Invasive Glossy Buckthorn (Frangula alnus) Has Weak Impact on Native Understory Plant and Saprophagous Macroarthropod Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Understory Plant Characterization
2.2. Saprophagous Macroarthropod Sampling
2.3. Environmental Characterization
2.4. Statistical Analysis
3. Results
3.1. Site Characteristics
3.2. Native Understory Plants
3.3. Native Understory Plant Communities
3.4. Saprophagous Macroarthropods
3.5. Saprophagous Macroarthropod Community Composition
3.6. Saprophagous Macroarthropod Abundance and Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services). Thematic Assessment Report on Invasive Alien Species and Their Control; IPBES Secretariat: Bonn, Germany, 2023. [Google Scholar]
- Ruckelshaus, M.H.; Jackson, S.T.; Mooney, H.A.; Jacobs, K.L.; Kassam, K.-A.S.; Arroyo, M.T.K.; Báldi, A.; Bartuska, A.M.; Boyd, J.; Joppa, L.N.; et al. The IPBES global assessment: Pathways to action. Trends Ecol. Evol. 2020, 35, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Kumar Rai, P.; Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef]
- Lowry, E.; Rollinson, E.J.; Laybourn, A.J.; Scott, T.E.; Aiello-Lammens, M.E.; Gray, S.M.; Mickley, J.; Gurevitch, J. Biological invasions: A field synopsis, systematic review, and database of the literature. Ecol. Evol. 2013, 3, 182–196. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Pergl, J.; Hejda, M.; Schaffner, U.; Vilà, M. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 2012, 18, 1725–1737. [Google Scholar] [CrossRef]
- Vilà, M.; Espinar, J.L.; Hejda, M.; Hulme, P.E.; Jarošík, V.; Maron, J.L.; Pergl, J.; Schaffner, U.; Sun, Y.; Pyšek, P. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 2011, 14, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, C. 50 Plantes Envahissantes: Protéger la Nature et L’agriculture; Les Publications du Québec: Québec, QC, Canada, 2019; ISBN 978-2-551-26390-5. [Google Scholar]
- Callaway, R.M.; Ridenour, W.M. Novel weapons: Invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2004, 2, 436–443. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 2003, 6, 503–523. [Google Scholar] [CrossRef]
- Pisula, N.L.; Meiners, S.J. Relative allelopathic potential of invasive plant species in a young disturbed woodland. J. Torrey Bot. Soc. 2010, 137, 81–87. [Google Scholar] [CrossRef]
- Warren, R.J.; Labatore, A.; Candeias, M. Allelopathic invasive tree (Rhamnus cathartica) alters native plant communities. Plant Ecol. 2017, 218, 1233–1241. [Google Scholar] [CrossRef]
- Yates, E.D.; Levia, D.F., Jr.; Williams, C.L. Recruitment of three non-native invasive plants into a fragmented forest in southern Illinois. For. Ecol. Manag. 2004, 190, 119–130. [Google Scholar] [CrossRef]
- Rawat, Y.S.; Singh, G.S.; Tekleyohannes, A.T. Impacts of invasive plant management on forest biodiversity and ecosystem services. Front. For. Glob. Chang. 2024, 7, 1403746. [Google Scholar] [CrossRef]
- Burkle, L.A.; Mihaljevic, J.R.; Smith, K.G. Effects of an invasive plant transcend ecosystem boundaries through a dragonfly-mediated trophic pathway. Oecologia 2012, 170, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Hejda, M.; Pyšek, P.; Jarošík, V.C. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 2009, 97, 393–403. [Google Scholar] [CrossRef]
- McCary, M.A.; Mores, R.; Farfan, M.A.; Wise, D.H. Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: A meta-analysis. Ecol. Lett. 2016, 19, 328–335. [Google Scholar] [CrossRef]
- Salamon, J.A.; Wissuwa, J.; Jagos, S.; Koblmüller, M.; Ozinger, O.; Winkler, C.; Frank, T. Plant species effects on soil macrofauna density in grassy arable fallows of different age. Eur. J. Soil Biol. 2011, 47, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Gooden, B.; French, K. Non-interactive effects of plant invasion and landscape modification on native communities. Divers. Distrib. 2014, 20, 626–639. [Google Scholar] [CrossRef]
