De Novo Genome Assembly of the Sea Star Patiria pectinifera (Muller & Troschel, 1842) Using Oxford Nanopore Technology and Illumina Platforms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. Oxford Nanopore Technology (ONT) PromethION Sequencing
2.3. 10 × Chromium Genome Library Sequencing
2.4. Illumina Sequencing
2.5. Assembly
2.6. Transcriptome Sequencing
2.7. Completeness Assessment
2.8. Genome Annotation and Repeat Analysis
3. Results and Discussion
3.1. Genome Sequencing and Assembly
3.2. Gene Annotation and Comparison with Sea Star Genomes
3.3. Comparison of Transposable Elements
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gale, A.S. Phylogeny and classification of the Asteroidea (Echinodermata). Zool. J. Linn. Soc. 1987, 89, 107–132. [Google Scholar] [CrossRef]
- Mah, C.L.; Blake, D.B. Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS ONE 2012, 7, e35644. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, K.D.; Suchanek, T.H. Revisiting Paine’s 1966 sea star removal experiment, the most-cited empirical article in the American naturalist. Am. Nat. 2016, 188, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Schiebelhut, L.M.; Puritz, J.B.; Dawson, M.N. Decimation by sea star wasting disease and rapid genetic change in a keystone species, Pisaster ochraceus. Proc. Natl. Acad. Sci. USA 2018, 115, 7069–7074. [Google Scholar] [CrossRef] [PubMed]
- Dickey, J.W.E.; Cuthbert, R.N.; Morón Lugo, S.C.; Casties, I.; Dick, J.T.A.; Steffen, G.T.; Briski, E. The stars are out: Predicting the effect of seawater freshening on the ecological impact of a sea star keystone predator. Ecol. Ind. 2021, 132, 108293. [Google Scholar] [CrossRef]
- Carnevali, M.C. Regeneration in Echinoderms: Repair, regrowth, cloning. Invertebr. Surviv. J. 2006, 3, 64–76. [Google Scholar]
- Lawrence, J.M. Energetic costs of loss and regeneration of arms in stellate echinoderms. Integr. Comp. Biol. 2010, 50, 506–514. [Google Scholar] [CrossRef]
- Chia, F.; Oguro, C.; Komatsu, M. Sea-star (asteroid) development. Oceanogr. Mar. Biol. 1993, 31, 223–257. [Google Scholar]
- Mercier, A.; Hamel, J.-F. Endogenous and exogenous control of gametogenesis and spawning in echinoderms. In Advances in Marine Biology; Elsevier: Amsterdam, The Netherlands, 2009; Volume 55, pp. 1–302. [Google Scholar]
- Hall, M.R.; Kocot, K.M.; Baughman, K.W.; Fernandez-Valverde, S.L.; Gauthier, M.E.A.; Hatleberg, W.L.; Krishnan, A.; McDougall, C.; Motti, C.A.; Shoguchi, E.; et al. The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature 2017, 544, 231–234. [Google Scholar] [CrossRef]
- Hennebert, E.; Leroy, B.; Wattiez, R.; Ladurner, P. An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion. J. Proteomics 2015, 128, 83–91. [Google Scholar] [CrossRef]
- Cary, G.A.; Wolff, A.; Zueva, O.; Pattinato, J.; Hinman, V.F. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol. 2019, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M.F.; Sherman, C.D. De novo assembly and characterization of the invasive Northern Pacific Seastar transcriptome. PLoS ONE 2015, 10, e0142003. [Google Scholar] [CrossRef] [PubMed]
- Gabre, J.L.; Martinez, P.; Sköld, H.N.; Ortega-Martinez, O.; Abril, J.F. The coelomic epithelium transcriptome from a clonal sea star, Coscinasterias muricata. Mar. Genom. 2015, 24, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.J.; Stewart, P.; Rivera-Posada, J. De novo assembly of the transcriptome of Acanthaster planci testes. Mol. Ecol. Resour. 2015, 15, 953–966. [Google Scholar] [CrossRef] [PubMed]
- Bose, U.; Wang, T.; Zhao, M.; Motti, C.; Hall, M.; Cummins, S.F. Multiomics analysis of the giant triton snail salivary gland, a crown-of-thorns starfish predator. Sci. Rep. 2017, 7, 6000. [Google Scholar] [CrossRef]
- Musacchia, F.; Vasilev, F.; Borra, M.; Biffali, E.; Sanges, R.; Santella, L.; Chun, J.T. De novo assembly of a transcriptome from the eggs and early embryos of Astropecten aranciacus. PLoS ONE 2017, 12, e0184090. [Google Scholar] [CrossRef]
