Introduction of Non-Native Fish Species in Red Sea Aquaculture: Implications for Marine Ecosystem Integrity
Abstract
:1. Introduction
2. Global Scenario
3. Red Sea Scenario NNS
Fish Species | Native Distribution | Impact in the Red Sea | References |
---|---|---|---|
Dicentrarchus labrax (Linnaeus, 1758) | Along European coasts | Competition with native species, and carrier of parasites. | [57,58,59] |
Lates calcarifer (Bloch, 1790) | Indo-West Pacific Region | Predatory in nature; susceptible to a range of diseases, pathogens, and parasites; and risk of hybridization. | [60,61] |
Oreochromis spilurus (Günther, 1894) | East Africa (Native to coastal rivers of Kenya, Ethiopia, and Somalia) | High adaptability and poses potential risks to wild populations and commercially exploited species. | [62] |
Seriola lalandi (Valenciennes, 1833) | Western and Eastern Pacific Ocean, and Atlantic Ocean | High invasiveness rate. The potential of hybridization with local species poses a genetic risk. | [63,64] |
Sparidentex hasta (Valenciennes, 1830) | Western Indian Ocean and Persian Gulf | Highly predatory species that may disrupt the food web structure. Susceptible to specific bacterial infections and toxic dinoflagellates. | [65] |
Sparus aurata (Linnaeus, 1758) | Mediterranean and Atlantic Ocean | Carrier of several pathogens and parasites. May compete for food resources with native population. | [66] |
4. Ecological Risks and Challenges
4.1. Competition with Native Species
4.2. Genetic Pollution
4.3. Pathogens and Parasites
4.4. Disruption of Ecosystem Balance
5. Economic and Social Implications
6. Conclusions
6.1. Risk-Based Management of NNS
6.2. Risk Monitoring
6.3. Genetic Diversity Conservation
6.4. Disease and Pathogen Management
6.5. Stakeholder Engagement and Education
6.6. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Climate Change, Agriculture and Food Security; FAO, Ed.; The state of food and agriculture; FAO: Rome, Italy, 2016; ISBN 978-92-5-109374-0. [Google Scholar]
- Kang, B.; Vitule, J.R.S.; Li, S.; Shuai, F.; Huang, L.; Huang, X.; Fang, J.; Shi, X.; Zhu, Y.; Xu, D.; et al. Introduction of Non-Native Fish for Aquaculture in China: A Systematic Review. Rev. Aquac. 2023, 15, 676–703. [Google Scholar] [CrossRef]
- Hill, J.E. Non-Native Species in Aquaculture: Terminology, Potential Impacts, and the Invasion Process; Southern Regional Aquaculture Center Stoneville: Stoneville, MS, USA, 2008. [Google Scholar]
- Beck, K.; Zimmerman, K.; Schardt, J.; Lukens, R.; Reichard, S.; Randall, J.; Cangelosi, A.; Cooper, D.; Thompson, J. Invasive Species Defined in a Policy Context: Recommendations from the Federal Invasive Species Advisory Committee. Invas. Plant Sci. Mana 2008, 1, 414–421. [Google Scholar] [CrossRef]
- Jeschke, J.M.; Bacher, S.; Blackburn, T.M.; Dick, J.T.A.; Essl, F.; Evans, T.; Gaertner, M.; Hulme, P.E.; Kühn, I.; Mrugała, A.; et al. Defining the Impact of Non-Native Species. Conserv. Biol. 2014, 28, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Oficialdegui, F.; Soto, I.; Balzani, P.; Cuthbert, R.; Haubrock, P.; Kourantidou, M.; Manfrini, E.; Tarkan, A.S.; Kurtul, I.; Macêdo, R.; et al. Burgeoning Non-Native Species Production Hinders Sustainable Aquaculture. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Shelton, W.L.; Rothbard, S. Exotic Species in Global Aquaculture—A Review. Isr. J. Aquac.—Bamidgeh 2006, 58, 3–28. [Google Scholar]
- Troost, K. Causes and Effects of a Highly Successful Marine Invasion: Case-Study of the Introduced Pacific Oyster Crassostrea Gigas in Continental NW European Estuaries. J. Sea Res. 2010, 64, 145–165. [Google Scholar] [CrossRef]
- Herbert, R.J.H.; Humphreys, J.; Davies, C.J.; Roberts, C.; Fletcher, S.; Crowe, T.P. Ecological Impacts of Non-Native Pacific Oysters (Crassostrea Gigas) and Management Measures for Protected Areas in Europe. Biol. Conserv. 2016, 25, 2835–2865. [Google Scholar] [CrossRef]
- Rong, Y.; Tang, Y.; Ren, L.; Taylor, W.D.; Razlutskij, V.; Naselli-Flores, L.; Liu, Z.; Zhang, X. Effects of the Filter-Feeding Benthic Bivalve Corbicula Fluminea on Plankton Community and Water Quality in Aquatic Ecosystems: A Mesocosm Study. Water 2021, 13, 1827. [Google Scholar] [CrossRef]