- Heneghan, L.; Clay, C.; Brundage, C. Rapid Decomposition of Buckthorn Litter May Change Soil Nutrient Levels. Ecol. Restor. 2002, 20, 108–111. [Google Scholar] [CrossRef]
- McLeod, M.L.; Cleveland, C.C.; Lekberg, Y.; Maron, J.L.; Philippot, L.; Bru, D.; Callaway, R.M. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J. Ecol. 2016, 104, 994–1002. [Google Scholar] [CrossRef]
- Garcia-Tejero, S.; Taboada, A. Microhabitat heterogeneity promotes soil fertility and ground-dwelling arthropod diversity in Mediterranean wood-pastures. Agric. Ecosyst. Environ. 2016, 233, 192–201. [Google Scholar] [CrossRef]
- Gerber, E.; Krebs, C.; Murrell, C.; Moretti, M.; Rocklin, R.; Schaffner, U. Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biol. Conserv. 2008, 141, 646–654. [Google Scholar] [CrossRef]
- Lalk, S.; Hartshorn, J.; Coyle, D.R. Invasive Woody Plants and Their Effects on Arthropods in the United States: Challenges and Opportunities. Ann. Entomol. Soc. Am. 2021, 114, 192–205. [Google Scholar] [CrossRef]
- Southwood, T.R.; Brown, V.; Reader, P. The relationships of plant and insect diversities in succession. Biol. J. Linn. Soc. 1979, 12, 327–348. [Google Scholar] [CrossRef]
- Brousseau, P.M.; Gravel, D.; Handa, I.T. Traits of litter-dwelling forest arthropod predators and detritivores covary spatially with traits of their resources. Ecology 2019, 100, e02815. [Google Scholar] [CrossRef]
- Litt, A.R.; Cord, E.E.; Fulbright, T.E.; Schuster, G.L. Effects of invasive plants on arthropods. Conserv. Biol. 2014, 28, 1532–1549. [Google Scholar] [CrossRef]
- Schuh, M.; Larsen, K.J. Rhamnus cathartica (Rosales: Rhamnaceae) invasion reduces ground-dwelling insect abundance and diversity in Northeast Iowa forests. Plant-Insect Interact. 2015, 44, 647–657. [Google Scholar] [CrossRef]
- Brousseau, P.M.; Chauvat, M.; De Almeida, T.; Forey, E. Invasive knotweed modifies predator–prey interactions in the soil food web. Biol. Invasions 2021, 23, 1987–2002. [Google Scholar] [CrossRef]
- Siemann, E. Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 1998, 79, 2057–2070. [Google Scholar] [CrossRef]
- Aiello-Lammens, M.E. Observations of extended lag phase of nonnative invasive Frangula alnus (Rhamnaceae) may be spatial-scale dependent. J. Torrey Bot. Soc. 2020, 147, 125–139. [Google Scholar] [CrossRef]
- Godwin, H. Frangula alnus Miller. J. Ecol. 1943, 31, 77–92. [Google Scholar] [CrossRef]
- Pellerin, S.; Mercure, M.; Desaulniers, A.S.; Lavoie, C. Changes in plant communities over three decades on two disturbed bogs in southeastern Québec. Appl. Veg. Sci. 2009, 12, 107–118. [Google Scholar] [CrossRef]
- De Kort, H.; Mergeay, J.; Jacquemyn, H.; Honnay, O. Transatlantic invasion routes and adaptive potential in North American populations of the invasive glossy buckthorn, Frangula alnus. Ann. Bot. 2016, 118, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Houlahan, J.E.; Findlay, C.S. Effect of invasive plant species on temperate wetland plant diversity. J. Torrey Bot. Soc. 2004, 18, 1132–1138. [Google Scholar] [CrossRef]
- Mills, J.E.; Reinartz, J.A.; Meyer, G.A.; Young, E.B. Exotic shrub invasion in an undisturbed wetland has little community-level effect over a 15-year period. Biol. Invasions 2009, 11, 1803–1820. [Google Scholar] [CrossRef]
- Possessky, S.L.; Williams, C.E.; Moriarity, W.J. Glossy buckthorn, Rhamnus frangula L.: A threat to riparian plant communities of the northern Allegheny Plateau (USA). Nat. Areas J. 2000, 20, 290–292. [Google Scholar]
