The Potential of Cardiac Biomarkers in Differentiating Disease Subtypes in Patients with Systemic Sclerosis: Focus on GDF15, MR-pro ANP, and suPAR
Abstract
:1. Introduction
2. Results
2.1. Study Group Characteristics
2.2. Heart Studies
2.3. Inflammatory and Heart Biomarkers
3. Discussion
Study Limitations
4. Material and Methods
4.1. Laboratory Analysis
4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allanore, Y.; Simms, R.; Distler, O.; Trojanowska, M.; Pope, J.; Denton, C.P.; Varga, J. Systemic sclerosis. Nat. Rev. Dis. Primers 2015, 1, 15002. [Google Scholar] [CrossRef] [PubMed]
- LeRoy, E.C.; Black, C.; Fleischmajer, R.; Jablonska, S.; Krieg, T.; Medsger, T.A., Jr.; Rowell, N.; Wollheim, F. Scleroderma (systemic sclerosis): Classification, subsets and pathogenesis. J. Rheumatol. 1988, 15, 202–205. [Google Scholar] [PubMed]
- Castiglione, V.; Aimo, A.; Vergaro, G.; Saccaro, L.; Passino, C.; Emdin, M. Biomarkers for the diagnosis and management of heart failure. Heart Fail. Rev. 2022, 27, 625–643. [Google Scholar] [CrossRef]
- di Candia, A.M.; de Avila, D.X.; Moreira, G.R.; Villacorta, H.; Maisel, A.S. Growth differentiation factor-15, a novel systemic biomarker of oxidative stress, inflammation, and cellular aging: Potential role in cardiovascular diseases. Am. Heart J. Plus Cardiol. Res. Pract. 2021, 9, 100046. [Google Scholar] [CrossRef]
- Oller-Rodríguez, J.E.; Vicens Bernabeu, E.; Gonzalez-Mazarío, R.; Grau García, E.; Ortiz Sanjuan, F.M.; Román Ivorra, J.A. Utility of cytokines CXCL4, CXCL8 and GDF15 as biomarkers in systemic sclerosis. Med. Clin. 2022, 159, 359–365. [Google Scholar] [CrossRef]
- Kawashiri, S.Y.; Nishino, A.; Igawa, T.; Takatani, A.; Shimizu, T.; Umeda, M.; Fukui, S.; Okada, A.; Suzuki, T.; Koga, T.; et al. Prediction of organ involvement in systemic sclerosis by serum biomarkers and peripheral endothelial function. Clin. Exp. Rheumatol. 2018, 36 (Suppl. 113), 102–108. [Google Scholar]
- Tan, E.S.J.; Chan, S.P.; Liew, O.W.; Chong, J.P.C.; Gerard Leong, K.T.; Daniel Yeo, P.S.; Ong, H.Y.; Jaufeerally, F.; Sim, D.; Ling, L.H.; et al. Differential Associations of A-/B-Type Natriuretic Peptides With Cardiac Structure, Function, and Prognosis in Heart Failure. JACC Heart Fail. 2024, 12, 461–474. [Google Scholar] [CrossRef]
- Miller, L.; Chartrand, S.; Koenig, M.; Goulet, J.R.; Rich, É.; Chin, A.S.; Chartrand-Lefebvre, C.; Abrahamowicz, M.; Senécal, J.L.; Grodzicky, T. Left heart disease: A frequent cause of early pulmonary hypertension in systemic sclerosis, unrelated to elevated NT-proBNP levels or overt cardiac fibrosis but associated with increased levels of MR-proANP and MR-proADM: Retrospective analysis of a French Canadian cohort. Scand. J. Rheumatol. 2014, 43, 314–323. [Google Scholar] [CrossRef]
- Eto, T. A review of the biological properties and clinical implications of adrenomedullin and proadrenomedullin N-terminal 20 peptide (PAMP), hypotensive and vasodilating peptides. Peptides 2001, 22, 1693–1711. [Google Scholar] [CrossRef]
