory biomarkers in the US population-analysis of NHANES data. PLoS ONE 2015, 10, e0142382. [Google Scholar] [CrossRef] [PubMed]
- Usvyat, L.A.; Carter, M.; Thijssen, S.; Kooman, J.P.; van der Sande, F.M.; Zabetakis, P.; Balter, P.; Levin, N.W.; Kotanko, P. Seasonal variations in mortality, clinical, and laboratory parameters in hemodialysis patients: A 5-year cohort study. Clin. J. Am. Soc. Nephrol. 2012, 7, 108–115. [Google Scholar] [CrossRef]
- Attwells, S.; Setiawan, E.; Wilson, A.A.; Rusjan, P.M.; Mizrahi, R.; Miler, L.; Xu, C.; Richter, M.A.; Kahn, A.; Kish, S.J. Inflammation in the neurocircuitry of obsessive-compulsive disorder. JAMA Psychiatry 2017, 74, 833–840. [Google Scholar] [CrossRef]
- Meyer, J. Inflammation, obsessive-compulsive disorder, and related disorders. In The Neurobiology and Treatment of OCD: Accelerating Progress; Springer: Berlin/Heidelberg, Germany, 2021; pp. 31–53. [Google Scholar]
- Altintaş, E.; Kütük, M.Ö.; Tufan, A.E. Seasonal variations in obsessive-compulsive disorder: Analysis of prospective-clinical data. Arch. Neuropsychiatry 2021, 58, 193. [Google Scholar] [CrossRef]
- Sinha, P.; Bakhla, A.K.; Patnaik, A.K.; Chaudhury, S. Seasonal obsessive-compulsive disorder. Ind. Psychiatry J. 2014, 23, 160–162. [Google Scholar]
- Brander, G.; Perez-Vigil, A.; Larsson, H.; Mataix-Cols, D. Systematic review of environmental risk factors for obsessive-compulsive disorder: A proposed roadmap from association to causation. Neurosci. Biobehav. Rev. 2016, 65, 36–62. [Google Scholar] [CrossRef]
- Vitale, J.A.; Briguglio, M.; Galentino, R.; Dell’Osso, B.; Malgaroli, A.; Banfi, G.; Porta, M. Exploring circannual rhythms and chronotype effect in patients with Obsessive-Compulsive Tic Disorder (OCTD): A pilot study. J. Affect. Disord. 2020, 262, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Brewerton, T.D.; Flament, M.F.; Rapoport, J.L.; Murphy, D.L. Seasonal effects on platelet 5-HT content in patients with OCD and controls. Arch. Gen. Psychiatry 1993, 50, 409. [Google Scholar] [PubMed]
- Yoney, T.H.; Pigott, T.A.; L’Heureux, F.; Rosenthal, N.E. Seasonal variation in obsessive-compulsive disorder: Preliminary experience with light treatment. Am. J. Psychiatry 1991, 148, 1727–1729. [Google Scholar] [PubMed]
- Benedetti, F.; Poletti, S.; Hoogenboezem, T.A.; Locatelli, C.; de Wit, H.; Wijkhuijs, A.J.M.; Colombo, C.; Drexhage, H.A. Higher Baseline Proinflammatory Cytokines Mark Poor Antidepressant Response in Bipolar Disorder. J. Clin. Psychiatry 2017, 78, e986–e993. [Google Scholar] [CrossRef] [PubMed]
- Poletti, S.; Mazza, M.G.; Vai, B.; Lorenzi, C.; Colombo, C.; Benedetti, F. Pro-inflammatory cytokines predict brain metabolites concentrations in the anterior cingulate cortex of patients with bipolar disorder. Front. Psychiatry 2020, 11, 1364. [Google Scholar] [CrossRef]
- Poletti, S.; Mazza, M.G.; Calesella, F.; Vai, B.; Lorenzi, C.; Manfredi, E.; Colombo, C.; Zanardi, R.; Benedetti, F. Circulating inflammatory markers impact cognitive functions in bipolar depression. J. Psychiatr. Res. 2021, 140, 110–116. [Google Scholar] [CrossRef]
- Poletti, S.; Myint, A.M.; Schuetze, G.; Bollettini, I.; Mazza, E.; Grillitsch, D.; Locatelli, C.; Schwarz, M.; Colombo, C.; Benedetti, F. Kynurenine pathway and white matter microstructure in bipolar disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2016, 268, 157–168. [Google Scholar] [CrossRef]