- Kim, C.-H.; Go, H.-J.; Oh, H.Y.; Jo, Y.H.; Elphick, M.R.; Park, N.G. Transcriptomics reveals tissue/organ-specific differences in gene expression in the starfish Patiria pectinifera. Mar. Genom. 2018, 37, 92–96. [Google Scholar] [CrossRef]
- Bates, L.; Wiseman, E.; Carroll, D.J. Analyzing gene expression in sea star eggs and embryos using bioinformatics. Methods Cell Biol. 2019, 150, 471–483. [Google Scholar]
- Gildor, T.; Cary, G.A.; Lalzar, M.; Hinman, V.F.; Ben-Tabou de-Leon, S. Developmental transcriptomes of the sea star, Patiria miniata, illuminate how gene expression changes with evolutionary distance. Sci.Rep. 2019, 9, 16201. [Google Scholar] [CrossRef]
- Byrne, M.; Koop, D.; Strbenac, D.; Cisternas, P.; Balogh, R.; Yang, J.Y.H.; Davidson, P.L.; Wray, G. Transcriptomic analysis of sea star development through metamorphosis to the highly derived pentameral body plan with a focus on neural transcription factors. DNA Res. 2020, 27, dsaa007. [Google Scholar] [CrossRef]
- Saotome, K.; Komatsu, M. Chromosomes of Japanese starfishes. Zool. Sci. 2002, 19, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.-E.; Bae, D.-Y.; Ki, J.-S.; Ahn, C.-Y.; Rhee, J.-S. The importance of multi-omics approaches for the health assessment of freshwater ecosystems. Mol. Cell. Toxicol. 2023, 19, 3–11. [Google Scholar] [CrossRef]
- Marçais, G.; Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 2011, 27, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef] [PubMed]
- Roach, M.J.; Schmidt, S.A.; Borneman, A.R. Purge Haplotigs: Allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinform. 2018, 19, 460. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.; Coombe, L.; Warren, R.L.; Chu, J.; Birol, I. ARCS: Scaffolding genome drafts with linked reads. Bioinformatics 2018, 34, 725–731. [Google Scholar] [CrossRef]
- Warren, R.L.; Yang, C.; Vandervalk, B.P.; Behsaz, B.; Lagman, A.; Jones, S.J.; Birol, I. LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads. GigaScience 2015, 4, s13742-015-0076-3. [Google Scholar] [CrossRef]
- Kurtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M.; Shumway, M.; Antonescu, C.; Salzberg, S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004, 5, R12. [Google Scholar] [CrossRef]
- Krzywinski, M.I.; Schein, J.E.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An in-formation aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Eddy, S.R. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 2002, 12, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Price, A.L.; Jones, N.C.; Pevzner, P.A. De novo identification of repeat families in large genomes. Bioinformatics 2005, 21, i351–i358. [Google Scholar] [CrossRef] [PubMed]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Holt, C.; Yandell, M. MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinform. 2011, 12, 491. [Google Scholar] [CrossRef]
- Korf, I. Gene finding in novel genomes. BMC Bioinform. 2004, 5, 59. [Google Scholar] [CrossRef] [PubMed]
- Stanke, M.; Schöffmann, O.; Morgenstern, B.; Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinform. 2006, 7, 62. [Google Scholar] [CrossRef]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Chan, P.P.; Lowe, T.M. tRNAscan-SE: Searching for tRNA genes in genomic sequences. Methods Mol. Biol. 2019, 1962, 1–14. [Google Scholar]
- Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; Hurwitz, D.I.; et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015, 43, D222–D226. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Dimmer, E.C.; Huntley, R.P.; Alam-Faruque, Y.; Sawford, T.; O′Donovan, C.; Martin, M.J.; Bely, B.; Browne, P.; Mun Chan, W.; Eberhardt, R.; et al. The UniProt-GO annotation database in 2011. Nucleic. Acids. Res. 2012, 40, D565–D570. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Stoeckert, C.J.; Roos, D.S. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 2003, 13, 2178–2189. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Brunk, B.P.; Chen, F.; Gao, X.; Harb, O.S.; Iodice, J.B.; Shanmugam, D.; Roos, D.S.; Stoeckert, C.J., Jr. Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Curr. Protoc. Bioinform. 2011, 35, 6.12.1–6.12.19. [Google Scholar] [CrossRef] [PubMed]
