Fibromyalgia: Chronic Pain Due to a Blood Dysfunction?
Abstract
:1. Introduction
2. Hypoxia
3. Blood Volume
4. Blood Vessels
5. Serotonin
6. Steroid Hormones
7. Inflammation
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
5-HT | serotonin |
ANS | autonomic nervous system |
ATP | adenosine triphosphate |
CNS | central nervous system |
ESR | erythrocyte sedimentation rate |
FM | Fibromyalgia |
Hb | Hemoglobin |
HT | hematocrit |
IL | Interleukin |
MCHC | mean corpuscular hemoglobin concentration |
NLR | neutrophil leukocyte ratio |
NO | nitric oxide |
O2 | oxygen |
PLR | platelet leukocyte ratio |
RBC | red blood cell |
SIRI | systemic inflammatory index |
TNF | tumor necrosis factor |
References
- Jurado-Priego, L.N.; Cueto-Ureña, C.; Ramírez-Expósito, M.J.; Martínez-Martos, J.M. Fibromyalgia: A Review of the Pathophysiological Mechanisms and Multidisciplinary Treatment Strategies. Biomedicines 2024, 12, 1543. [Google Scholar] [CrossRef]
- Casini, I.; Massai, L.; Solomita, E.; Ortenzi, K.; Pieretti, S.; Aloisi, A.M. Gastrointestinal Conditions Affect Chronic Pain and Quality of Life in Women. Int. J. Environ. Res. Public Health 2024, 21, 1435. [Google Scholar] [CrossRef] [PubMed]
- Frödin, T.; Bengtsson, A.; Skogh, M. Nail fold capillaroscopy findings in patients with primary fibromyalgia. Clin. Rheumatol. 1988, 7, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Morf, S.; Amann-Vesti, B.; Forster, A.; Franzeck, U.K.; Koppensteiner, R.; Uebelhart, D.; Sprott, H. Microcirculation abnormalities in patients with fibromyalgia—Measured by capillary microscopy and laser fluxmetry. Arthritis Res. Ther. 2005, 7, R209–R216. [Google Scholar] [CrossRef]
- Jeschonneck, M.; Grohmann, G.; Hein, G.; Sprott, H. Abnormal microcirculation and temperature in skin above tender points in patients with fibromyalgia. Rheumatology 2000, 39, 917–921. [Google Scholar] [CrossRef]
- Lindh, M.; Johansson, G.; Hedberg, M.; Henning, G.B.; Grimby, G. Muscle fiber characteristics, capillaries and enzymes in patients with fibromyalgia and controls. Scand. J. Rheumatol. 1995, 24, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Simpson, L.O.; O’Neill, D.J. Red cell shape changes in the blood of people 60 years of age and older imply a role for blood rheology in the aging process. Gerontology 2003, 49, 310–315. [Google Scholar] [CrossRef]
- Al-Allaf, A.W.; Mole, P.A.; Paterson, C.R.; Pullar, T. Bone health in patients with fibromyalgia. Rheumatology 2003, 42, 1202–1206. [Google Scholar] [CrossRef]
- Arihan, O.; Caglayan, G.; Bayrak, S.; Akinci, A.; Falkmarken, N.D. Hemorheological parameters in patients with fibromyalgia syndrome. Clin. Hemorheol. Microcirc. 2017, 65, 309–315. [Google Scholar] [CrossRef]
- Villafaina, S.; Tomas-Carus, P.; Silva, V.; Costa, A.R.; Fernandes, O.; Parraca, J.A. The Behavior of Muscle Oxygen Saturation, Oxy and Deoxy Hemoglobin during a Fatigue Test in Fibromyalgia. Biomedicines 2023, 11, 132. [Google Scholar] [CrossRef]
- Mader, R.; Koton, Y.; Buskila, D.; Herer, P.; Elias, M. Serum iron and iron stores in non-anemic patients with fibromyalgia. Clin. Rheumatol. 2012, 31, 595–599. [Google Scholar] [CrossRef]