- Poletti, S.; Melloni, E.; Aggio, V.; Colombo, C.; Valtorta, F.; Benedetti, F.; Comai, S. Grey and white matter structure associates with the activation of the tryptophan to kynurenine pathway in bipolar disorder. J. Affect. Disord. 2019, 259, 404–412. [Google Scholar] [CrossRef]
- Pallotta, M.T.; Rossini, S.; Suvieri, C.; Coletti, A.; Orabona, C.; Macchiarulo, A.; Volpi, C.; Grohmann, U. Indoleamine 2,3-dioxygenase 1 (IDO1): An up-to-date overview of an eclectic immunoregulatory enzyme. FEBS J. 2022, 289, 6099–6118. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, G.; Dantzer, R.; Jones, P. Immunopsychiatry: Important facts. Psychol. Med. 2017, 47, 2229–2237. [Google Scholar] [CrossRef] [PubMed]
- Al-Diwani, A.; Pillinger, T.; Lennox, B. Immunopsychiatry in 2021: Premise to promise, and back again. Lancet Psychiatry 2022, 9, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, G.; Harrison, N.; Bullmore, E.; Dantzer, R. Textbook of Immunopsychiatry; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Berk, M.; Leboyer, M.; Sommer, I.E. Immuno-Psychiatry; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Yuan, N.; Chen, Y.; Xia, Y.; Dai, J.; Liu, C. Inflammation-related biomarkers in major psychiatric disorders: A cross-disorder assessment of reproducibility and specificity in 43 meta-analyses. Transl. Psychiatry 2019, 9, 233. [Google Scholar] [CrossRef] [PubMed]
- Vai, B.; Mazza, M.G.; Colli, C.D.; Foiselle, M.; Allen, B.; Benedetti, F.; Borsini, A.; Dias, M.C.; Tamouza, R.; Leboyer, M. Mental disorders and risk of COVID-19-related mortality, hospitalisation, and intensive care unit admission: A systematic review and meta-analysis. Lancet Psychiatry 2021, 8, 797–812. [Google Scholar] [CrossRef]
- Mazza, M.G.; Palladini, M.; Poletti, S.; Benedetti, F. Post-COVID-19 depressive symptoms: Epidemiology, pathophysiology, and pharmacological treatment. CNS Drugs 2022, 36, 681–702. [Google Scholar] [CrossRef]
- Simanek, A.M.; Cheng, C.; Yolken, R.; Uddin, M.; Galea, S.; Aiello, A.E. Herpesviruses, inflammatory markers and incident depression in a longitudinal study of Detroit residents. Psychoneuroendocrinology 2014, 50, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Jones-Brando, L.; Dickerson, F.; Ford, G.; Stallings, C.; Origoni, A.; Katsafanas, E.; Sweeney, K.; Squire, A.; Khushalani, S.; Yolken, R. Atypical immune response to Epstein-Barr virus in major depressive disorder. J. Affect. Disord. 2020, 264, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Lansdall-Welfare, T.; Lightman, S.; Cristianini, N. Seasonal variation in antidepressant prescriptions, environmental light and web queries for seasonal affective disorder. Br. J. Psychiatry 2019, 215, 481–484. [Google Scholar] [CrossRef]
- Heald, A.; Stedman, M.; Farman, S.; Ruzhdi, N.; Davies, M.; Taylor, D. Seasonal variation in antidepressant prescribing: Year on year analysis for England. Prim. Care Companion CNS Disord. 2021, 23, 31918. [Google Scholar] [CrossRef]
- Avery, D.; Roy-Bryne, P.; Solomon, D. Seasonal Affective Disorder: Treatment. (25 July 2017) [3 February 2019]. 2017. Available online: http://www.uptodate.com/contents/seasonal-affective-disordertreatment (accessed on 12 April 2024).