- Ruesink, J.; Lenihan, H.; Trimble, A.; Heiman, K.; Micheli, F.; Byers, J.; Kay, M. Introduction of Non-Native Oysters: Ecosystem Effects and Restoration Implications. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 643–689. [Google Scholar] [CrossRef]
- Bonar, S.A.; Bolding, B.; Divens, M. Effects of Triploid Grass Carp on Aquatic Plants, Water Quality, and Public Satisfaction in Washington State. N. Am. J. Fish. Manag. 2002, 22, 96–105. [Google Scholar] [CrossRef]
- Simberloff, D.; Martin, J.-L.; Genovesi, P.; Maris, V.; Wardle, D.; Aronson, J.; Courchamp, F.; Galil, B.; García-Berthou, E.; Pascal, M.; et al. Impacts of Biological Invasions: What’s What and the Way Forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Ju, R.-T.; Li, X.; Jiang, J.-J.; Wu, J.; Liu, J.; Strong, D.R.; Li, B. Emerging Risks of Non-Native Species Escapes from Aquaculture: Call for Policy Improvements in China and Other Developing Countries. J. Appl. Ecol. 2020, 57, 85–90. [Google Scholar] [CrossRef]
- Lima, L.B.; Oliveira, F.J.M.; Giacomini, H.C.; Lima-Junior, D.P. Expansion of Aquaculture Parks and the Increasing Risk of Non-Native Species Invasions in Brazil. Rev. Aquac. 2018, 10, 111–122. [Google Scholar] [CrossRef]
- Britton, J.R. Contemporary Perspectives on the Ecological Impacts of Invasive Freshwater Fishes. J. Fish Biol. 2023, 103, 752–764. [Google Scholar] [CrossRef]
- Boudouresque, C.-F.; Blanfuné, A.; Pergent, G.; Pergent-Martini, C.; Perret-Boudouresque, M.; Thibaut, T. Impacts of Marine and Lagoon Aquaculture on Macrophytes in Mediterranean Benthic Ecosystems. Front. Mar. Sci. 2020, 7, 218. [Google Scholar] [CrossRef]
- Diez, S.M.; Patil, P.G.; Morton, J.; Rodriguez, D.J.; Vanzella, A.; Robin, D.; Maes, T.; Corbin, C. Marine Pollution in the Caribbean: Not a Minute to Waste; World Bank Group: Washington, DC, USA, 2019. [Google Scholar]
- Gross, J.; Watson, J.; Woodley, S.; Welling, L.; Harmon, D. Responding to Climate Change: Guidance for Protected Area Managers and Planners; Best Practice Protected Area Guidelines series No. xx; IUCN: Gland, Switzerland, 2015. [Google Scholar]
- FAO. Analysis of Aquaculture Development in Southeast Asia: A Policy; FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2009; ISBN 978-92-5-106339-2. [Google Scholar]
- Costa-Pierce, B.A. Rapid Evolution of an Established Feral Tilapia (Oreochromis Spp.): The Need to Incorporate Invasion Science into Regulatory Structures. Biol. Invasions 2003, 5, 71–84. [Google Scholar] [CrossRef]
- Hasan, V.; Pratama, F.S.; Malonga, W.A.M.; Cahyanurani, A.B. First Record of the Mozambique Tilapia, Oreochromis Mossambicus Peters, 1852 (Perciformes, Cichlidae), on Kangean Island, Indonesia. Neotrop. Biol. Conserv. 2019, 14, 207–211. [Google Scholar] [CrossRef]
- Courtenay, W.R.; Williams, J.D. Dispersal of Exotic Species from Aquaculture Sources, with Emphasis on freshwater fishes. In Dispersal of Living Organisms into Aquatic Ecosystems; Rosenfield, A., Mann, R., Eds.; University of Maryland Sea Grant Program: College Park, MD, USA, 1992; pp. 49–81. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation; The State of World Fisheries and Aquaculture (SOFIA); FAO: Rome, Italy, 2022; ISBN 978-92-5-136364-5. [Google Scholar]
- Zongli, Z.; Yanan, Z.; Feifan, L.; Hui, Y.; Yongming, Y.; Xinhua, Y. Economic Efficiency of Small-Scale Tilapia Farms in Guangxi, China. Aquac. Econ. Manag. 2017, 21, 283–294. [Google Scholar] [CrossRef]
- Mahmoud, S.; Sabry, A.; Abdelaziz, A.; Shukry, M. Deleterious Impacts of Heat Stress on Steroidogenesis Markers, Immunity Status and Ovarian Tissue of Nile Tilapia (Oreochromis niloticus). J. Therm. Biol. 2020, 91, 102578. [Google Scholar] [CrossRef]
- McNee, A. The Status of Australian Streams and Rivers; Australian Recreational and Sport Fishing Confederation: Canberra, Australia, 1990; 108p. [Google Scholar]
- Arthington, A.H.; Blühdorn, D.R. Distribution, Genetics, Ecology and Status of the Introduced Cichlid, Oreochromis Mossambicus, in Australia. Int. Ver. Theor. Und Angew. Limnol. Mitteilungen 1994, 24, 53–62. [Google Scholar] [CrossRef]
- Biosecurity Act. 2014. Available online: https://classic.austlii.edu.au/au/legis/qld/consol_act/ba2014156/ (accessed on 13 February 2025).