- Fagan, M.; Peart, D. Impact of the invasive shrub glossy buckthorn (Rhamnus frangula L.) on juvenile recruitment by canopy trees. For. Ecol. Manag. 2004, 194, 95–107. [Google Scholar] [CrossRef]
- Frappier, B.; Lee, T.D.; Olson, K.F.; Eckert, R.T. Small-scale invasion pattern, spread rate, and lag-phase behavior of Rhamnus frangula L. For. Ecol. Manag. 2003, 186, 1–6. [Google Scholar] [CrossRef]
- Stokdyk, J.P.; Herrman, K.S. Short-term impacts of frangula alnus litter on forest soil properties. Water Air Soil Pollut. 2014, 225, 2000. [Google Scholar] [CrossRef]
- Stokdyk, J.P.; Herrman, K.S. Effects of Frangula alnus on soil microbial communities and biogeochemical processes in Wisconsin forests. Plant Soil 2016, 409, 65–75. [Google Scholar] [CrossRef]
- Fiedler, A.K.; Landis, D.A.; Arduser, M. Rapid Shift in Pollinator Communities Following Invasive Species Removal. Restor. Ecol. 2012, 20, 593–602. [Google Scholar] [CrossRef]
- Hamelin, C.; Gagnon, D.; Truax, B. Exotic invasive shrub glossy buckthorn reduces restoration potential for native forest herbs. Sustainability 2017, 9, 249. [Google Scholar] [CrossRef]
- Kaul, A.D.; Wilsey, B.J. Exotic species drive patterns of plant species diversity in 93 restored tallgrass prairies. Ecol. Appl. 2021, 31, e2252. [Google Scholar] [CrossRef]
- Wenk, E.S.; Callaham, M.A.; O’Brien, J.J.; Hanson, P.J. Soil macroinvertebrate communities across a productivity gradient in deciduous forests of Eastern North America. Northeast. Nat. 2016, 23, 25–44. [Google Scholar] [CrossRef]
- Paoletti, M.G.; Hassall, M. Woodlice (Isopoda: Oniscidea): Their potential for assessing sustainability and use as bioindicators. Agric. Ecosyst. Environ. 1999, 74, 157–165. [Google Scholar] [CrossRef]
- David, J.F.; Handa, I.T. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biol. Rev.-Camb. 2010, 85, 881–895. [Google Scholar] [CrossRef] [PubMed]
- Hopkin, S.P.; Read, H.J. Biology of Millipedes; Oxford University Press: Oxford, UK, 1992; 233p. [Google Scholar]
- Langor, D.W.; deWaard, J.R.; Snyder, B.A. Myriapoda of Canada. ZooKeys 2019, 819, 169–186. [Google Scholar] [CrossRef]
- Shelley, R. The millipeds of eastern Canada (Arthropoda: Diplopoda). Can. J. Zool. 1988, 66, 1638–1663. [Google Scholar] [CrossRef]
- Handa, I.T.; Aerts, R.; Berendse, F.; Berg, M.P.; Bruder, A.; Butenschoen, O.; Chauvet, E.; Gessner, M.O.; Jabiol, J.; Makkonen, M.; et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 2014, 509, 218–221. [Google Scholar] [CrossRef]
- Coyle, D.R.; Nagendra, U.J.; Taylor, M.K.; Campbell, J.H.; Cunard, C.E.; Joslin, A.H.; Mundepi, A.; Phillips, C.A.; Callaham, M.A., Jr. Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action. Soil Biol. Biochem. 2017, 110, 116–133. [Google Scholar] [CrossRef]
- UPA (Union des Producteurs Agricoles). Consultation Publique du Projet Oléoduc Énergie est de Transcanada—Section Québécoise; Lanaudière: Joliette, QC, Canada, 2016. [Google Scholar]
- Gabillot, C.; Meyer, J.; Handa, I.T.; Kneeshaw, D. Le nerprun au Boisé des Terres Noires; Université du Québec à Montréal: Montréal, QC, Canada, 2019. [Google Scholar]
- CPTAQ (Commission de Protection du Territoire Agricole du Québec). Décision; CPTAQ, Ed.; L’Assomption: Montréal, QC, Canada, 1996. [Google Scholar]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006. [Google Scholar]
- Brouillet, L.; Marie-Victorin, F.; Rouleau, E. Flore Laurentienne, 3rd ed.; Morin, G., Ed.; Chenelière Éducation: Montréal, QC, Canada, 2002; ISBN 9782891058179. [Google Scholar]
- International Plant Names Index. The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Herbarium. Available online: https://www.ipni.org/ (accessed on 13 August 2024).