- Borsini, F.; Lecci, A.; Stasi, M.; Pessia, M.; Meli, A. Seasonal and circadian variations of behavioural response to antidepressants in the forced swimming test in rats. Behav. Pharmacol. 1990, 1, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Makris, G.D.; Reutfors, J.; Andersen, M.; White, R.A.; Ekselius, L.; Papadopoulos, F.C. Season of treatment initiation with antidepressants and suicidal behavior: A population-based cohort study in Sweden. J. Affect. Disord. 2017, 215, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Tomita, T.; Yasui-Furukori, N.; Nakagami, T.; Kaneda, A.; Kaneko, S. The association between sunshine duration and paroxetine response time in patients with major depressive disorder. J. Affect. Disord. 2012, 136, 1067–1071. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, G.O.; Consensus Group of the British Association for Psychopharmacology. Evidence-based guidelines for treating bipolar disorder: Revised second edition—Recommendations from the British Association for Psychopharmacology. J. Psychopharmacol. 2009, 23, 346–388. [Google Scholar] [CrossRef] [PubMed]
- Samalin, L.; Guillaume, S.; Courtet, P.; Abbar, M.; Lancrenon, S.; Llorca, P. French Society for Biological Psychiatry and Neuropsychopharmacology task force. Formal consensus for the treatment of bipolar disorder: An update. L’encephale 2014, 41, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Association, A.P. Practice guidelines for the treatment of patients with bipolar disorder. Am. J. Psychiatry 1994, 151, 1–36. [Google Scholar]
- Yatham, L.N.; Kennedy, S.H.; Parikh, S.V.; Schaffer, A.; Bond, D.J.; Frey, B.N.; Sharma, V.; Goldstein, B.I.; Rej, S.; Beaulieu, S. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disord. 2018, 20, 97–170. [Google Scholar] [CrossRef] [PubMed]
- Grunze, H.; Vieta, E.; Goodwin, G.M.; Bowden, C.; Licht, R.W.; Möller, H.-J.; Kasper, S.; WFSBP Task Force on Treatment Guidelines For Bipolar Disorders. The World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the biological treatment of bipolar disorders: Update 2010 on the treatment of acute bipolar depression. World J. Biol. Psychiatry 2010, 11, 81–109. [Google Scholar] [CrossRef]
- Altshuler, L.L.; Kupka, R.W.; Hellemann, G.; Frye, M.A.; Sugar, C.A.; McElroy, S.L.; Nolen, W.A.; Grunze, H.; Leverich, G.S.; Keck, P.E.; et al. Gender and depressive symptoms in 711 patients with bipolar disorder evaluated prospectively in the Stanley Foundation bipolar treatment outcome network. Am. J. Psychiatry 2010, 167, 708–715. [Google Scholar] [CrossRef]
- Kupka, R.W.; Altshuler, L.L.; Nolen, W.A.; Suppes, T.; Luckenbaugh, D.A.; Leverich, G.S.; Frye, M.A.; Keck, P.E., Jr.; McElroy, S.L.; Grunze, H.; et al. Three times more days depressed than manic or hypomanic in both bipolar I and bipolar II disorder. Bipolar Disord. 2007, 9, 531–535. [Google Scholar] [CrossRef]