- Rus, A.; Molina, F.; Camacho, M.V.; Rubia, M.; Aguilar-Ferrándiz, M.E.; Del Moral, M.L. Do Routine Laboratory Parameters have Predictive Ability to Differentiate Subjects with Fibromyalgia from Healthy Subjects? Clin. Nurs. Res. 2023, 32, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Alves, B.; Zakka, T.M.; Teixeira, M.J.; Kaziyama, H.H.; Siqueira, J.T.; Siqueira, S.R. Depression, sexuality and fibromyalgia syndrome: Clinical findings and correlation to hematological parameters. Arq. De Neuro-Psiquiatr. 2016, 74, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Telli, H.; Özdemir, Ç. Is nociplastic pain, a new pain category, associated with biochemical, hematological, and inflammatory parameters? Curr. Med. Res. Opin. 2024, 40, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Molina, F.; Del Moral, M.L.; La Rubia, M.; Blanco, S.; Carmona, R.; Rus, A. Are Patients With Fibromyalgia in a Prothrombotic State? Biol. Res. Nurs. 2019, 21, 224–230. [Google Scholar] [CrossRef]
- Fassbender, H.G. Morfologija i patogeneza ekstraartikularnog reumatizma [Morphology and pathogenesis of extra-articular rheumatism]. Reumatizam 1973, 20, 1–18. [Google Scholar]
- Bengtsson, A.; Henriksson, K.G.; Jorfeldt, L.; Kågedal, B.; Lennmarken, C.; Lindström, F. Primary fibromyalgia. A clinical and laboratory study of 55 patients. Scand. J. Rheumatol. 1986, 15, 340–347. [Google Scholar] [CrossRef]
- Lund, N.; Bengtsson, A.; Thorborg, P. Muscle tissue oxygen pressure in primary fibromyalgia. Scand. J. Rheumatol. 1986, 15, 165–173. [Google Scholar] [CrossRef]
- Larsson, S.E.; Bodegård, L.; Henriksson, K.G.; Oberg, P.A. Chronic trapezius myalgia. Morphology and blood flow studied in 17 patients. Acta Orthop. Scand. 1990, 61, 394–398. [Google Scholar] [CrossRef]
- Bengtsson, A.; Henriksson, K.G.; Larsson, J. Muscle biopsy in primary fibromyalgia. Light-microscopical and histochemical findings. Scand. J. Rheumatol. 1986, 15, 1–6. [Google Scholar] [CrossRef]
- Bengtsson, A.; Henriksson, K.G.; Larsson, J. Reduced high-energy phosphate levels in the painful muscles of patients with primary fibromyalgia. Arthritis Rheum. 1986, 29, 817–821. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.K.; Shi, X.Q.; Johnson, J.M.; Rone, M.B.; Antel, J.P.; David, S.; Zhang, J. Peripheral nerve injury induces persistent vascular dysfunction and endoneurial hypoxia, contributing to the genesis of neuropathic pain. J. Neurosci. Off. J. Soc. Neurosci. 2015, 35, 3346–3359. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, E.; Lombardi, R.; Paolini, M.; Libro, G.; Delussi, M.; Ricci, K.; Quitadamo, S.G.; Gentile, E.; Girolamo, F.; Iannone, F.; et al. Peripheral and central nervous system correlates in fibromyalgia. Eur. J. Pain 2020, 24, 1537–1547. [Google Scholar] [CrossRef]
- Marshall, A.; Rapteas, L.; Burgess, J.; Riley, D.; Anson, M.; Matsumoto, K.; Bennett, A.; Kaye, S.; Marshall, A.; Dunham, J.; et al. Small fibre pathology, small fibre symptoms and pain in fibromyalgia syndrome. Sci. Rep. 2024, 14, 3947. [Google Scholar] [CrossRef]