- Schirmel, J.; Lenze, S.; Katzmann, D.; Buchholz, S. Capture efficiency of pitfall traps is highly affected by sampling interval. Entomol. Exp. Appl. 2010, 136, 206–210. [Google Scholar] [CrossRef]
- Brown, G.R.; Matthews, I.M. A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecol. Evol. 2016, 6, 3953–3964. [Google Scholar] [CrossRef]
- Duelli, P.; Obrist, M.K.; Schmatz, D.R. Biodiversity evaluation in agricultural landscapes: Above-ground insects. Agric. Ecosyst. Environ. 1999, 74, 33–64. [Google Scholar] [CrossRef]
- Topping, C.J.; Sunderland, K.D. Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. J. Appl. Ecol. 1992, 29, 485–491. [Google Scholar] [CrossRef]
- Sabu, T.K.; Shiju, R.T.; Vinod, K.V.; Nithya, S. A comparison of the pitfall trap, winkler extractor and berlese Funnel for sampling ground-dwelling arthropods in tropical montane cloud forests. J. Insect Sci. 2011, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Borror, D.; Triplehorn, C.; Johnson, N. An Introduction to the Study of Insects; Saunders College Publishing: Brooks Cole, PA, USA, 1992; ISBN 0030253977. [Google Scholar]
- Brousseau, P.-M. Clé D’identification des Mille-Pattes des Milieux Forestiers du Mont St-Bruno. n.p; Université du Québec à Montréal: Montréal, QC, Canada.
- Shelley, R. The millipeds of central Canada (Arthropoda: Diplopoda), with reviews of the Canadian fauna and diplopod faunistic studies. Can. J. Zool. 2002, 80, 1863–1875. [Google Scholar] [CrossRef]
- Shultz, J.W. A guide to the identification of the terrestrial Isopoda of Maryland, USA (Crustacea). ZooKeys 2018, 801, 207–228. [Google Scholar] [CrossRef]
- Jass, J.; Klausmeier, B. Endemics and immigrants: North American terrestrial isopods (Isopoda, Oniscidea) north of Mexico. Crustaceana 2000, 73, 771–799. [Google Scholar] [CrossRef]
- Noël, F.; Séchet, E. Crustacés Isopodes terrestres du Nord-Ouest de la France (Crustacea, Isopoda, Oniscidea). Invertébr. Armor. 2007, 2, 1–48. [Google Scholar]
- Shakir, M.M.; Ahmed, S. Seasonal abundance of soil arthropods in relation to meteorological and edaphic factors in the agroecosystems of Faisalabad, Punjab, Pakistan. Int. J. Biometeorol. 2015, 59, 605–616. [Google Scholar] [CrossRef]
- EnvironnementCanada, Historical Data. Gouvernement du Canada. 2021. Available online: https://climate.weather.gc.ca/ (accessed on 1 October 2021).