- Wirz-Justice, A.; Benedetti, F.; Berger, M.; Lam, R.W.; Martiny, K.; Terman, M.; Wu, J.C. Chronotherapeutics (light and wake therapy) in affective disorders. Psychol. Med. 2005, 35, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F. Antidepressant chronotherapeutics for bipolar depression. Dialogues Clin. Neurosci. 2012, 14, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Wirz-Justice, A.; Benedetti, F.; Terman, M. Chronotherapeutics for Affective Disorders. In A Clinician’s Manual for Light and Wake Therapy, 2nd ed.; Karger: Basel, Switzerland, 2013. [Google Scholar]
- Dallaspezia, S.; Benedetti, F. Chronobiological therapy for mood disorders. Expert Rev. Neurother. 2011, 11, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F.; Riccaboni, R.; Locatelli, C.; Poletti, S.; Dallaspezia, S.; Colombo, C. Rapid treatment response of suicidal symptoms to lithium, sleep deprivation, and light therapy (chronotherapeutics) in drug-resistant bipolar depression. J. Clin. Psychiatry 2014, 75, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Dollish, H.K.; Tsyglakova, M.; McClung, C.A. Circadian rhythms and mood disorders: Time to see the light. Neuron 2023, 112, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Logan, R.W.; McClung, C.A. Rhythms of life: Circadian disruption and brain disorders across the lifespan. Nat. Rev. Neurosci. 2019, 20, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Solis, R.; Aguilar-Arnal, L. Circadian regulation of immunity through epigenetic mechanisms. Front. Cell. Infect. Microbiol. 2020, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Scheiermann, C.; Kunisaki, Y.; Frenette, P.S. Circadian control of the immune system. Nat. Rev. Immunol. 2013, 13, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Crespo, M.; Gonzalez-Teran, B.; Nikolic, I.; Mora, A.; Folgueira, C.; Rodríguez, E.; Leiva-Vega, L.; Pintor-Chocano, A.; Fernández-Chacón, M.; Ruiz-Garrido, I. Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. Elife 2020, 9, e59258. [Google Scholar] [CrossRef]
- Mueller, S.N. Neural control of immune cell trafficking. J. Exp. Med. 2022, 219, e20211604. [Google Scholar] [CrossRef]
- Melo, M.C.; Abreu, R.L.; Neto, V.B.L.; de Bruin, P.F.; de Bruin, V.M. Chronotype and circadian rhythm in bipolar disorder: A systematic review. Sleep Med. Rev. 2017, 34, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Alesci, S.; Martinez, P.E.; Kelkar, S.; Ilias, I.; Ronsaville, D.S.; Listwak, S.J.; Ayala, A.R.; Licinio, J.; Gold, H.K.; Kling, M.A.; et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: Clinical implications. J. Clin. Endocrinol. Metab. 2005, 90, 2522–2530. [Google Scholar] [CrossRef] [PubMed]
- Bavaresco, D.V.; da Rosa, M.I.; Uggioni, M.L.R.; Ferraz, S.D.; Pacheco, T.R.; Dal Toé, H.C.Z.; da Silveira, A.P.; Quadros, L.F.; de Souza, T.D.; Varela, R.B. Increased inflammatory biomarkers and changes in biological rhythms in bipolar disorder: A case-control study. J. Affect. Disord. 2020, 271, 115–122. [Google Scholar] [CrossRef]
- Benedetti, F.; Dallaspezia, S.; Melloni, E.M.T.; Lorenzi, C.; Zanardi, R.; Barbini, B.; Colombo, C. Effective Antidepressant Chronotherapeutics (Sleep Deprivation and Light Therapy) Normalize the IL-1β:IL-1ra Ratio in Bipolar Depression. Front. Physiol. 2021, 12, 740686. [Google Scholar] [CrossRef]