- Telen, M.J. Cellular adhesion and the endothelium: E-selectin, L-selectin, and pan-selectin inhibitors. Hematol. Oncol. Clin. N. Am. 2014, 28, 341–354. [Google Scholar] [CrossRef]
- Bennewitz, M.F.; Jimenez, M.A.; Vats, R.; Tutuncuoglu, E.; Jonassaint, J.; Kato, G.J.; Gladwin, M.T.; Sundd, P. Lung vaso-occlusion in sickle cell disease mediated by arteriolar neutrophil-platelet microemboli. JCI Insight. 2017, 2, e89761. [Google Scholar] [CrossRef]
- Patil, M.; Henderson, J.; Luong, H.; Annamalai, D.; Sreejit, G.; Krishnamurthy, P. The Art of Intercellular Wireless Communications: Exosomes in Heart Disease and Therapy. Front. Cell Dev. Biol. 2019, 7, 315. [Google Scholar] [CrossRef] [PubMed]
- Al-Nedawi, K.; Szemraj, J.; Cierniewski, C.S. Mast cell-derived exosomes activate endothelial cells to secrete plasminogen activator inhibitor type 1. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1744–1749. [Google Scholar] [CrossRef]
- Aloisi, A.M.; Casini, I.; Iannuccelli, C.; Favretti, M.; De Tommaso, M. Fibromyalgia: A chronic pain for a blood dysfunction? In Proceedings of the 7th International Congress on Controversies in Fibromyalgia, Vienna, Austria, 3–4 March 2025. [Google Scholar]
- Dunaway, L.S.; Mills, W.A., 3rd; Eyo, U.B.; Isakson, B.E. The Cells of the Vasculature: Advances in the Regulation of Vascular Tone in the Brain and Periphery. Basic Clin. Pharmacol. Toxicol. 2025, 136, e70023. [Google Scholar] [CrossRef]
- Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991, 43, 109–142. [Google Scholar] [CrossRef] [PubMed]
- Duckles, S.P.; Miller, V.M. Hormonal modulation of endothelial NO production. Pflug. Arch. 2010, 459, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Bradley, L.A. Pathophysiology of fibromyalgia. Am. J. Med. 2009, 122 (Suppl. S12), S22–S30. [Google Scholar] [CrossRef] [PubMed]
- Coffman, J.D.; Rasmussen, H.M. Effects of beta-adrenoreceptor-blocking drugs in patients with Raynaud’s phenomenon. Circulation 1985, 72, 466–470. [Google Scholar] [CrossRef]
- Bengtsson, A.; Bengtsson, M. Regional sympathetic blockade in primary fibromyalgia. Pain 1988, 33, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.L. (Ed.) Checkliste Rheumatologie; Georg Thieme: Stuttgart, Germany, 1991; pp. 303–305. [Google Scholar]
- Bennett, R.M.; Clark, S.R.; Campbell, S.M.; Ingram, S.B.; Burckhardt, C.S.; Nelson, D.L.; Porter, J.M. Symptoms of Raynaud’s syndrome in patients with fibromyalgia. A study utilizing the Nielsen test, digital photoplethysmography, and measurements of platelet alpha 2-adrenergic receptors. Arthritis Rheum. 1991, 34, 264–269. [Google Scholar] [CrossRef]
- Kopaliani, I.; Elsaid, B.; Speier, S.; Deussen, A. Immune and Metabolic Mechanisms of Endothelial Dysfunction. Int. J. Mol. Sci. 2024, 25, 13337. [Google Scholar] [CrossRef]
- Dikalov, S.I.; Nazarewicz, R.R. Angiotensin II-induced production of mitochondrial reactive oxygen species: Potential mechanisms and relevance for cardiovascular disease. Antioxid. Redox Signal. 2013, 19, 1085–1094. [Google Scholar] [CrossRef]