- Benstead, J.P.; De Rham, P.H.; Gattolliat, J.-L.; Gibon, F.-M.; Loiselle, P.V.; Sartori, M.; Sparks, J.S.; Stiassny, M.L.J. Conserving Madagascar’s Freshwater Biodiversity. Biosci. 2003, 53, 1101–1111. [Google Scholar] [CrossRef]
- Reinthal, P.N.; Stiassny, M.L.J. The Freshwater Fishes of Madagascar: A Study of an Endangered Fauna with Recommendations for a Conservation Strategy. Conserv. Biol. 1991, 5, 231–243. [Google Scholar] [CrossRef]
- Goodman, S.M.; Benstead, J.P. The Natural History of Madagascar; University of Chicago Press: Chicago, IL, USA, 2003; ISBN 978-0-226-30306-2. [Google Scholar]
- Peterson, M.; Slack, W.; Woodley, C. The Influence of Invasive, Nonnative Tilapiine Fishes on Freshwater Recreational Fishes in South Mississippi: Spatial/Temporal Distribution, Species Associations, and Trophic Interactions; Fisheries and Parks: Jackson, MI, USA, 2002. [Google Scholar]
- Roy, L.A.; Davis, D.A.; Saoud, I.P.; Boyd, C.A.; Pine, H.J.; Boyd, C.E. Shrimp Culture in Inland Low Salinity Waters. Rev. Aquac. 2010, 2, 191–208. [Google Scholar] [CrossRef]
- Senanan, W.; Panutrakul, S.; Barnette, P.; Manthachitra, V.; Chavanich, S.; Kapuscinski, A.R.; Tangkrock-Olan, N.; Intacharoen, P.; Viyakarn, V.; Wongwiwatanawute, C.; et al. Ecological Risk Assessment of an Alien Aquatic Species: A Case Study of Litopenaeus vannamei (Pacific Whiteleg Shrimp) Aquaculture in the Bangpakong River, Thailand. In Tropical Deltas and Coastal Zones: Food Production, Communities and Environment at the Land and Water Interface; Comprehensive Assessment of Water Management in Agriculture; CABI: Wallingford, UK, 2010; pp. 64–79. ISBN 978-1-84593-618-1. [Google Scholar]
- Lever, C. Naturalized Fishes of the World; Academic Press: Cambridge, MA, USA, 1996; ISBN 978-0-12-444745-5. [Google Scholar]
- Koehn, J.D. Carp (Cyprinus Carpio) as a Powerful Invader in Australian Waterways. Freshw. Biol. 2004, 49, 882–894. [Google Scholar] [CrossRef]
- Lintermans, M. Fishes of the Murray-Darling Basin. An Introductory Guide; Murray-Darling Basin Authority: Canberra, Australia, 2009. [Google Scholar]
- Kolar, C.S.; Chapman, D.; Courtenay, W.R., Jr.; Housel, C.M.; Williams, J.D.; Jennings, D.P. Bigheaded Carps: A Biological Synopsis and Environmental Risk Assessment; American Fisheries Society: Bethesda, MD, USA, 2007. [Google Scholar]
- Laugen, A.; Hollander, J.; Obst, M.; Strand, Å. The Pacific Oyster (Crassostrea Gigas) Invasion in Scandinavian Coastal Waters: Impact on Local Ecosystem Services. In Biological Invasions in Aquatic and Terrestrial Systems: Biogeography, Ecological Impacts, Predictions, and Management; De Gruyter Open: Berlin, Germany, 2015; ISBN 978-3-11-043866-6. [Google Scholar]
- Dikou, A. Depletion Fishing of the Alien Fish Species Siganus luridus, S. rivulatus, Pterois miles, and Etrumeus golanii in the Mediterranean Sea-Gear, Ecosystem Impacts, and Resolution. Fish. Res. 2024, 278, 107095. [Google Scholar] [CrossRef]
- Ulman, A.; Yildiz, T.; Demirel, N.; Canak, O.; Yemişken, E.; Pauly, D. The Biology and Ecology of the Invasive Silver-Cheeked Toadfish (Lagocephalus Sceleratus), with Emphasis on the Eastern Mediterranean. NeoBiota 2021, 68, 145–175. [Google Scholar] [CrossRef]
- Mehanna, S.F.; Hassanien, E.M. Lessepsian Migration with the First Record of the Red Sea Goatfish, Parupeneus Forsskali (Fourmanoir & Guézé, 1976) in the Coastal Waters of Egyptian Mediterranean Sea. In Advances in Agriculture and Fisheries Research; BP International: West Bengal, India, 2020; Volume 1. [Google Scholar]
- DiBattista, J.D.; Howard Choat, J.; Gaither, M.R.; Hobbs, J.A.; Lozano-Cortés, D.F.; Myers, R.F.; Paulay, G.; Rocha, L.A.; Toonen, R.J.; Westneat, M.W.; et al. On the Origin of Endemic Species in the Red Sea. J. Biogeogr. 2016, 43, 13–30. [Google Scholar] [CrossRef]
- Santanumurti, M.B.; Nugraha, M.A.R.; Dewi, N.R.; Awaluddin, M.; Tang, P.W.; Pardede, H.I.; Al Solami, L.; Sulmartiwi, L.; Abu El-Regal, M.A. Fish Diversity Assessment through Conventional Morphological Identification and Recent Advances in Saudi Arabia: A Review. Vet. World 2024, 17, 2267–2285. [Google Scholar] [CrossRef]
- Golani, D.; Fricke, R.; Appelbaum-Golani, B. Zoogeographic Patterns of Red Sea Fishes—Are They Correlated to Success in Colonization of the Mediterranean via the Suez Canal? Mar. Biol. Res. 2020, 16, 774–780. [Google Scholar] [CrossRef]
- FAO. Fisheries Statistics: Saudi Arabia 2016–2021; FAO: Rome, Italy, 2023. [Google Scholar]
- MEWA Website. Available online: https://www.mewa.gov.sa/en/Ministry/Agencies/AgencyforEconomicAffairsandInvestment/topics/Pages/topc232020.aspx (accessed on 15 April 2025).