- Foo, J.C.; Trautmann, N.; Sticht, C.; Treutlein, J.; Frank, J.; Streit, F.; Witt, S.H.; De La Torre, C.; von Heydendorff, S.C.; Sirignano, L. Longitudinal transcriptome-wide gene expression analysis of sleep deprivation treatment shows involvement of circadian genes and immune pathways. Transl. Psychiatry 2019, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- Branchi, I.; Poggini, S.; Capuron, L.; Benedetti, F.; Poletti, S.; Tamouza, R.; Drexhage, H.A.; Penninx, B.W.; Pariante, C.M. Brain-immune crosstalk in the treatment of major depressive disorder. Eur. Neuropsychopharmacol. 2021, 45, 89–107. [Google Scholar] [CrossRef] [PubMed]
- Wirz-Justice, A.; Benedetti, F. Perspectives in affective disorders: Clocks and sleep. Eur. J. Neurosci. 2019, 51, 346–365. [Google Scholar] [CrossRef]
- Goodwin, G.M. The overlap between anxiety, depression, and obsessive-compulsive disorder. Dialogues Clin. Neurosci. 2015, 17, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Mazza, M.G.; Lucchi, S.; Tringali, A.G.M.; Rossetti, A.; Botti, E.R.; Clerici, M. Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in mood disorders: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 84, 229–236. [Google Scholar] [CrossRef]
- Dadouli, K.; Janho, M.B.; Hatziefthimiou, A.; Voulgaridi, I.; Piaha, K.; Anagnostopoulos, L.; Ntellas, P.; Mouchtouri, V.A.; Bonotis, K.; Christodoulou, N. Neutrophil-to-Lymphocyte, Monocyte-to-Lymphocyte, Platelet-to-Lymphocyte Ratio and Systemic Immune-Inflammatory Index in Different States of Bipolar Disorder. Brain Sci. 2022, 12, 1034. [Google Scholar] [CrossRef]
- Bulut, N.S.; Yorguner, N.; Carkaxhiu Bulut, G. The severity of inflammation in major neuropsychiatric disorders: Comparison of neutrophil–lymphocyte and platelet–lymphocyte ratios between schizophrenia, bipolar mania, bipolar depression, major depressive disorder, and obsessive compulsive disorder. Nord. J. Psychiatry 2021, 75, 624–632. [Google Scholar] [CrossRef] [PubMed]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman & Hall: New York, NY, USA, 1989. [Google Scholar]
- Field, A. How to Design and Report Experiments; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- American Psychological Association. Concise Rules of APA Style; Amer Psychological Assn: Washington, DC, USA, 2005. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Huet, L.; Delgado, I.; Dexpert, S.; Sauvant, J.; Aouizerate, B.; Beau, C.; Forestier, D.; Ledaguenel, P.; Magne, E.; Capuron, L. Relationship between body mass index and neuropsychiatric symptoms: Evidence and inflammatory correlates. Brain Behav. Immun. 2021, 94, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.E.; Teixeira, A.L. Inflammation in psychiatric disorders: What comes first? Ann. N. Y. Acad. Sci. 2019, 1437, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Mazza, E.; Poletti, S.; Bollettini, I.; Locatelli, C.; Falini, A.; Colombo, C.; Benedetti, F. Body mass index associates with white matter microstructure in bipolar depression. Bipolar Disord. 2017, 19, 116–127. [Google Scholar] [CrossRef] [PubMed]