- Machu, T.K. Therapeutics of 5-HT3 receptor antagonists: Current uses and future directions. Pharmacol. Ther. 2011, 130, 338–347. [Google Scholar] [CrossRef]
- Theriot, J.; Wermuth, H.R.; Ashurst, J.V. Antiemetics, Selective 5-HT3 Antagonists. 2024 Apr 19. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Chu, A.; Wadhwa, R. Selective Serotonin Reuptake Inhibitors. 2023 May 1. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Tack, J.; Broekaert, D.; Fischler, B.; Van Oudenhove, L.; Gevers, A.M.; Janssens, J. A controlled crossover study of the selective serotonin reuptake inhibitor citalopram in irritable bowel syndrome. Gut 2006, 55, 1095–1103. [Google Scholar] [CrossRef]
- Mercado, C.P.; Kilic, F. Molecular mechanisms of SERT in platelets: Regulation of plasma serotonin levels. Mol. Interv. 2010, 10, 231–241. [Google Scholar] [CrossRef]
- Bellini, M.; Rappelli, L.; Blandizzi, C.; Costa, F.; Stasi, C.; Colucci, R.; Giannaccini, G.; Marazziti, D.; Betti, L.; Baroni, S.; et al. Platelet serotonin transporter in patients with diarrhea-predominant irritable bowel syndrome both before and after treatment with alosetron. Am. J. Gastroenterol. 2003, 98, 2705–2711. [Google Scholar] [CrossRef]
- Pletscher, A. The 5-hydroxytryptamine system of blood platelets: Physiology and pathophysiology. Int. J. Cardiol. 1987, 14, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Koupenova, M.; Clancy, L.; Corkrey, H.A.; Freedman, J.E. Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circ. Res. 2018, 122, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Duerschmied, D.; Bode, C. Die Rolle von Serotonin in der Hämostase [The role of serotonin in haemostasis]. Hamostaseologie 2009, 29, 356–359. [Google Scholar] [PubMed]
- Roth, W.H.; Cai, A.; Zhang, C.; Chen, M.L.; Merkler, A.E.; Kamel, H. Gastrointestinal Disorders and Risk of First-Ever Ischemic Stroke. Stroke 2020, 51, 3577–3583. [Google Scholar] [CrossRef]
- Mügge, A.; Barton, M.; Fieguth, H.G.; Riedel, M. Contractile responses to histamine, serotonin, and angiotensin II are impaired by 17 beta-estradiol in human internal mammary arteries In Vitro. Pharmacology 1997, 54, 162–168. [Google Scholar] [CrossRef]
- Islam, M.Z.; Sawatari, Y.; Kojima, S.; Kiyama, Y.; Nakamura, M.; Sasaki, K.; Otsuka, M.; Obi, T.; Shiraishi, M.; Miyamoto, A. Vasomotor effects of 5-hydroxytryptamine, histamine, angiotensin II, acetylcholine, noradrenaline, and bradykinin on the cerebral artery of bottlenose dolphin (Tursiops truncatus). J. Vet. Med. Sci. 2020, 82, 1456–1463. [Google Scholar] [CrossRef]
- Soslau, G. Cardiovascular serotonergic system: Evolution, receptors, transporter, and function. J. Exp. Zoology. Part A Ecol. Integr. Physiol. 2022, 337, 115–127. [Google Scholar] [CrossRef]
- Stocco, C. Tissue physiology and pathology of aromatase. Steroids 2012, 77, 27–35. [Google Scholar] [CrossRef]
- Ryczkowska, K.; Adach, W.; Janikowski, K.; Banach, M.; Bielecka-Dabrowa, A. Menopause and women’s cardiovascular health: Is it really an obvious relationship? Arch. Med. Sci. AMS 2022, 19, 458–466. [Google Scholar] [CrossRef]