- WeatherSpark. Daily Precipitation in the Summer of 2020 at L’Assomption. 2021. Available online: https://weatherspark.com/h/s/147212/2020/1/Historical-Weather-Summer-2020-at-L’Assomption-Quebec-Canada#Figures-PrecipitationProbability (accessed on 1 October 2021).
- Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 2006, 9, 683–693. [Google Scholar] [CrossRef]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef]
- Zeleny, D. Analysis of Community Ecology Data in R. 2021. Available online: https://www.davidzeleny.net/anadat-r/doku.php/en:rda_cca (accessed on 14 June 2022).
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.H.; Oksanen, M.J.; Suggests, M.A.S.S. The vegan package. Community Ecol. Package 2007, 10, 631–637. [Google Scholar]
- Carter, G.A.; Teramura, A.H. Vine photosynthesis and relationships to climbing mechanics in a forest understory. Am. J. Bot. 1988, 75, 1011–1018. [Google Scholar] [CrossRef]
- Humbert, L. Tolérance Et Largeur De Niche Des Espèces Herbacées Des Forêts Québécoises Vis-À-Vis Du Ph Et De La Lumière; Université du Québec à Montréal: Montréal, QC, USA, 2006. [Google Scholar]
- Petrulaitis, L.; Gudžinskas, Z. The first records of two alien woody species, Cornus alternifolia and Cornus amomum, in Lithuania. Bioinvasions Rec. 2020, 9, 384–392. [Google Scholar] [CrossRef]
- Stanton, K.M.; Weeks, S.S.; Dana, M.N.; Mickelbart, M.V. Light exposure and shade effects on growth, flowering, and leaf morphology of Spiraea alba Du Roi and Spiraea tomentosa L. HortScience 2010, 45, 1912–1916. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Routledge, NY, USA, 2013; ISBN 0-8058-0283-5. [Google Scholar]
- Jędryczkowski, W.B. Millipedes (diplopoda) of Warsaw and Mazovia. Memorab. Zool. 1982, 36, 253–261. [Google Scholar]
- Davis, M.A.; Thompson, K. Eight ways to be a colonizer; two ways to be an invader: A proposed nomenclature scheme for invasion ecology. Bull. Ecol. Soc. Am. 2000, 81, 226–230. [Google Scholar]
- Diekmann, M.; Effertz, H.; Baranowski, M.; Dupré, C. Weak effects on plant diversity of two invasive Impatiens species. Plant Ecol. 2016, 217, 1503–1514. [Google Scholar] [CrossRef]
- Lavoie, C. 40 Autres Plantes Envahissantes; Les Publication du Québec: Québec, QC, Canada, 2022; ISBN 978-2-551-26773-6. [Google Scholar]
- Ricciardi, A.; Cohen, J. The invasiveness of an introduced species does not predict its impact. Biol. Invasions 2007, 9, 309–315. [Google Scholar] [CrossRef]
- Qureshi, H.; Anwar, T.; Habib, N.; Ali, Q.; Haider, M.Z.; Yasmin, S.; Munazir, M.; Basit, Z.; Waseem, M. Multiple comparisons of diversity indices invaded by Lantana camara. Braz. J. Biol. 2021, 81, 83–91. [Google Scholar] [CrossRef]