- McWhinney, S.R.; Abé, C.; Alda, M.; Benedetti, F.; Bøen, E.; del Mar Bonnin, C.; Borgers, T.; Brosch, K.; Canales-Rodríguez, E.J.; Cannon, D.M. Mega-analysis of association between obesity and cortical morphology in bipolar disorders: ENIGMA study in 2832 participants. Psychol. Med. 2023, 53, 6743–6753. [Google Scholar] [CrossRef]
- McWhinney, S.R.; Abé, C.; Alda, M.; Benedetti, F.; Bøen, E.; del Mar Bonnin, C.; Borgers, T.; Brosch, K.; Canales-Rodríguez, E.J.; Cannon, D.M. Association between body mass index and subcortical brain volumes in bipolar disorders–ENIGMA study in 2735 individuals. Mol. Psychiatry 2021, 26, 6806–6819. [Google Scholar] [CrossRef]
Healthy Controls (n = 248) | ||||
---|---|---|---|---|
Spring (n = 55) | Summer (n = 58) | Autumn (n = 69) | Winter (n = 66) | |
Sex (M/F) | 23/32 | 19/39 | 28/41 | 24/42 |
Age | 43.8 ± 12.3 | 46.3 ± 10.5 | 45.3 ± 11.3 | 44.2 ± 9.9 |
BMI | 24.12 ± 3.83 | 24.73 ± 3.90 | 23.83 ± 3.96 | 23.88 ± 3.52 |
Neutrophils | 3.85 ± 1.21 | 3.63 ± 1.01 | 3.55 ± 1.01 | 3.42 ± 1.05 |
Lymphocytes | 2.26 ± 0.59 | 2.20 ± 0.56 | 2.16 ± 0.62 | 2.21 ± 0.59 |
Platelets | 255.3 ± 50.9 | 258.7 ± 52.4 | 250.5 ± 50.0 | 252.7 ± 54.3 |
Monocytes | 0.57 ± 0.16 | 0.64 ± 0.73 | 0.54 ± 0.33 | 0.56 ± 0.17 |
NLR | 1.698 ± 0.490 | 1.715 ± 0.541 | 1.744 ± 0.608 | 1.619 ± 0.561 |
SII | 435.7 ± 153.3 | 448.8 ± 182.09 | 435.9 ± 174.4 | 416.1 ± 197.4 |
PLR | 117.4 ± 28.9 | 123.7 ± 34.9 | 124.1 ± 38.6 | 123.2 ± 47.9 |
MLR | 0.260 ± 0.086 | 0.312 ± 0.434 | 0.262 ± 0.172 | 0.259 ± 0.088 |
Patients with BD (n = 321) | ||||
Spring (n = 90) | Summer (n = 51) | Autumn (n = 99) | Winter (n = 81) | |
Sex | 31/58 | 18/33 | 43/56 | 29/52 |
Age | 49.4 ± 10.2 | 47.0 ± 10.7 | 46.6 ± 12.2 | 49.1 ± 11.4 |
BMI | 26.58 ± 5.45 | 26.21 ± 4.62 | 24.69 ± 4.68 | 26.68 ± 4.99 |
Neutrophils | 4.08 ± 1.25 | 4.27 ± 1.56 | 4.22 ± 1.42 | 4.34 ± 1.49 |
Lymphocytes | 2.44 ± 0.80 | 2.45 ± 0.64 | 2.37 ± 0.83 | 2.40 ± 0.79 |
Platelets | 235.7 ± 49.8 | 228.2 ± 64.2 | 243.4 ± 56.0 | 264.8 ± 73.07 |
Monocytes | 0.64 ± 0.71 | 0.54 ± 0.17 | 0.62 ± 0.34 | 0.65 ± 0.63 |
NLR | 1.801 ± 0.694 | 1.833 ± 0.748 | 2.145 ± 2.249 | 1.966 ± 0.908 |
SII | 432.3 ± 219.2 | 426.6 ± 241.2 | 518.8 ± 433.3 | 531.7 ± 318.7 |
PLR | 105.5 ± 40.9 | 99.2 ± 38.1 | 116.3 ± 55.3 | 122.1 ± 56.5 |
MLR | 0.275 ± 0.239 | 0.229 ± 0.080 | 0.297 ± 0.257 | 0.276 ± 0.189 |
Patients with OCD (n = 255) | ||||
Spring (n = 67) | Summer (n = 61) | Autumn (n = 52) | Winter (n = 75) | |
Sex | 40/27 | 36/25 | 33/19 | 46/29 |
Age | 36.1 ± 11.5 | 34.3 ± 12.5 | 36.7 ± 10.0 | 37.0 ± 11.5 |
BMI | 25.21 ± 3.82 | 24.94 ± 5.38 | 24.56 ± 5.37 | 25.40 ± 4.50 |
Neutrophils | 3.41 ± 1.04 | 3.42 ± 1.1 | 3.62 ± 1.27 | 3.39 ± 0.92 |
Lymphocytes | 2.18 ± 0.69 | 2.28 ± 0.83 | 2.38 ± 0.68 | 2.35 ± 0.72 |
Platelets | 235.01 ± 47.6 | 222.8 ± 36.9 | 237.7 ± 51.3 | 236.9 ± 55.8 |
Monocytes | 0.50 ± 0.17 | 0.50 ± 0.16 | 0.57 ± 0.2 | 0.52 ± 0.14 |
NLR | 1.687 ± 0.643 | 1.717 ± 1.09 | 1.582 ± 0.565 | 1.548 ± 0.582 |