- Caruhel, P.; Mazier, C.; Kunde, J.; Morgenthaler, N.G.; Darbouret, B. Homogeneous time-resolved fluoroimmunoassay for the measurement of midregional proadrenomedullin in plasma on the fully automated system B.R.A.H.M.S KRYPTOR. Clin. Biochem. 2009, 42, 725–728. [Google Scholar] [CrossRef]
- Neumann, J.T.; Tzikas, S.; Funke-Kaiser, A.; Wilde, S.; Appelbaum, S.; Keller, T.; Ojeda-Echevarria, F.; Zeller, T.; Zwiener, I.; Sinning, C.R.; et al. Association of MR-proadrenomedullin with cardiovascular risk factors and subclinical cardiovascular disease. Atherosclerosis 2013, 228, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y. The uPA/uPAR System Orchestrates the Inflammatory Response, Vascular Homeostasis, and Immune System in Fibrosis Progression. Int. J. Mol. Sci. 2023, 24, 1796. [Google Scholar] [CrossRef] [PubMed]
- Butt, S.; Jeppesen, J.L.; Iversen, L.V.; Fenger, M.; Eugen-Olsen, J.; Andersson, C.; Jacobsen, S. Association of soluble urokinase plasminogen activator receptor levels with fibrotic and vascular manifestations in systemic sclerosis. PLoS ONE 2021, 16, e0247256. [Google Scholar] [CrossRef] [PubMed]
- Legány, N.; Toldi, G.; Distler, J.H.; Beyer, C.; Szalay, B.; Kovács, L.; Vásárhelyi, B.; Balog, A. Increased plasma soluble urokinase plasminogen activator receptor levels in systemic sclerosis: Possible association with microvascular abnormalities and extent of fibrosis. Clin. Chem. Lab. Med. 2015, 53, 1799–1805. [Google Scholar] [CrossRef]
- Taniguchi, T.; Asano, Y.; Akamata, K.; Noda, S.; Masui, Y.; Yamada, D.; Takahashi, T.; Ichimura, Y.; Toyama, T.; Tamaki, Z.; et al. Serum Levels of Galectin-3: Possible Association with Fibrosis, Aberrant Angiogenesis, and Immune Activation in Patients with Systemic Sclerosis. J. Rheumatol. 2012, 39, 539–544. [Google Scholar] [CrossRef]
- Sundblad, V.; Gomez, R.A.; Stupirski, J.C.; Hockl, P.F.; Pino, M.S.; Laborde, H.; Rabinovich, G.A. Circulating Galectin-1 and Galectin-3 in Sera From Patients With Systemic Sclerosis: Associations With Clinical Features and Treatment. Front. Pharmacol. 2021, 12, 650605. [Google Scholar] [CrossRef]
- Fenster, B.E.; Lasalvia, L.; Schroeder, J.D.; Smyser, J.; Silveira, L.J.; Buckner, J.K.; Brown, K.K. Galectin-3 levels are associated with right ventricular functional and morphologic changes in pulmonary arterial hypertension. Heart Vessels 2016, 31, 939–946. [Google Scholar] [CrossRef]
- Shah, R.V.; Chen-Tournoux, A.A.; Picard, M.H.; van Kimmenade, R.R.; Januzzi, J.L. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur. J. Heart Fail. 2010, 12, 826–832. [Google Scholar] [CrossRef]
- Vértes, V.; Porpáczy, A.; Nógrádi, Á.; Tőkés-Füzesi, M.; Hajdu, M.; Czirják, L.; Komócsi, A.; Faludi, R. Galectin-3 and sST2: Associations to the echocardiographic markers of the myocardial mechanics in systemic sclerosis—A pilot study. Cardiovasc. Ultrasound 2022, 20, 1. [Google Scholar] [CrossRef]