- Mou, H.; Zhang, J.; Guo, Y.; Xu, L.; Luo, X. Effects of key physiological parameters on cardiovascular disease and osteoporosis risk in perimenopausal and postmenopausal women. Sci. Rep. 2025, 15, 2814. [Google Scholar] [CrossRef]
- Miller, V.M.; Jayachandran, M.; Owen, W.G. Ageing, oestrogen, platelets and thrombotic risk. Clin. Exp. Pharmacol. Physiol. 2007, 34, 814–821. [Google Scholar] [CrossRef]
- Hashemzadeh, M.; Haseefa, F.; Peyton, L.; Park, S.; Movahed, M.R. The effects of estrogen and hormone replacement therapy on platelet activity: A review. Am. J. Blood Res. 2022, 12, 33–42. [Google Scholar] [PubMed]
- Okabe, K.; Inoue, Y.; Soeda, H. Estradiol inhibits Ca2+ and K+ channels in smooth muscle cells from pregnant rat myometrium. Eur. J. Pharmacol. 1999, 376, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Aloisi, A.M.; Buonocore, M.; Merlo, L.; Galandra, C.; Sotgiu, A.; Bacchella, L.; Ungaretti, M.; Demartini, L.; Bonezzi, C. Chronic pain therapy and hypothalamic-pituitary-adrenal axis impairment. Psychoneuroendocrinology 2011, 36, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Leng, X.H.; Bray, P.F. Hormone therapy and platelet function. Drug Discov. Today Dis. Mech. 2005, 2, 85–91. [Google Scholar] [CrossRef]
- Del Principe, D.; Ruggieri, A.; Pietraforte, D.; Villani, A.; Vitale, C.; Straface, E.; Malorni, W. The relevance of estrogen/estrogen receptor system on the gender difference in cardiovascular risk. Int. J. Cardiol. 2015, 187, 291–298. [Google Scholar] [CrossRef]
- Hashemzadeh, M.; Romo, R.; Arreguin, J.M.; Movahed, M.R. The effects of estrogen and hormone replacement therapy on cardiovascular systems. Future Cardiol. 2021, 17, 347–353. [Google Scholar] [CrossRef]
- Kim, C.S.; Yea, K.; Morrell, C.N.; Jeong, Y.; Lowenstein, C.J. Estrogen activates endothelial exocytosis. Biochem. Biophys. Res. Commun. 2021, 558, 29–35. [Google Scholar] [CrossRef]
- Jayachandran, M.; Litwiller, R.D.; Owen, W.G.; Miller, V.M. Circulating microparticles and endogenous estrogen in newly menopausal women. Climacteric J. Int. Menopause Soc. 2009, 12, 177–184. [Google Scholar] [CrossRef]
- Zaldivia, M.T.K.; McFadyen, J.D.; Lim, B.; Wang, X.; Peter, K. Platelet-Derived Microvesicles in Cardiovascular Diseases. Front. Cardiovasc. Med. 2017, 4, 74. [Google Scholar] [CrossRef] [PubMed]
- Tushuizen, M.E.; Diamant, M.; Sturk, A.; Nieuwland, R. Cell-derived microparticles in the pathogenesis of cardiovascular disease: Friend or foe? Arterioscler. Thromb. Vasc. Biol. 2011, 31, 4–9. [Google Scholar] [CrossRef]
- Sprott, H.; Salemi, S.; Gay, R.E.; Bradley, L.A.; Alarcón, G.S.; Oh, S.J.; Michel, B.A.; Gay, S. Increased DNA fragmentation and ultrastructural changes in fibromyalgic muscle fibres. Ann. Rheum. Dis. 2004, 63, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Manwani, D.; Frenette, P.S. Vaso-occlusion in sickle cell disease: Pathophysiology and novel targeted therapies. Blood 2013, 122, 3892–3898. [Google Scholar] [CrossRef]
- Toker, A.; Çiçekler, H.; Yerlikaya, F.; Küçükşen, S.; Küçük, A. Fibromiyalji hastalarında serum sialik asit düzeyleri ve inflamasyon belirteçleri arasındaki korelasyonun araştırılması. Eur. J. Basic. Med. Sci. 2013, 3, 24–28. [Google Scholar] [CrossRef]