SII | 402.7 ± 192.9 | 381.3 ± 227.7 | 374.5 ± 148.5 | 365.8 ± 163.3 |
PLR | 117.9 ± 46.5 | 109.3 ± 40.0 | 106.0 ± 30.8 | 108.6 ± 39.7 |
MLR | 0.249 ± 0.090 | 0.236 ± 0.102 | 0.244 ± 0.068 | 0.236 ± 0.080 |
Effect of Diagnosis | ||||||||
Antidepressants | Antipsychotics | Lithium | Valproate | |||||
+ | − | + | − | + | − | + | − | |
BD (n = 321) | 151 (47.04%) | 170 (52.96%) | 49 (15.26%) | 272 (84.74%) | 157 (48.91%) | 164 (51.09%) | 127 (39.56%) | 194 (60.44%) |
OCD (n = 255) | 164 (64.31%) | 91 (35.69%) | 39 (15.29%) | 216 (84.71%) | 0 (0%) | 255 (100%) | 24 (9.41%) | 231 (90.59%) |
χ2; p | χ2 = 17.11; p < 0.0001 | χ2 = 0.0009; p = 0.992 | χ2 = 171.45; p < 0.0001 | χ2 = 56.79; p < 0.0001 | ||||
Effect of season—BD | ||||||||
Spring | 44 (48.89%) | 46 (51.1%) | 14 (15.56%) | 76 (84.44%) | 44 (48.89%) | 46 (51.11%) | 36 (40%) | 54 (60%) |
Summer | 21 (41.18%) | 30 (58.82%) | 6 (11.76%) | 45 (88.24%) | 25 (49.02%) | 26 (50.98%) | 23 (45.1%) | 28 (54.9%) |
Autumn | 44 (44.44%) | 55 (55.56%) | 17 (17.17%) | 82 (82.83%) | 49 (49.49%) | 50 (50.51%) | 39 (39.39%) | 60 (60.61%) |
Winter | 42 (51.85%) | 39 (48.15%) | 12 (14.81%) | 69 (85.19%) | 39 (48.15%) | 42 (51.85%) | 29 (35.80%) | 52 (64.20%) |
χ2; p | χ2 = 1.85; p = 0.605 | χ2 = 0.78; p = 0.854 | χ2 = 0.03; p = 0.998 | χ2 = 1.14; p = 0.767 | ||||
Effect of season—OCD | ||||||||
Spring | 45 (67.16%) | 22 (32.84%) | 10 (14.93%) | 57 (85.07%) | 0 | 67 | 9 (13.43%) | 58 (86.57%) |
Summer | 36 (59.02%) | 25 (40.98%) | 12 (19.67%) | 49 (80.33%) | 0 | 61 | 6 (9.84%) | 55 (90.16%) |
Autumn | 33 (63.46%) | 19 (36.54%) | 9 (17.31%) | 43 (82.69%) | 0 | 52 | 3 (5.77%) | 49 (94.23%) |
Winter | 50 (66.67%) | 25 (33.33%) | 8 (10.67%) | 67 (89.33%) | 0 | 75 | 6 (8.00%) | 69 (92.00%) |
χ2; p | χ2 = 1.18; p = 0.758 | χ2 = 2.31; p = 0.510 | NA | χ2 = 2.27; p = 0.519 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dallaspezia, S.; Cardaci, V.; Mazza, M.G.; De Lorenzo, R.; Rovere Querini, P.; Colombo, C.; Benedetti, F. Higher Seasonal Variation of Systemic Inflammation in Bipolar Disorder. Int. J. Mol. Sci. 2024, 25, 4310. https://doi.org/10.3390/ijms25084310
Dallaspezia S, Cardaci V, Mazza MG, De Lorenzo R, Rovere Querini P, Colombo C, Benedetti F. Higher Seasonal Variation of Systemic Inflammation in Bipolar Disorder. International Journal of Molecular Sciences. 2024; 25(8):4310. https://doi.org/10.3390/ijms25084310
Chicago/Turabian StyleDallaspezia, Sara, Vincenzo Cardaci, Mario Gennaro Mazza, Rebecca De Lorenzo, Patrizia Rovere Querini, Cristina Colombo, and Francesco Benedetti. 2024. "Higher Seasonal Variation of Systemic Inflammation in Bipolar Disorder" International Journal of Molecular Sciences 25, no. 8: 4310. https://doi.org/10.3390/ijms25084310
APA StyleDallaspezia, S., Cardaci, V., Mazza, M. G., De Lorenzo, R., Rovere Querini, P., Colombo, C., & Benedetti, F. (2024). Higher Seasonal Variation of Systemic Inflammation in Bipolar Disorder. International Journal of Molecular Sciences, 25(8), 4310. https://doi.org/10.3390/ijms25084310