- Carvalho, S.; Kürten, B.; Krokos, G.; Hoteit, I.; Ellis, J. The Red Sea. In World Seas: An Environmental Evaluation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 49–74. ISBN 978-0-08-100853-9. [Google Scholar]
- Luthada-Raswiswi, R.; Mukaratirwa, S.; O’Brien, G. Animal Protein Sources as a Substitute for Fishmeal in Aquaculture Diets: A Systematic Review and Meta-Analysis. Appl. Sci. 2021, 11, 3854. [Google Scholar] [CrossRef]
- Serra, V.; Pastorelli, G.; Tedesco, D.E.A.; Turin, L.; Guerrini, A. Alternative Protein Sources in Aquafeed: Current Scenario and Future Perspectives. Vet. Anim. Sci. 2024, 25, 100381. [Google Scholar] [CrossRef] [PubMed]
- Young, B.C.; Alfaggeh, R.H.; AlMoutiri, I. Status and Cost Analysis of Sabaki Tilapia Farming in Saudi Arabia. Aquacult Int. 2021, 29, 871–878. [Google Scholar] [CrossRef]
- Shyla, G. Characterization of Different Stocks of Macrobrachium rosenbergii and Development of Genetically Improved Strain Through Selective Breeding. Ph.D. Thesis, Kerala Agricultural University, Kerala, India, 2010. Available online: https://krishikosh.egranth.ac.in/assets/pdfjs/web/viewer.html?file=https%3A%2F%2Fkrishikosh.egranth.ac.in%2Fserver%2Fapi%2Fcore%2Fbitstreams%2F1180da31-7533-4cb0-991b-e31449867f12%2Fcontent (accessed on 19 February 2025).
- Stern, N.; Rothman, S.B. An Alarming Mariculture Breach in a Coral Reef: Alien Barramundi Lates Calcarifer (Bloch, 1790) at the Northern Red Sea. Bioinvasions Rec. 2021, 10, 181–187. [Google Scholar] [CrossRef]
- Khalaf, M. Fish Fauna of the Jordanian Coast, Gulf of Aqaba, Red Sea. Mar. Sci. 2004, 15, 23–50. [Google Scholar] [CrossRef]
- Atalah, J.; Sanchez-Jerez, P. Global Assessment of Ecological Risks Associated with Farmed Fish Escapes. Glob. Ecol. Conserv. 2020, 21, e00842. [Google Scholar] [CrossRef]
- Henry, M.A.; Alexis, M.N.; Fountoulaki, E.; Nengas, I.; Rigos, G. Effects of a Natural Parasitical Infection (Lernanthropus Kroyeri) on the Immune System of European Sea Bass, Dicentrarchus labrax L. Parasite Immunol. 2009, 31, 729–740. [Google Scholar] [CrossRef]
- Toledo Guedes, K.; Sánchez-Jerez, P.; González-Lorenzo, G.; Brito Hernández, A. Detecting the Degree of Establishment of a Non-Indigenous Species in Coastal Ecosystems: Sea Bass Dicentrarchus Labrax Escapes from Sea Cages in Canary Islands (Northeastern Central Atlantic). Hydrobiologia 2009, 623, 203–212. [Google Scholar] [CrossRef]
- Abou Zaid, A.A.; Bazh, E.K.; Desouky, A.Y.; Abo-Rawash, A.A. Metazoan Parasite Fauna of Wild Sea Bass; Dicentrarchus Labrax (Linnaeus, 1758) in Egypt. Life Sci. J. 2018, 15, 48–60. [Google Scholar]
- Partridge, G.J.; Lymbery, A.J.; Bourke, D.K. Larval Rearing of Barramundi (Lates calcarifer) in Saline Groundwater. Aquaculture 2008, 278, 171–174. [Google Scholar] [CrossRef]
- Collins, G.M.; Clark, T.D.; Carton, A.G. Physiological Plasticity v. Inter-Population Variability: Understanding Drivers of Hypoxia Tolerance in a Tropical Estuarine Fish. Mar. Freshwater Res. 2015, 67, 1575–1582. [Google Scholar] [CrossRef]
- Gu, D.E.; Ma, G.M.; Zhu, Y.J.; Xu, M.; Luo, D.; Li, Y.Y.; Wei, H.; Mu, X.D.; Luo, J.R.; Hu, Y.C. The Impacts of Invasive Nile Tilapia (Oreochromis Niloticus) on the Fisheries in the Main Rivers of Guangdong Province, China. Biochem. Syst. Ecol. 2015, 59, 1–7. [Google Scholar] [CrossRef]
- Shakman, E.A.; Abdalha, A.B.; Talha, F.; Al-Faturi, A.; Bariche, M. First Records of Seven Marine Organisms of Different Origins from Libya (Mediterranean Sea). BioInvasions Rec. 2017, 6, 301–305. [Google Scholar] [CrossRef]
- Takahashi, H.; Kurogoushi, T.; Shimoyama, R.; Yoshikawa, H. First Report of Natural Hybridization between Two Yellowtails, Seriola Quinqueradiata and S. Lalandi. Ichthyol. Res. 2021, 68, 139–144. [Google Scholar] [CrossRef]