- Meadows, C.A.; Risbano, M.G.; Zhang, L.; Geraci, M.W.; Tuder, R.M.; Collier, D.H.; Bull, T.M. Increased expression of growth differentiation factor-15 in systemic sclerosis-associated pulmonary arterial hypertension. Chest 2011, 139, 994–1002. [Google Scholar] [CrossRef]
- Hromadka, M.; Baxa, J.; Seidlerova, J.; Miklik, R.; Rajdl, D.; Sudova, V.; Suchy, D.; Rokyta, R. Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study. J. Clin. Med. 2021, 10, 5364. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.J.H.; Petersen, J.E.V.; Eugen-Olsen, J. Soluble Urokinase Plasminogen Activator Receptor (suPAR) as a Biomarker of Systemic Chronic Inflammation. Front. Immunol. 2021, 12, 780641. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Voigt, S.; Kruschinski, C.; Sanson, E.; Dückers, H.; Horn, A.; Yagmur, E.; Zimmermann, H.; Trautwein, C.; Tacke, F. Circulating soluble urokinase plasminogen activator receptor is stably elevated during the first week of treatment in the intensive care unit and predicts mortality in critically ill patients. Crit. Care 2011, 15, R63. [Google Scholar] [CrossRef] [PubMed]
- Westin, O.; Rasmussen, L.; Andersen, O.; Buch, E.; Eugen-Olsen, J.; Friberg, J. Soluble Urokinase Plasminogen Activator Receptor (suPAR) as a Predictor of Incident Atrial Fibrillation. J. Atr. Fibrillation 2018, 10, 1801. [Google Scholar] [CrossRef]
- Borné, Y.; Persson, M.; Melander, O.; Smith, J.G.; Engström, G. Increased plasma level of soluble urokinase plasminogen activator receptor is associated with incidence of heart failure but not atrial fibrillation. Eur. J. Heart Fail. 2014, 16, 377–383. [Google Scholar] [CrossRef]
- Gaborit, F.S.; Kistorp, C.; Kümler, T.; Hassager, C.; Tønder, N.; Iversen, K.; Hansen, P.M.; Kamstrup, P.R.; Faber, J.; Køber, L.; et al. Diagnostic utility of MR-proANP and NT-proBNP in elderly outpatients with a high risk of heart failure: The Copenhagen heart failure risk study. Biomarkers 2020, 25, 248–259. [Google Scholar] [CrossRef]
- Geelhoed, B.; Börschel, C.S.; Niiranen, T.; Palosaari, T.; Havulinna, A.S.; Fouodo, C.J.K.; Scheinhardt, M.O.; Blankenberg, S.; Jousilahti, P.; Kuulasmaa, K.; et al. Assessment of causality of natriuretic peptides and atrial fibrillation and heart failure: A Mendelian randomization study in the FINRISK cohort. EP Eur. 2020, 22, 1463–1469. [Google Scholar] [CrossRef]
- Öner, Ö.; Deveci, F.; Telo, S.; Kuluöztürk, M.; Balin, M. MR-proADM and MR-proANP levels in patients with acute pulmonary embolism. J. Med. Biochem. 2020, 39, 328–335. [Google Scholar] [CrossRef]
- De Marchis, G.M.; Schneider, J.; Weck, A.; Fluri, F.; Fladt, J.; Foerch, C.; Mueller, B.; Luft, A.; Christ-Crain, M.; Arnold, M. Midregional proatrial natriuretic peptide improves risk stratification after ischemic stroke. Neurology 2018, 90, e455–e465. [Google Scholar] [CrossRef]