- Robertson, M.P.; Harris, K.R.; Coetzee, J.A.; Foxcroft, L.C.; Dippenaar-Schoeman, A.S.; Van Rensburg, B.J. Assessing local scale impacts of Opuntia stricta (Cactaceae) invasion on beetle and spider diversity in Kruger National Park, South Africa. Afr. Zool. 2011, 46, 205–223. [Google Scholar] [CrossRef]
- McMillan, N.A.; Fuhlendorf, S.D.; Davis, C.A.; Hamilton, R.G.; Neumann, L.K.; Cady, S.M. A plea for scale, and why it matters for invasive species management, biodiversity and conservation. J. Appl. Ecol. 2023, 60, 1468–1480. [Google Scholar] [CrossRef]
- Aguilera, A.G.; Alpert, P.; Dukes, J.S.; Harrington, R. Impacts of the invasive plant Fallopia japonica (Houtt.) on plant communities and ecosystem processes. Biol. Invasions 2010, 12, 1243–1252. [Google Scholar] [CrossRef]
- Kedzie-Webb, S.A.; Sheley, R.L.; Borkowski, J.J.; Jacobs, J.S. Relationships between Centaurea maculosa and indigenous plant assemblages. West. N. Am. Nat. 2001, 61, 43–49. [Google Scholar]
- Frappier, B.; Eckert, R.T.; Lee, T.D. Experimental removal of the non-indigenous shrub Rhamnus frangula (glossy buckthorn): Effects on native herbs and woody seedlings. Northeast. Nat. 2004, 11, 313–322. [Google Scholar] [CrossRef]
- Richmond, C.E.; Breitburg, D.L.; Rose, K.A. The role of environmental generalist species in ecosystem function. Ecol. Model. 2005, 188, 279–295. [Google Scholar] [CrossRef]
- Brousseau, P.M.; Gravel, D.; Handa, I.T. On the development of a predictive functional trait approach for studying terrestrial arthropods. J. Anim. Ecol. 2018, 87, 1209–1220. [Google Scholar] [CrossRef]
- Raymond-Léonard, L.J.; Gravel, D.; Handa, I.T. A novel set of traits to describe Collembola mouthparts: Taking a bite out of the broad chewing mandible classification. Soil Biol. Biochem. 2019, 138, 107608. [Google Scholar] [CrossRef]
- Marchand, T.; Lecerf, A.; Brousseau, P.-M.; Chauvat, M.; Danger, M.; Forey, E.; Handa, I.T.; Hedde, M.; Maunoury-Danger, F.; Santonja, M.; et al. The Detri2match conceptual framework: Matching detritivore and detritus traits to unravel consumption rules in a context of decomposition. Funct. Ecol. 2024; in press. [Google Scholar]
- Panetta, F.D.; Gooden, B. Managing for biodiversity: Impact and action thresholds for invasive plants in natural ecosystems. NeoBiota 2017, 34, 53–66. [Google Scholar] [CrossRef]
- Barney, J.N.; Tekiela, D.R.; Dollete, E.S.; Tomasek, B.J. What is the “real” impact of invasive plant species? Front. Ecol. Environ. 2013, 11, 322–329. [Google Scholar] [CrossRef]
- Matthews, J.; van der Velde, G.; Collas, F.P.; de Hoop, L.; Koopman, K.R.; Hendriks, A.J.; Leuven, R.S. Inconsistencies in the risk classification of alien species and implications for risk assessment In the European Union. Ecosphere 2017, 8, e01832. [Google Scholar] [CrossRef]
- Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.17. CRAN. R Package Website. 2020. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 12 January 2022).