- Ranjbar, H.R.; Khoramian, S. First Report of Amyloodinium Ocellatum (E. Brown) E. Brown & Hovasse, 1946 (Dinoflagellate, Blastodiniales, Oodiniaceae) from Sobaity Seabream, Sparidentex Hasta (Valenciennes, 1830) Cultured in Persian Gulf of Iran. Aquac. Stud. 2019, 19, 77–80. [Google Scholar] [CrossRef]
- Balart, E.F.; Pérez-Urbiola, J.C.; Campos-Dávila, L.; Monteforte, M.; Ortega-Rubio, A. On the First Record of a Potentially Harmful Fish, Sparus Aurata in the Gulf of California. Biol. Invasions 2009, 11, 547–550. [Google Scholar] [CrossRef]
- Bezerra, L.; Angelini, R.; Vitule, J.; Coll, M.; Sánchez-Botero, J. Food Web Changes Associated with Drought and Invasive Species in a Tropical Semiarid Reservoir. Hydrobiologia 2018, 817, 475–489. [Google Scholar] [CrossRef]
- Martin, C.; Valentine, M.; Valentine, J. Competitive Interactions between Invasive Nile Tilapia and Native Fish: The Potential for Altered Trophic Exchange and Modification of Food Webs. PLoS ONE 2010, 5, e14395. [Google Scholar] [CrossRef]
- Shuai, F.; Li, J.; Lek, S. Nile Tilapia (Oreochromis Niloticus) Invasion Impacts Trophic Position and Resource Use of Commercially Harvested Piscivorous Fishes in a Large Subtropical River. Ecol. Process. 2023, 12, 22. [Google Scholar] [CrossRef]
- Lean, C.H. Invasive Species Increase Biodiversity and, Therefore, Services: An Argument of Equivocations. Conserv. Sci. Pract. 2021, 3, e553. [Google Scholar] [CrossRef]
- Sonesson, A.; Hallerman, E.; Humphries, F.; Hilsdorf, A.; Leskien, D.; Rosendal, G.K.; Bartley, D.; Hu, X.; Gomez, R.; Mair, G. Sustainable Management and Improvement of Genetic Resources for Aquaculture. J. World Aquac. Soc. 2023, 54, 364–396. [Google Scholar] [CrossRef]
- Waples, R.; Hindar, K.; Hard, J. Genetic Risks Associated with Marine Aquaculture; U.S. Department of Commerce National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2012; p. 149.
- Aljahdali, M.O.; Molla, M.H.R.; Filfilan, W.M. Whole Genome Sequence of the Newly Prescribed Subspecies Oreochromis Spilurus Saudii: A Valuable Genetic Resource for Aquaculture in Saudi Arabia. J. Mar. Sci. Eng. 2021, 9, 506. [Google Scholar] [CrossRef]
- Sanda, M.K.; Metcalfe, N.B.; Mable, B.K. The Potential Impact of Aquaculture on the Genetic Diversity and Conservation of Wild Fish in Sub-Saharan Africa. Aquat. Conserv. Mar. Freshw. Ecosyst. 2024, 34, e4105. [Google Scholar] [CrossRef]
- Fernández de Alaiza García Madrigal, R.; da Silva, U.D.A.T.; Tavares, C.P.d.S.; Ballester, E.L.C. Use of Native and Non-Native Shrimp (Penaeidae, Dendrobranchiata) in World Shrimp Farming. Rev. Aquac. 2018, 10, 899–912. [Google Scholar] [CrossRef]
- Minchin, D.; Gollasch, S.; Wallentinus, I. Vector Pathways and the Spread of Exotic Species in the Sea; ICES Cooperative Research Reports (CRR); ICES: Copenhagen, Denmark, 2005. [Google Scholar]
- Tang, K.F.J.; Le Groumellec, M.; Lightner, D.V. Novel, Closely Related, White Spot Syndrome Virus (WSSV) Genotypes from Madagascar, Mozambique and the Kingdom of Saudi Arabia. Dis. Aquat. Organ. 2013, 106, 1–6. [Google Scholar] [CrossRef]
- Bateman, K.S.; Tew, I.; French, C.; Hicks, R.J.; Martin, P.; Munro, J.; Stentiford, G.D. Susceptibility to Infection and Pathogenicity of White Spot Disease (WSD) in Non-Model Crustacean Host Taxa from Temperate Regions. J. Invertebr. Pathol. 2012, 110, 340–351. [Google Scholar] [CrossRef]
- Saeed, M.O.; Al-Thobaiti, S.A. Gas Bubble Disease in Farmed Fish in Saudi Arabia. Vet. Rec. 1997, 140, 682–684. [Google Scholar] [CrossRef]
- Colorni, A.; Diamant, A.; Eldar, A.; Kvitt, H.; Zlotkin, A. Streptococcus Iniae Infections in Red Sea Cage-Cultured and Wild Fishes. Dis. Aquat. Org. 2002, 49, 165–170. [Google Scholar] [CrossRef]
