Cave Communities: From the Surface Border to the Deep Darkness
Abstract
:Introduction
Acknowledgments
Conflicts of Interest
References
- Mammola, S.; Aharon, S.; Seifan, M.; Lubin, Y.; Gavish-Regev, E. Exploring the interplay between local and regional drivers of distribution of a subterranean organism. Diversity 2019, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Vandel, A. Biospeleology. The Biology of Cavernicolous Animals; Pergamon: Oxford, UK, 1965. [Google Scholar]
- Barr, T.C.J. Cave ecology and the evolution of troglobites. Evol. Biol. 1968, 2, 35–102. [Google Scholar]
- Culver, D.C. Cave Life: Evolution and Ecology; Harvard University Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Poulson, T.L.; White, W.B. The cave environment. Science 1969, 165, 971–981. [Google Scholar] [CrossRef]
- Moldovan, O.T.; Kovác, L.; Halse, S. Cave Ecology; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Culver, D.C.; Pipan, T. Shallow Subterranean Habitats: Ecology, Evolution, and Conservation; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Culver, D.C.; Pipan, T. (Eds.) The Biology of Caves and Other Subterranean Habitats, 2nd ed.; Oxford University Press: New York, NY, USA, 2019; p. 336. [Google Scholar]
- Pipan, T.; Culver, D.C. Forty years of epikarst: What biology have we learned? Int. J. Speleol. 2013, 42, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Romero, A. Cave Biology; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- White, W.; Culver, D.C.; Pipan, T. (Eds.) Encyclopedia of Caves; Academic Press: Waltham, MA, USA, 2019; p. 1250. [Google Scholar]
- Howarth, F.G.; Moldovan, O.T. The ecological classification of cave animals and their adaptations. In Cave Ecology; Moldovan, O.T., Kováč, L., Halse, S., Eds.; Springer: Berlin, Germany, 2018; pp. 41–67. [Google Scholar]
- Ficetola, G.F.; Canedoli, C.; Stock, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 2019, 33, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Lunghi, E.; Manenti, R.; Ficetola, G.F. Seasonal variation in microhabitat of salamanders: Environmental variation or shift of habitat selection? PeerJ 2015, 3, e1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badino, G. Underground meteorology-“what’s the weather underground?”. Acta Carsologica 2010, 39, 427–448. [Google Scholar] [CrossRef]
- Biswas, J. Kotumsar Cave biodiversity: A review of cavernicoles and their troglobiotic traits. Biodivers. Conserv. 2009, 19, 275–289. [Google Scholar] [CrossRef]
- Espinasa, L.; Robinson, J.; Soares, D.; Hoese, G.; Toulkeridis, T.; Toomey, R.I. Troglomorphic features of Astroblepus pholeter, a cavefish from Ecuador, and possible introgressive hybridization. Subterr. Biol. 2018, 27, 17–29. [Google Scholar] [CrossRef]
- Hesselberg, T.; Simonsen, D.; Juan, C. Unique behavioural adaptations to subterranean life? A review of evidence from cave orb spiders. Behaviour 2019, 156, 969–996. [Google Scholar] [CrossRef] [Green Version]
- Hervant, F.; Mathieu, J.; Durand, J. Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. J. Exp. Biol. 2001, 204, 269–281. [Google Scholar] [PubMed]
- Fenolio, D.B.; Graening, G.O.; Collier, B.A.; Stout, J.F. Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses. Proc. R. Soc. B 2006, 273, 439–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, A. The Evolution of Cave Life. Am. Sci. 2011, 99, 144–151. [Google Scholar] [CrossRef]