Dependent Variable | Independent Variable | Mean ± SD | Estimate | ±SE | T-Value | R2 | p-Value |
---|---|---|---|---|---|---|---|
F. alnus density (nb m−2) | Canopy cover (%) | 58.95 ± 13.30 | −0.009 | 0.006 | −1.360 | 0.043 | 0.181 |
pH | 4.00 ± 0.40 | −0.482 | 0.206 | −2.344 | 0.118 | <0.05 * | |
Humidity (%) 1 |
F. alnus
density (nb m−2) | 20.46 ± 10.80 | −0.034 | 0.092 | −0.364 | 0.003 | 0.718 |
Leaf litter biomass (g m−2) 1 | 269.26 ± 65.90 | 0.238 | 0.267 | 0.893 | 0.019 | 0.377 | |
Ground temperature (°C) 1 | 20.15 ± 0.48 | 0.086 | 0.077 | 1.122 | 0.054 | 0.274 | |
Woody debris cover (%) 1 | 13.80 ± 6.50 | 0.510 | 0.083 | 6.16 | 0.481 | <0.001 *** |
Family | Genre | Species | Shade Tolerance | Frequency (%) | Average Cover ± SE |
---|---|---|---|---|---|
Native and cosmopolite species | |||||
Trees | |||||
Rosaceae | Prunus | virginiana L. | Tolerant | 16.3 | 0.6 ± 0.3 |
Sapindaceae | Acer | rubrum L. | Medium | 100 | 11.2 ± 1.4 |
Salicaceae | Populus | tremuloides M. | Intolerant | 30.2 | 0.5 ± 0.1 |
Shrubs | |||||
Aquifoliaceae | Ilex | mucronata L. | Tolerant | 34.9 | 1.4 ± 0.3 |
Caprifoliaceae | Viburnum | cassinoides L. | Tolerant | 41.9 | 2.7 ± 0.7 |
Cornaceae | Cornus | alternifolia L. | Tolerant | 7 | 1.1 ± 0.7 |
Ericaceae | Kalmia | angustifolia L. | Intolerant | 48.8 | 3.4 ± 0.8 |
Rhododendron | canadense L. | Tolerant | 55.8 | 6.2 ± 1.4 | |
Vaccinium | angustifolium A. | Intolerant | 58.1 | 6.2 ± 1.2 | |
Chamaedaphne | calyculata L. | Intolerant | 9.3 | 0.3 ± 0.2 | |
Rosaceae | Aronia | melanocarpa W. | Intolerant | 88.4 | 8.3 ± 1.0 |
Rubus | occidentalis L. | Tolerant | 14 | 1.8 ± 1.2 | |
Rubus | allegheniensis P. | Intolerant | 9.3 | 0.6 ± 0.3 | |
Rubus | Pubescence R. | Tolerant | 44.1 | 5.1 ± 1.4 | |
Rubus | hispidus L. | Tolerant | 16.3 | 1.8 ± 0.9 | |
Rubus | idaeus L. | Intolerant | 16.3 | 2.3 ± 1.0 | |
Spiraea | latifolia A. | Medium | 76.7 | 3.5 ± 0.6 | |
Herbs | |||||
Asparagaceae | Maianthemum | Canadense D. | Medium | 69.8 | 4.3 ± 0.9 |
Osmundaceae | Osmunda | claytoniana L. | Tolerant | 7 | 0.7 ± 0.5 |
Polypodiaceae | Dryopteris | spinulosa M. | Tolerant | 20.9 | 4.3 ± 1.9 |
Onoclea | sensibilis L. | Medium | 7 | 1.1 ± 1.0 | |
Osmunda | cinnamomea L. | Tolerant | 11.6 | 1.2 ± 0.8 | |
Primulaceae | Lysimachia | borealis R. | Tolerant | 62.8 | 3.0 ± 0.8 |
Vitaceae | Parthenocissus | quinquefolia L. | Tolerant | 23.3 | 1.8 ± 0.7 |
Exotic species | |||||
Lamiaceae | Galeopsis | ladanum L. | Medium | 2.3 | <0.1 |
Poaceae | Phragmites | australis ssp. australis C. | Intolerant | 4.7 | <0.1 |
Rosaceae | Frangula | alnus M. | Tolerant | 93 | 20.5 ± 3.0 |
Rare species: 27 | <5% | ||||
Richness of native species: 51 | |||||
Total richness: 54 |
Descriptive Statistics | Linear Model Output | ||||||
---|---|---|---|---|---|---|---|
Dependent Variable | Mean ± SE | Median (Min–Max) | Estimate | SE | T-Value | R2 | p-Value |
Specific richness (S) | 11.4 ± 2.5 | 11 (7–17) | −0.093 | 0.331 | −0.281 | 0.002 | 0.78 |
Effective number of species | 7.1 ± 2.2 | 6.97 (2.60–12.9) | −0.783 | 0.264 | −2.967 | 0.177 | <0.005 ** |