- Diamant, A.; Banet, A.; Ucko, M.; Colorni, A.; Knibb, W.; Kvitt, H. Mycobacteriosis in Wild Rabbitfish Siganus Rivulatus Associated with Cage Farming in the Gulf of Eilat, Red Sea. Dis. Aquat. Org. 2000, 39, 211–219. [Google Scholar] [CrossRef]
- Roemer, G.W.; Donlan, C.J.; Courchamp, F. Golden Eagles, Feral Pigs, and Insular Carnivores: How Exotic Species Turn Native Predators into Prey. Proc. Natl. Acad. Sci. USA 2002, 99, 791–796. [Google Scholar] [CrossRef]
- Jackson, M.C.; Wasserman, R.J.; Grey, J.; Ricciardi, A.; Dick, J.T.A.; Alexander, M.E. Chapter Two—Novel and Disrupted Trophic Links Following Invasion in Freshwater Ecosystems. In Advances in Ecological Research; Bohan, D.A., Dumbrell, A.J., Massol, F., Eds.; Networks of Invasion: Empirical Evidence and Case Studies; Academic Press: Cambridge, MA, USA, 2017; Volume 57, pp. 55–97. [Google Scholar]
- Foster, R.; Peeler, E.; Bojko, J.; Clark, P.F.; Morritt, D.; Roy, H.E.; Stebbing, P.; Tidbury, H.J.; Wood, L.E.; Bass, D. Pathogens Co-Transported with Invasive Non-Native Aquatic Species: Implications for Risk Analysis and Legislation. NeoBiota 2021, 69, 79–102. [Google Scholar] [CrossRef]
- Makwana, K.; Parmar, H.; Sikotariya, H.; Biswas, S.; Alwinpeter, M. Upgrade Biosecurity Measures: A Key Component for the Sustainability of Aquaculture. In Sustainable Aquaculture: A Step Towards a Green Future in Fish Farming; Satish Serial Publishing House: Delhi, India, 2024. [Google Scholar]
- Witte, F.; Goldschmidt, T.; Wanink, J.; van Oijen, M.; Goudswaard, K.; Witte-Maas, E.; Bouton, N. The Destruction of an Endemic Species Flock: Quantitative Data on the Decline of the Haplochromine Cichlids of Lake Victoria. Environ. Biol. Fish 1992, 34, 1–28. [Google Scholar] [CrossRef]
- Islami, M.M. Are They Always Bad? Assessing Benefits of Non-Indigenous Species in Aquatic Environment and Their Implications. Mar. Res. Indones. 2020, 45, 75–86. [Google Scholar] [CrossRef]
- Barrett, L.T.; Theuerkauf, S.J.; Rose, J.M.; Alleway, H.K.; Bricker, S.B.; Parker, M.; Petrolia, D.R.; Jones, R.C. Sustainable Growth of Non-Fed Aquaculture Can Generate Valuable Ecosystem Benefits. Ecosyst. Serv. 2022, 53, 101396. [Google Scholar] [CrossRef]
- Little, D.C.; Young, J.A.; Zhang, W.; Newton, R.W.; Al Mamun, A.; Murray, F.J. Sustainable Intensification of Aquaculture Value Chains between Asia and Europe: A Framework for Understanding Impacts and Challenges. Aquaculture 2018, 493, 338–354. [Google Scholar] [CrossRef]
- Pauly, D.; Christensen, V.; Guénette, S.; Pitcher, T.J.; Sumaila, U.R.; Walters, C.J.; Watson, R.; Zeller, D. Towards Sustainability in World Fisheries. Nature 2002, 418, 689–695. [Google Scholar] [CrossRef]
- Pauly, D.; Alder, J.; Bennett, E.; Christensen, V.; Tyedmers, P.; Watson, R. The Future for Fisheries. Science 2003, 302, 1359–1361. [Google Scholar] [CrossRef]
- Pauly, D.; Watson, R.; Alder, J. Global Trends in World Fisheries: Impacts on Marine Ecosystems and Food Security. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 5–12. [Google Scholar] [CrossRef]
- Goldburg, R.; Naylor, R. Future Seascapes, Fishing, and Fish Farming. Front. Ecol. Environ. 2005, 3, 21–28. [Google Scholar] [CrossRef]
- Spear, D.; Chown, S.L. Non-Indigenous Ungulates as a Threat to Biodiversity. J. Zool. 2009, 279, 1–17. [Google Scholar] [CrossRef]
- Tidd, A.N.; Rousseau, Y.; Ojea, E.; Watson, R.A.; Blanchard, J.L. Food Security Challenged by Declining Efficiencies of Artisanal Fishing Fleets: A Global Country-Level Analysis. Glob. Food. Sec. 2022, 32, 100598. [Google Scholar] [CrossRef]