- Culver, D.C.; Kane, T.C.; Fong, D.W. (Eds.) Adaptation and Natural Selection in Caves. The Evolution of Gammarus minus; Harvard University Press: Cambridge, MA, USA, 1995; p. 223. [Google Scholar]
- Jeffery, W.R. Regressive evolution in Astyanax cavefish. Annu. Rev. Genet. 2009, 43, 25–47. [Google Scholar] [CrossRef] [Green Version]
- Culver, D.C.; Pipan, T. Shifting paradigms of the evolution of cave life. Acta Carsologica 2015, 44, 415–425. [Google Scholar] [CrossRef]
- Rétaux, S.; Casane, D. Evolution of eye development in the darkness of caves: Adaptation, drift, or both? EvoDevo 2013, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Fiera, C.; Habel, J.C.; Ulrich, W. Neutral colonisations drive high beta-diversity in cavernicole springtails (Collembola). PLoS ONE 2018, 13, e0189638. [Google Scholar] [CrossRef] [Green Version]
- Mammola, S. Finding answers in the dark: Caves as models in ecology fifty years after Poulson and White. Ecography 2019, 42, 1331–1351. [Google Scholar] [CrossRef] [Green Version]
- Lunghi, E.; Manenti, R.; Ficetola, G.F. Do cave features affect underground habitat exploitation by non-troglobite species? Acta Oecologica 2014, 55, 29–35. [Google Scholar] [CrossRef]
- Manenti, R. Role of cave features for aquatic troglobiont fauna occurrence: Effects on “accidentals” and troglomorphic organisms distribution. Acta Zool. Acad. Sci. Hung. 2014, 60, 257–270. [Google Scholar]
- Lunghi, E. Occurrence of the Black lace-weaver spider, Amaurobius ferox, in caves. Acta Carsologica 2020, in press. [Google Scholar]
- Lunghi, E.; Bruni, G.; Ficetola, G.F.; Manenti, R. Is the Italian stream frog (Rana italica Dubois, 1987) an opportunistic exploiter of cave twilight zone? Subterr. Biol. 2018, 25, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Lunghi, E.; Mascia, C.; Mulargia, M.; Corti, C. Is the Sardinian grass snake (Natrix natrix cetti) an active hunter in underground environments? Spixiana 2018, 41, 160. [Google Scholar]
- Pape, R.B. The importance of ants in cave ecology, with new records and behavioral observations of ants in Arizona caves. Int. J. Speleol. 2016, 45, 185–205. [Google Scholar] [CrossRef] [Green Version]
- Polak, S. The use of caves by the edible dormouse (Myoxus glis) in the Slovenian karst. Nat. Croat. 1997, 6, 313–321. [Google Scholar]
- Vörös, J.; Maárton, O.; Schmidt, B.R.; Tünde Gál, J.; Jelić, D. Surveying Europe’s only cave-dwelling chordate species (Proteus anguinus) using environmental DNA. PLoS ONE 2017, 12, e0170945. [Google Scholar] [CrossRef] [Green Version]
- Mammola, S.; Isaia, M. Spiders in cave. Proc. R. Soc. B 2017, 284, 20170193. [Google Scholar] [CrossRef] [Green Version]
- Lunghi, E.; Manenti, R.; Ficetola, G.F. Cave features, seasonality and subterranean distribution of non-obligate cave dwellers. PeerJ 2017, 5, e3169. [Google Scholar] [CrossRef]
- Di Russo, C.; Carchini, G.; Rampini, M.; Lucarelli, M.; Sbordoni, V. Long term stability of a terrestrial cave community. Int. J. Speleol. 1999, 26, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Huntsman, B.M.; Venarsky, M.P.; Benstead, J.P. Relating carrion breakdown rates to ambient resource level and community structure in four cave stream ecosystems. J. North Am. Benthol. Soc. 2011, 30, 882–892. [Google Scholar] [CrossRef]
- Baker, N.J.; Kaartinen, R.; Roslin, T.; Stouffer, D.B. Species’ roles in food webs show fidelity across a highly variable oak forest. Ecography 2015, 38, 130–139. [Google Scholar] [CrossRef]