- Schweizer, J.; Arnold, M.; König, I.R.; Bicvic, A.; Westphal, L.P.; Schütz, V.; Inauen, C.; Scherrer, N.; Luft, A.; Galovic, M.; et al. Measurement of Midregional Pro-Atrial Natriuretic Peptide to Discover Atrial Fibrillation in Patients with Ischemic Stroke. J. Am. Coll. Cardiol. 2022, 79, 1369–1381. [Google Scholar] [CrossRef]
- Lipinska-Gediga, M.; Mierzchala, M.; Durek, G. Pro-atrial natriuretic peptide (pro-ANP) level in patients with severe sepsis and septic shock: Prognostic and diagnostic significance. Infection 2012, 40, 303–309. [Google Scholar] [CrossRef] [PubMed]
- ten Freyhaus, H.; Dumitrescu, D.; Schnorbach, S.; Kappert, K.; Viethen, T.; Hellmich, M.; Hunzelmann, N.; Rosenkranz, S. CT-proET1 predicts pulmonary hemodynamics in Scleroderma-associated pulmonary hypertension. Clin. Res. Cardiol. 2015, 104, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Fietta, A.; Bardoni, A.; Salvini, R.; Passadore, I.; Morosini, M.; Cavagna, L.; Codullo, V.; Pozzi, E.; Meloni, F.; Montecucco, C. Analysis of bronchoalveolar lavage fluid proteome from systemic sclerosis patients with or without functional, clinical and radiological signs of lung fibrosis. Arthritis Res. Ther. 2006, 8, R160. [Google Scholar] [CrossRef] [PubMed]
- Andrukhova, O.; Salama, M.; Rosenhek, R.; Gmeiner, M.; Perkmann, T.; Steindl, J.; Aharinejad, S. Serum glutathione S-transferase P1 1 in prediction of cardiac function. J. Card. Fail. 2012, 18, 253–261. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Endorsed by the International Society for Heart and Lung Transplantation (ISHLT) and the European Reference Network on rare respiratory diseases (ERN-LUNG). Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef]
- Medsger Jr, T.; Silman, A.; Steen, V.; Black, C.; Akesson, A.; Bacon, P.; Harris, C.; Jablonska, S.; Jayson, M.; Jimenez, S. A disease severity scale for systemic sclerosis: Development and testing. J. Rheumatol. 1999, 26, 2159–2167. [Google Scholar]
- Valentini, G.; Iudici, M.; Walker, U.A.; Jaeger, V.K.; Baron, M.; Carreira, P.; Czirják, L.; Denton, C.P.; Distler, O.; Hachulla, E. The European Scleroderma Trials and Research group (EUSTAR) task force for the development of revised activity criteria for systemic sclerosis: Derivation and validation of a preliminarily revised EUSTAR activity index. Ann. Rheum. Dis. 2017, 76, 270–276. [Google Scholar] [CrossRef]
Parameter | |
---|---|
Gender, n (%) | Female:male 59:20 (74.7%:25.3%) |
Age (years), mean ± SD | 53.5 ± 12.0 |
Disease duration (from non-Raynaud symptoms) (Years), median (Q1;Q3) | 5.0 (2.0; 9.0) |
Disease subtype, n (%) | Limited 28 (35.4%) Diffuse 51 (64.6%) |
Serological status, n (%) Anti-SCL70 Anti-ACA Anti-RNP | 49 (62%) 18 (22.8%) 2 (2.5%) |
Capilaroscopic pattern, n(%) Early Active Late Normal/other | 9 (11.8%) 40 (52.6%) 25 (32.9%) 4 (5.3%) |
Activity/Severity | |
Skin involvement (mRSS) [pts], mean ±SD | 12.10 ± 8.13 |
Disease severity/damage (Medsger scale) [pts], mean ± SD | 7.99 ± 3.58 |