- Rogers, A.D.; Aburto-Oropeza, O.; Appeltans, W.; Assis, J.; Ballance, L.T.; Cury, P.; Duarte, C.; Favoretto, F.; Kumagai, J.; Lovelock, C.; et al. Critical Habitats and Biodiversity: Inventory, Thresholds and Governance. In The Blue Compendium: From Knowledge to Action for a Sustainable Ocean Economy; Lubchenco, J., Haugan, P.M., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 333–392. ISBN 978-3-031-16277-0. [Google Scholar]
- Lloret, J.; Cowx, I.G.; Cabral, H.; Castro, M.; Font, T.; Gonçalves, J.M.S.; Gordoa, A.; Hoefnagel, E.; Matić-Skoko, S.; Mikkelsen, E.; et al. Small-Scale Coastal Fisheries in European Seas Are Not What They Were: Ecological, Social and Economic Changes. Mar. Policy 2018, 98, 176–186. [Google Scholar] [CrossRef]
- Sanchez-Jerez, P.; Karakassis, I.; Massa, F.; Fezzardi, D.; Aguilar-Manjarrez, J.; Soto, D.; Chapela, R.; Avila, P.; Rivero, J.C.; Tomassetti, P.; et al. Aquaculture’s Struggle for Space: The Need for Coastal Spatial Planning and the Potential Benefits of Allocated Zones for Aquaculture (AZAs) to Avoid Conflict and Promote Sustainability. Aquac. Environ. Interact. 2016, 8, 41–54. [Google Scholar] [CrossRef]
- Dunne, A.; Carvalho, S.; Morán, X.A.G.; Calleja, M.L.; Jones, B. Localized Effects of Offshore Aquaculture on Water Quality in a Tropical Sea. Mar. Pollut. Bull. 2021, 171, 112732. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.S.; Das, R.; Dhiman, M.; Choudhary, P.; Debbarma, J.; Sahoo, S.N.; Baura, A.; Giri, B.S.; Ramesh, R.; Ananda, K.; et al. Present Status of Fish Disease Management in Freshwater Aquaculture in India: State-of-the-Art-Review. J. Aquac. Fish. 2017, 1, 14. [Google Scholar] [CrossRef]
- Frankic, A.; Hershner, C. Sustainable Aquaculture: Developing the Promise of Aquaculture. Aquac. Int. 2003, 11, 517–530. [Google Scholar] [CrossRef]
- Harikrishnan, M.; Syanya, F.J.; Khanna, A.R.N.; Mumina, P.; Mathia, W.M. Ecological Implications of Unintentional Aquaculture Escapees: An Overview of Risks, Remediation Strategies and Knowledge Gaps in the Aquaculture Sector of India and Riparian East African Countries. Mar. Fish. Sci. (MAFIS) 2024, 37, 633–666. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, Z.; Zhan, A. Introduction and Use of Non-native Species for Aquaculture in C Hina: Status, Risks and Management Solutions. Rev. Aquac. 2015, 7, 28–58. [Google Scholar] [CrossRef]
- Copp, G.H.; Garthwaite, R.; Gozlan, R.E. Risk Identification and Assessment of Non-Native Freshwater Fishes: A Summary of Concepts and Perspectives on Protocols for the UK. J. Appl. Ichthyol. 2005, 21, 371–373. [Google Scholar] [CrossRef]
- Liu, J. Integration across a Metacoupled World. Ecol. Soc. 2017, 22, 1–19. [Google Scholar] [CrossRef]
- Jamieson, L.E.; Woodberry, O.; Mascaro, S.; Meurisse, N.; Jaksons, R.; Brown, S.D.J.; Ormsby, M. An Integrated Biosecurity Risk Assessment Model (IBRAM) For Evaluating the Risk of Import Pathways for the Establishment of Invasive Species. Risk Anal. 2022, 42, 1325–1345. [Google Scholar] [CrossRef]
- Branquart, E.; Verreyken, H.; Vanderhoeven, S.; Van Rossum, F. ISEIA, a Belgian Non-Native Species Assessment Protocol. In Science Facing Aliens: Proceedings of a Scientific Meeting on Invasive Aliens Species; Segers, H., Ed.; Belgian Biodiversity Platform: Brussels, Belgium, 2009; pp. 11–18. [Google Scholar]
- Mumford, J.D.; Booy, O.; Baker, R.H.A.; Rees, M.; Copp, G.H.; Black, K.; Holt, J.; Leach, A.W.; Hartley, M. Invasive Non-Native Species Risk Assessment in Great Britain. Asp. Appl. Biol. 2010, 104, 49–54. [Google Scholar]
- Vilizzi, L.; Hill, J.E.; Piria, M.; Copp, G.H. A Protocol for Screening Potentially Invasive Non-Native Species Using Weed Risk Assessment-Type Decision-Support Tools. Sci. Total Environ. 2022, 832, 154966. [Google Scholar] [CrossRef] [PubMed]