- Trajano, E. Ecology of subterranean fishes: An overview. Environ. Biol. Fishes 2001, 62, 133–160. [Google Scholar] [CrossRef]
- Lavoie, K.H.; Helf, K.L.; Poulson, T.L. The biology and ecology of North American cave crickets. J. Cave Karst Stud. 2007, 69, 114–134. [Google Scholar]
- Ferreira, R.L.; Martins, R.P. Trophic structure and natural history of bat guano invertebrate communities, with special reference to Brazilian caves. Trop. Zool. 1999, 12, 231–252. [Google Scholar] [CrossRef]
- Pape, R.B.; OConnor, B.M. Diversity and ecology of the macro-invertebrate fauna (Nemata and Arthropoda) of Kartchner Caverns, Cochise County, Arizona, United States of America. Check List 2014, 10, 761–794. [Google Scholar] [CrossRef] [Green Version]
- Barzaghi, B.; Ficetola, G.F.; Pennati, R.; Manenti, R. Biphasic predators provide biomass subsidies in small freshwater habitats: A case study of spring and cave pools. Freshw. Biol. 2017, 62, 1637–1644. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Lunghi, E.; Canedoli, C.; Padoa-Schioppa, E.; Pennati, R.; Manenti, R. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci. Rep. 2018, 8, 10575. [Google Scholar] [CrossRef]
- Latella, L.; Bernabò, P.; Lencioni, V. Distribution pattern and thermal tolerance in two cave dwelling Leptodirinae (Coleoptera, Cholevidae). Subterr. Biol. 2008, 8, 81–86. [Google Scholar]
- Yoder, J.A.; Benoit, J.B.; LaCagnin, M.J.; Hobbs, H.H., III. Increased cave dwelling reduces the ability of cave crickets to resist dehydration. J. Comp. Physiol. B 2011, 181, 595–601. [Google Scholar] [CrossRef]
- Manenti, R.; Lunghi, E.; Ficetola, G.F. Distribution of spiders in cave twilight zone depends on microclimatic features and trophic supply. Invertebr. Biol. 2015, 134, 242–251. [Google Scholar] [CrossRef]
- Lunghi, E.; Corti, C.; Mulargia, M.; Zhao, Y.; Manenti, R.; Ficetola, G.F.; Veith, M. Cave morphology, microclimate and abundance of five cave predators from the Monte Albo (Sardinia, Italy). Biodivers. Data J. 2020, 8, e48623. [Google Scholar] [CrossRef]
- Mammola, S.; Piano, E.; Isaia, M. Step back! Niche dynamics in cave-dwelling predators. Acta Oecologica 2016, 75, 35–42. [Google Scholar] [CrossRef]
- Lunghi, E.; Cianferoni, F.; Ceccolini, F.; Veith, M.; Manenti, R.; Mancinelli, G.; Corti, C.; Ficetola, G.F. What shapes the trophic niche of European plethodontid salamanders? PLoS ONE 2018, 13, e0205672. [Google Scholar] [CrossRef]
- Lunghi, E.; Manenti, R.; Mulargia, M.; Veith, M.; Corti, C.; Ficetola, G.F. Environmental suitability models predict population density, performance and body condition for microendemic salamanders. Sci. Rep. 2018, 8, 7527. [Google Scholar] [CrossRef] [PubMed]
- Salgado, S.S.; Motta, P.C.; De Souza Aguiar, L.M.; Nardoto, G.B. Tracking dietary habits of cave arthropods associated with deposits of hematophagous bat guano: A study from a neotropical savanna. Austral Ecol. 2014, 39, 560–566. [Google Scholar] [CrossRef]
- Zagmajster, M.; Culver, D.C.; Christman, M.C.; Sket, B. Evaluating the sampling bias in pattern of subterranean species richness: Combining approaches. Biodivers. Conserv. 2010, 19, 3035–3048. [Google Scholar] [CrossRef]