Disease activity (European Scleroderma Study Group (EScSG) Activity Index) [pts], mean ± SD | 3.58 ± 2.38 |
ESR (mm/h), median (Q1;Q3) | 14 (8; 26) |
DLCO [% expected value], mean ± SD | 73.2 ± 20.3 |
NT-proBNP [ng/L] Median (Q1;Q3) | 169.0 (89.0; 396.0) |
Clinical Characteristics | All | Limited (lcSSc) | Diffuse (dcSSc) | p Value * |
---|---|---|---|---|
Raynaud phenomenon, n (%) | 77 (97.5%) | 27 (96.4%) | 50 (98.0%) | >0.99 |
Proximal muscle weakness, n (%) | 33 (41.8%) | 10 (35.7%) | 23 (45.1%) | 0.57 |
Tendon friction rubs, n (%) | 29 (36.7%) | 7 (25.0%) | 22 (43.1%) | 0.18 |
Gastrointestinal involvement, n (%) | 56 (70.9%) | 16 (57.1%) | 40 (78.4%) | 0.08 |
Interstitial lung disease, n (%) | 58 (73.4%) | 13 (46.4%) | 45 (88.2%) | <0.001 |
Pulmonary hypertension, n (%) | 14 (17.7%) | 3 (10.7%) | 11 (21.6%) | 0.36 |
Coronary artery disease, n (%) | 28 (35.4%) | 7 (25.0%) | 21 (41.2%) | 0.23 |
ECG conduction disturbances, n (%) | 36 (45.6) | 7 (25.0%) | 29 (56.9%) | <0.05 |
ECG arytmia, n (%) Atrial fibrillaton, n (%) Premature ventricular complexes | 35 (44.3%) 12 (15.1%) 15 (18.9%) | 5 (17.9%) 2 (2.5%) 7 (8.8%) | 28 (54.9%) 10 (12.6%) 8 (10.1%) | <0.01 <0.05 0.21 |
Echocardiographic parameters | ||||
(LA) [mm] | 35.1 ± 5.0 | 34.8 ± 6.0 | 37.4 ± 5.4 | 0.17 |
LVEDd [mm] | 49.3 ± 2.9 | 48.5 ± 4.1 | 49.7 ± 6.5 | 0.18 |
LVESd [mm] | 29.2 ± 4.4 | 29.0 ± 3.0 | 30.6 ± 7.6 | 0.26 |
Ao [mm] | 33.6 ± 3.3 | 32.6 ± 3.4 | 35 ± 4.1 | 0.12 |
RVEDd (RV) [mm] | 26.6 ± 3.6 | 26.3 ± 3.5 | 28.1 ± 4.5 | 0.24 |
IVSd [mm] | 10.1 ± 1.1 | 9.7 ± 1.4 | 10.5 ± 1.4 | 0.33 |
PWTd (LVPW) [mm] | 9.8 ± 0.8 | 9.6 ± 0.7 | 10.1 ± 1.1 | 0.59 |
Ejection fraction, Median (25%; 75%) | 60.00 (55.00; 60.00) | 60.00 (60.00; 60.00) | 60.00 (55.00; 60.00) | <0.01 |
Dyspnoë, n (%) | 44 (55.7%) | 8 (28.6%) | 36 (70.6%) | <0.001 |
Hypocomplementemia, n (%) | 9 (11.3%) | 3 (10.7%) | 6 (11.8%) | >0.99 |
Ground glass HRCT, n (%) | 40 (50.6%) | 9 (32.1%) | 31 (60.8%) | <0.05 |
Puffy fingers current, n (%) | 37 (46.8) | 12 (42.9%) | 25 (49.0%) | 0.77 |
Scleroderma capillary pattern early, n (%) | 9 (11.3%) | 3 (11.1%) | 6 (12.2%) | >0.99 |
Scleroderma capillary pattern active, n (%) | 40 (50.6%) | 15 (55.6%) | 25 (51.0%) | 0.89 |
Scleroderma capillary pattern late, n (%) | 25 (31.6%) | 8 (29.6%) | 17 (34.7%) | 0.85 |
Non-specific capillary pattern, n (%) | 4 (5.0%) | 3 (11.1%) | 1 (2.0%) | 0.25 |
Dry cough, n (%) | 36 (45.6) | 10 (35.7%) | 26 (51.0%) | 0.29 |
Muscle_pain, n (%) | 36 (45.6) | 11 (39.3%) | 25 (49.0%) | 0.55 |
Arthritis, n (%) | 55 (69.6) | 20 (71.4%) | 35 (68.6%) | >0.99 |
Parameter | Patients, n = 79 | Controls, n = 27 | p Value 1 | Limited SSc, n = 28 | Diffuse SSc, n = 51 | p Value 2 |
---|---|---|---|---|---|---|
GDF15 (ng/mL) | 2.07 (1.18; 2.93) | 1.10 (0.82; 1.24) | <0.001 | 1.65 (0.82; 2.02) | 2.34 (1.36; 3.06) | <0.05 |
Galectin 3 (ng/mL) | 0.45 (0.09; 1.54) | 0.22 (0.08; 0.87) | 0.40 | 0.16 (0.09; 0.73) | 0.56 (0.08; 1.90) | 0.46 |