- Korkmaz, M.D.; Ceylan, C.M. Evaluation of Inflammatory Markers in Fibromyalgia Syndrome. Med. J. Istanb. Kanuni Sultan Suleyman 2022, 14, 251–254. [Google Scholar] [CrossRef]
- Zeng, W.; Song, Y.; Wang, R.; He, R.; Wang, T. Neutrophil elastase: From mechanisms to therapeutic potential. J. Pharm. Anal. 2023, 13, 355–366. [Google Scholar] [CrossRef]
- Alam, R.; Gorska, M. 3. Lymphocytes. J. Allergy Clin. Immunol. 2003, 111 (Suppl. S2), S476–S485. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Ma, N.; Tang, Q.; Wei, T.; Yang, M.; Fu, H.; Hu, Z.; Liang, Y.; Yang, Z.; Zhong, R. Neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) were useful markers in assessment of inflammatory response and disease activity in SLE patients. Mod. Rheumatol. 2016, 26, 372–376. [Google Scholar] [CrossRef]
- Xu, Y.; He, H.; Zang, Y.; Yu, Z.; Hu, H.; Cui, J.; Wang, W.; Gao, Y.; Wei, H.; Wang, Z. Systemic inflammation response index (SIRI) as a novel biomarker in patients with rheumatoid arthritis: A multi-center retrospective study. Clin. Rheumatol. 2022, 41, 1989–2000. [Google Scholar] [CrossRef]
- Satoh, M.; Shimoda, Y.; Akatsu, T.; Ishikawa, Y.; Minami, Y.; Nakamura, M. Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte Toll signal in patients with heart failure after acute myocardial infarction. Eur. J. Heart Fail. 2006, 8, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Maréchal, P.; Tridetti, J.; Nguyen, M.L.; Wéra, O.; Jiang, Z.; Gustin, M.; Donneau, A.F.; Oury, C.; Lancellotti, P. Neutrophil Phenotypes in Coronary Artery Disease. J. Clin. Med. 2020, 9, 1602. [Google Scholar] [CrossRef] [PubMed]
- Montellano, F.A.; Ungethüm, K.; Ramiro, L.; Nacu, A.; Hellwig, S.; Fluri, F.; Whiteley, W.N.; Bustamante, A.; Montaner, J.; Heuschmann, P.U. Role of Blood-Based Biomarkers in Ischemic Stroke Prognosis: A Systematic Review. Stroke 2021, 52, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.; Mao, W.; Wang, S.; Sha, J.; Lu, M.; Cong, L.; Meng, X.; Li, H. Systemic inflammation response index as a prognostic predictor in patients with acute ischemic stroke: A propensity score matching analysis. Front. Neurol. 2023, 13, 1049241. [Google Scholar] [CrossRef]
Tissue | Altered Function | Cause/Substances |
---|---|---|
Blood |
|
|
Blood Volume |
|
|
Blood Vessels |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aloisi, A.M.; Casini, I. Fibromyalgia: Chronic Pain Due to a Blood Dysfunction? Int. J. Mol. Sci. 2025, 26, 4153. https://doi.org/10.3390/ijms26094153
Aloisi AM, Casini I. Fibromyalgia: Chronic Pain Due to a Blood Dysfunction? International Journal of Molecular Sciences. 2025; 26(9):4153. https://doi.org/10.3390/ijms26094153
Chicago/Turabian StyleAloisi, Anna Maria, and Ilenia Casini. 2025. "Fibromyalgia: Chronic Pain Due to a Blood Dysfunction?" International Journal of Molecular Sciences 26, no. 9: 4153. https://doi.org/10.3390/ijms26094153
APA StyleAloisi, A. M., & Casini, I. (2025). Fibromyalgia: Chronic Pain Due to a Blood Dysfunction? International Journal of Molecular Sciences, 26(9), 4153. https://doi.org/10.3390/ijms26094153