- Manenti, R.; Barzaghi, B.; Lana, E.; Stocchino, G.A.; Manconi, R.; Lunghi, E. The stenoendemic cave-dwelling planarians (Platyhelminthes, Tricladida) of the Italian Alps and Apennines: Conservation issues. J. Nat. Conserv. 2018, 45, 90–97. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, Y.; Yang, J. Cavefish of China. In Encyclopedia of Caves, 3rd ed.; White, W., Culver, D.C., Pipan, T., Eds.; Academic Press: Waltham, MA, USA, 2019; pp. 237–254. [Google Scholar] [CrossRef]
- Bressi, N. Underground and unknown: Updated distribution, ecological notes and conservation guidelines on the Olm Proteus anguinus anguinus in Italy (Amphibia, Proteidae). Ital. J. Zool. 2004, 71, 55–59. [Google Scholar] [CrossRef]
- Cejuela Tanalgo, K.; Tabora, J.A.G.; Hughes, A.C. Bat cave vulnerability index (BCVI): A holistic rapid assessment tool to identify priorities for effective cave conservation in the tropics. Ecol. Indic. 2018, 89, 852–860. [Google Scholar] [CrossRef]
- Niemiller, M.L.; Zigler, K.S.; Stephen, C.D.R.; Carter, E.T.; Paterson, A.T.; Taylor, S.J.; Summers Engel, A. Vertebrate fauna in caves of eastern Tennessee within the Appalachians karst region, USA. J. Cave Karst Stud. 2016, 78, 1–24. [Google Scholar] [CrossRef]
- Plăiaşu, R.; Băncilă, R.I. Fluctuating asymmetry as a bio-marker to account for in conservation and management of cave-dwelling species. J. Insect Conserv. 2018, 22, 221–229. [Google Scholar] [CrossRef]
- Mammola, S. Modelling the future spread of native and alien congeneric species in subterranean habitats —The case of Meta cave-dwelling spiders in Great Britain. Int. J. Speleol. 2017, 46, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Di Russo, C.; Chimenti, C.; Calcari, C.; Druella, C.; Rampini, M.; Cenni, V.; Martini, A. The allochthonous crayfish Procambarus clarkii (Girard, 1852) (Crustacea Cambaridae) from the subterranean stream of the Ausi cave (Latium, Italy): The second documented case of cave invasion. Biodivers. J. 2017, 8, 951–956. [Google Scholar]
- Mammola, S.; Goodacre, S.L.; Isaia, M. Climate change may drive cave spiders to extinction. Ecography 2018, 41, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Lunghi, E.; Corti, C.; Manenti, R.; Ficetola, G.F. Consider species specialism when publishing datasets. Nat. Ecol. Evol. 2019, 3, 319. [Google Scholar] [CrossRef]
- Blehert, D.S.; Hicks, A.C.; Behr, M.; Meteyer, C.U.; Berlowski-Zier, B.M.; Buckles, E.L.; Coleman, J.T.H.; Darling, S.R.; Gargas, A.; Niver, R.; et al. Bat white-nose syndrome: An emerging fungal pathogen? Science 2008, 323, 227. [Google Scholar] [CrossRef]
- Manenti, R.; Ficetola, G.F. Salamanders breeding in subterranean habitats: Local adaptations or behavioural plasticity? J. Zool. 2013, 289, 182–188. [Google Scholar] [CrossRef]
- Poulson, T.L. Adaptations of cave fishes with some comparisons to deep-sea fishes. Environ. Biol. Fishes 2001, 62, 345–364. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lunghi, E.; Manenti, R. Cave Communities: From the Surface Border to the Deep Darkness. Diversity 2020, 12, 167. https://doi.org/10.3390/d12050167
Lunghi E, Manenti R. Cave Communities: From the Surface Border to the Deep Darkness. Diversity. 2020; 12(5):167. https://doi.org/10.3390/d12050167
Chicago/Turabian StyleLunghi, Enrico, and Raoul Manenti. 2020. "Cave Communities: From the Surface Border to the Deep Darkness" Diversity 12, no. 5: 167. https://doi.org/10.3390/d12050167
APA StyleLunghi, E., & Manenti, R. (2020). Cave Communities: From the Surface Border to the Deep Darkness. Diversity, 12(5), 167. https://doi.org/10.3390/d12050167