GSTp (ng/mL) | 0.23 (0.12; 0.51) | 0.27 (0.13; 0.96) | 0.38 | 0.24 (0.16; 0.30) | 0.23 (0.12; 0.56) | 0.94 |
MR-proANP (pmol/L) | 92.55 (76.52; 166.61) | 65.60 (56.85; 129.11) | <0.05 | 80.87 (65.59; 86.80) | 109.27 (82.41; 195.22) | <0.05 |
suPAR (ng/mL) | 2.19 (1.77; 2.80) | 1.94 (1.69; 2.25) | 0.21 | 1.83 (1.75; 2.19) | 2.44 (1.91; 2.93) | <0.05 |
MR-proADM (pmol/L) | 1.75 (1.25; 2.64) | 1.71 (1.30; 1.82) | 0.30 | 1.98 (1.17; 2.98) | 1.71 (1.25; 1.97) | 0.40 |
TNF-α (pg/mL) | 5.63 (3.85; 8.64) | 10.50 (6.64; 21.50) | <0.01 | 4.41 (3.53; 5.27) | 6.82 (4.46; 8.93) | <0.05 |
IL-6 (pg/mL) | 8.85 (2.00; 48.99) | 2.30 (2.00; 35.60) | 0.72 | 2.00 (2.00; 28.38) | 13.05 (2.00; 52.11) | 0.31 |
Biomarker | Cut-Off | AUC | p | Se (%) | Sp (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|---|
GDF-15 (ng/mL) | ≥2.182 | 0.706 (0.541–0.870) | <0.05 | 61.3 (42.2–78.2) | 82.0 (56.6–96.2) | 86.4 (63.9–93.5) | 53.8 (35.0–84.6) |
MR-proANP (pmol/L) | ≥85.808 | 0.714 (0.558–0.871) | <0.01 | 73.3 (54.1–87.7) | 75.0 (47.6–92.7) | 84.6 (62.5–93.5) | 60.0 (39.1–86.5) |
suPAR (ng/mL) | ≥2.315 | 0.700 (0.543–0.857) | <0.05 | 63.3 (43.9–80.1) | 81.2 (54.4–96.0) | 86.4 (63.5–93.6) | 54.2 (34.8–86.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumkowska-Sroka, O.; Chudek, A.; Owczarek, A.; Kuźnik-Trocha, K.; Kotyla, K.; Kurdybacha, J.; Chudek, J.; Komosińska-Vassev, K.; Winsz-Szczotka, K.; Olczyk, K.; et al. The Potential of Cardiac Biomarkers in Differentiating Disease Subtypes in Patients with Systemic Sclerosis: Focus on GDF15, MR-pro ANP, and suPAR. Int. J. Mol. Sci. 2025, 26, 3938. https://doi.org/10.3390/ijms26093938
Gumkowska-Sroka O, Chudek A, Owczarek A, Kuźnik-Trocha K, Kotyla K, Kurdybacha J, Chudek J, Komosińska-Vassev K, Winsz-Szczotka K, Olczyk K, et al. The Potential of Cardiac Biomarkers in Differentiating Disease Subtypes in Patients with Systemic Sclerosis: Focus on GDF15, MR-pro ANP, and suPAR. International Journal of Molecular Sciences. 2025; 26(9):3938. https://doi.org/10.3390/ijms26093938
Chicago/Turabian StyleGumkowska-Sroka, Olga, Anna Chudek, Aleksander Owczarek, Kornelia Kuźnik-Trocha, Kacper Kotyla, Jan Kurdybacha, Jerzy Chudek, Katarzyna Komosińska-Vassev, Katarzyna Winsz-Szczotka, Krystyna Olczyk, and et al. 2025. "The Potential of Cardiac Biomarkers in Differentiating Disease Subtypes in Patients with Systemic Sclerosis: Focus on GDF15, MR-pro ANP, and suPAR" International Journal of Molecular Sciences 26, no. 9: 3938. https://doi.org/10.3390/ijms26093938
APA StyleGumkowska-Sroka, O., Chudek, A., Owczarek, A., Kuźnik-Trocha, K., Kotyla, K., Kurdybacha, J., Chudek, J., Komosińska-Vassev, K., Winsz-Szczotka, K., Olczyk, K., & Kotyla, P. (2025). The Potential of Cardiac Biomarkers in Differentiating Disease Subtypes in Patients with Systemic Sclerosis: Focus on GDF15, MR-pro ANP, and suPAR. International Journal of Molecular Sciences, 26(9), 3938. https://doi.org/10.3390/ijms26093938