Shannon-Weiner index (H’) | 1.9 ± 0.3 | 1.94 (0.95–2.56) | −0.129 | 0.039 | −3.316 | 0.211 | <0.005 ** |
Evenness (J’) 1 | 0.8 ± 0.11 | 0.80 (0.39–0.91) | −0.030 | 0.008 | −3.731 | 0.272 | <0.001 *** |
Total abundance of native understory plant species (%) 1 | 38.3 ± 16.7 | 36.90 (9.5–79.45) | −0.392 | 0.172 | −2.276 | 0.112 | <0.05 * |
Class | Order | Family | Genre and Species | Total Abundance | Origin (Native/Exotic) | Habitat |
---|---|---|---|---|---|---|
Diplopoda | Chordeumatida | Cleidogonidae | Cleidogona sp. | 2 | Native | NA |
Julida | Blaniulidae | Choneiulus palmatus N. | 56 | Exotic | Urban, disturbed habitats | |
Julida | Julidae | Ophyiulus pilosus N. | 138 | Exotic | Wetlands, Urban | |
Julida | Parajulidae | Uroblaniulus canadensis N. | 99 | Native | Open woodland, mesic | |
Julida | Parajulidae | Oriulus venustus W. | 6 | Native | Open woodland | |
Julida | Parajulidae | Parajulidae sp. | 5 | Native | NA | |
Polydesmida | Polydesmidae | Polydesmus inconstans L. | 178 | Exotic | Urban | |
Polydesmida | Polydesmidae | Pseudopolydesmus serratus S. | 266 | Native | Mixed forests | |
Spirobolida | Spirobolidae | Narceus annularis R. | 88 | Native | Woodland, Urban | |
Malacostraca | Isopoda | Trachelipodidae | Trachelipus rathkii B. | 1728 | Exotic | Terrestrial, generalist |
Descriptive Statistics | Linear Models Outputs | ||||||
---|---|---|---|---|---|---|---|
Dependent Variable | Mean ± SE | Median (Min–Max) | Estimate | Std Error | T-Value | R2 | p-Value |
Species richness (S) | 4.47 ± 0.13 |
5 (2–6) | −0.27995 | 0.1070 | −2.616 | 0.1431 | <0.02 * |
Effective number of species | 2.59 ± 0.11 |
2.49 (1.24–4.14) | −0.19505 | 0.09306 | −2.096 | 0.100 | <0.05 * |
Shannon-Wiener index (H’) | 0.91 ± 0.04 |
0.914 (0.26–1.42) | −0.09680 | 0.03677 | −2.633 7 | 0.1446 | <0.02 * |
Evenness index (J’) | 0.60 ± 0.02 |
0.612 (0.216–0.881) | −0.05082 | 0.02005 | −2.535 | 0.1355 | <0.02 * |
Mean abundance 1 | 20.39 ± 1.8 |
20.3 (4.3–52.6) | 0.2541 | 0.1696 | 1.498 | 0.05191 | 0.142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberge, G.; Handa, I.T.; Juette, T.; Kneeshaw, D. Invasive Glossy Buckthorn (Frangula alnus) Has Weak Impact on Native Understory Plant and Saprophagous Macroarthropod Communities. Diversity 2024, 16, 584. https://doi.org/10.3390/d16090584
Roberge G, Handa IT, Juette T, Kneeshaw D. Invasive Glossy Buckthorn (Frangula alnus) Has Weak Impact on Native Understory Plant and Saprophagous Macroarthropod Communities. Diversity. 2024; 16(9):584. https://doi.org/10.3390/d16090584
Chicago/Turabian StyleRoberge, Gabrielle, Ira Tanya Handa, Tristan Juette, and Daniel Kneeshaw. 2024. "Invasive Glossy Buckthorn (Frangula alnus) Has Weak Impact on Native Understory Plant and Saprophagous Macroarthropod Communities" Diversity 16, no. 9: 584. https://doi.org/10.3390/d16090584
APA StyleRoberge, G., Handa, I. T., Juette, T., & Kneeshaw, D. (2024). Invasive Glossy Buckthorn (Frangula alnus) Has Weak Impact on Native Understory Plant and Saprophagous Macroarthropod Communities. Diversity, 16(9), 584. https://doi.org/10.3390/d16090584