- Kidwell, M.G. Transposable elements and the evolution of genome size in eukaryotes. Genetica 2002, 115, 49–63. [Google Scholar] [CrossRef]
- Feschotte, C.; Jiang, N.; Wessler, S.R. Plant transposable elements: Where genetics meets genomics. Nat. Rev. Genet. 2002, 3, 329–341. [Google Scholar] [CrossRef]
- Bennetzen, J.L.; Wang, H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 2014, 65, 505–530. [Google Scholar] [CrossRef]
- Chalopin, D.; Naville, M.; Plard, F.; Galiana, D.; Volff, J.-N. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol. Evol. 2015, 7, 567–580. [Google Scholar] [CrossRef]
- Szitenberg, A.; Cha, S.; Opperman, C.H.; Bird, D.M.; Blaxter, M.L.; Lunt, D.H. Genetic drift, not life history or RNAi, determine long-term evolution of transposable elements. Genome Biol. Evol. 2016, 8, 2964–2978. [Google Scholar] [CrossRef]
- Petersen, M.; Armisén, D.; Gibbs, R.A.; Hering, L.; Khila, A.; Mayer, G.; Richards, S.; Niehuis, O.; Misof, B. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. BMC Ecol. Evol. 2019, 19, 11. [Google Scholar] [CrossRef]
- Naville, M.; Henriet, S.; Warren, I.; Sumic, S.; Reeve, M.; Volff, J.-N.; Chourrout, D. Massive changes of genome size driven by expansions of non-autonomous transposable elements. Curr. Biol. 2019, 29, 1161–1168.e6. [Google Scholar] [CrossRef]
- Heckenhauer, J.; Frandsen, P.B.; Sproul, J.S.; Li, Z.; Paule, J.; Larracuente, A.M.; Maughan, P.J.; Barker, M.S.; Schneider, J.V.; Stewart, R.J.; et al. Genome size evolution in the diverse insect order Trichoptera. GigaScience 2022, 11, giac011. [Google Scholar] [CrossRef]
- Volff, J.-N.; Lehrach, H.; Reinhardt, R.; Chourrout, D. Retroelement dynamics and a novel type of chordate retrovirus-like element in the miniature genome of the tunicate Oikopleura dioica. Mol. Biol. Evol. 2004, 21, 2022–2033. [Google Scholar] [CrossRef]
- Denoeud, F.; Henriet, S.; Mungpakdee, S.; Aury, J.-M.; Da Silva, C.; Brinkmann, H.; Mikhaleva, J.; Olsen, L.C.; Jubin, C.; Cañestro, C.; et al. Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science 2010, 330, 1381–1385. [Google Scholar] [CrossRef] [PubMed]
Contig (CANU + Purge Haplotig) | Scaffolds (ARCS + LINKS) | |
---|---|---|
Number | 2262 | 328 |
Total size (bp) | 498,515,706 | 498,709,106 |
Longest (bp) | 1,930,555 | 7,533,982 |
Shortest (bp) | 15,929 | 46,576 |
Number of contig (scaffolds) > 1 Kb | 2262 | 328 |
Number of contig (scaffolds) > 10 Kb | 2262 | 328 |
Number of contig (scaffolds) > 100 Kb | 1369 | 326 |
Number of contig (scaffolds) > 1 Mb | 19 | 186 |
Mean contig (scaffolds) size (bp) | 220,387 | 1,520,455 |
Median contig (scaffolds) size (bp) | 143,266 | 1,171,799 |
N50 contig (scaffolds) length (bp) | 366,850 | 1,995,231 |
L50 contig (scaffolds) count | 436 | 79 |
Metazoa_odb10 (N: 954) | No. | % |
---|---|---|
Complete BUSCOs | 930 | 97.5 |
Complete and single-copy BUSCOs | 889 | 93.2 |
Complete and duplicated BUSCOs | 41 | 4.3 |
Fragmented BUSCOs | 10 | 1.0 |
Missing BUSCOs | 14 | 1.5 |
Total BUSCO groups searched | 954 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhee, J.-S.; Nam, S.-E.; Lee, S.J.; Park, H. De Novo Genome Assembly of the Sea Star Patiria pectinifera (Muller & Troschel, 1842) Using Oxford Nanopore Technology and Illumina Platforms. Diversity 2024, 16, 91. https://doi.org/10.3390/d16020091
Rhee J-S, Nam S-E, Lee SJ, Park H. De Novo Genome Assembly of the Sea Star Patiria pectinifera (Muller & Troschel, 1842) Using Oxford Nanopore Technology and Illumina Platforms. Diversity. 2024; 16(2):91. https://doi.org/10.3390/d16020091
Chicago/Turabian StyleRhee, Jae-Sung, Sang-Eun Nam, Seung Jae Lee, and Hyun Park. 2024. "De Novo Genome Assembly of the Sea Star Patiria pectinifera (Muller & Troschel, 1842) Using Oxford Nanopore Technology and Illumina Platforms" Diversity 16, no. 2: 91. https://doi.org/10.3390/d16020091
APA StyleRhee, J.-S., Nam, S.-E., Lee, S. J., & Park, H. (2024). De Novo Genome Assembly of the Sea Star Patiria pectinifera (Muller & Troschel, 1842) Using Oxford Nanopore Technology and Illumina Platforms. Diversity, 16(2), 91. https://doi.org/10.3390/d16020091