- Vilizzi, L.; Copp, G.H.; Adamovich, B.; Almeida, D.; Chan, J.; Davison, P.I.; Dembski, S.; Ekmekçi, F.G.; Ferincz, Á.; Forneck, S.C.; et al. A Global Review and Meta-Analysis of Applications of the Freshwater Fish Invasiveness Screening Kit. Rev. Fish Biol. Fisheries 2019, 29, 529–568. [Google Scholar] [CrossRef]
- Vilizzi, L.; Copp, G.H.; Hill, J.E.; Adamovich, B.; Aislabie, L.; Akin, D.; Al-Faisal, A.J.; Almeida, D.; Azmai, M.A.; Bakiu, R. A Global-Scale Screening of Non-Native Aquatic Organisms to Identify Potentially Invasive Species under Current and Future Climate Conditions. Sci. Total Environ. 2021, 788, 147868. [Google Scholar] [CrossRef]
- Bartley, D.; Rana, K.; Immink, A. The Use of Inter-Specific Hybrids in Aquaculture and Fisheries. Rev. Fish Biol. Fish. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Hulata, G. Genetic manipulations in aquaculture: A review of stock improvement by classical and modern technologies. Genetica 2001, 111, 155–173. [Google Scholar] [CrossRef]
- Jensen, Ø.; Dempster, T.; Thorstad, E.B.; Uglem, I.; Fredheim, A. Escapes of Fishes from Norwegian Sea-Cage Aquaculture: Causes, Consequences and Prevention. Aquac. Environ. Interact. 2010, 1, 71–83. [Google Scholar] [CrossRef]
- Bögner, D.; Zeytin-Schüning, S.; Slater, M.J.; Mathes, M.; Gündogdu, H.T.; Gündogdu, E.; Jost, J.; Jost, P.-O.; Blanc, C. The Application of Ultrasound as Cage Antifouling Method and its Impact on European Sea Bass, Dicentrarchus Labrax. In Proceedings of the EAS Aquaculture Europe 2021, International Conference and Exposition, Madeira, Portugal, 4–7 October 2021. [Google Scholar]
- Cock, J.; Salazar, M.; Rye, M. Strategies for Managing Diseases in Non-native Shrimp Populations. Rev. Aquac. 2017, 9, 211–226. [Google Scholar] [CrossRef]
- Auliya, M.; Altherr, S.; Nithart, C.; Hughes, A.; Bickford, D. Numerous Uncertainties in the Multifaceted Global Trade in Frogs’ Legs with the EU as the Major Consumer. Nat. Conserv. 2023, 51, 71–135. [Google Scholar] [CrossRef]
- Yu, J.; Yin, W. Exploring Stakeholder Engagement in Mariculture Development: Challenges and Prospects for China. Mar. Policy 2019, 103, 84–90. [Google Scholar] [CrossRef]
- Siddiki, S.; Goel, S. A Stakeholder Analysis of U.S. Marine Aquaculture Partnerships. Mar. Policy 2015, 57, 93–102. [Google Scholar] [CrossRef]
- Abdelzaher, M.A.; Farahat, E.M.; Abdel-Ghafar, H.M.; Balboul, B.A.A.; Awad, M.M. Environmental Policy to Develop a Conceptual Design for the Water–Energy–Food Nexus: A Case Study in Wadi-Dara on the Red Sea Coast, Egypt. Water 2023, 15, 780. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zehra, S.; Pulukkayi, P.; Boopathi, M.; Baalkhuyur, F.; Alghamdi, M.; Al Shaikhi, A.; Alhafedh, Y.S.; Mohamed, A.H. Introduction of Non-Native Fish Species in Red Sea Aquaculture: Implications for Marine Ecosystem Integrity. Diversity 2025, 17, 296. https://doi.org/10.3390/d17040296
Zehra S, Pulukkayi P, Boopathi M, Baalkhuyur F, Alghamdi M, Al Shaikhi A, Alhafedh YS, Mohamed AH. Introduction of Non-Native Fish Species in Red Sea Aquaculture: Implications for Marine Ecosystem Integrity. Diversity. 2025; 17(4):296. https://doi.org/10.3390/d17040296
Chicago/Turabian StyleZehra, Seemab, Pranav Pulukkayi, Mahalakshmi Boopathi, Fadiyah Baalkhuyur, Mohammed Alghamdi, Ali Al Shaikhi, Youssef S. Alhafedh, and Asaad H. Mohamed. 2025. "Introduction of Non-Native Fish Species in Red Sea Aquaculture: Implications for Marine Ecosystem Integrity" Diversity 17, no. 4: 296. https://doi.org/10.3390/d17040296
APA StyleZehra, S., Pulukkayi, P., Boopathi, M., Baalkhuyur, F., Alghamdi, M., Al Shaikhi, A., Alhafedh, Y. S., & Mohamed, A. H. (2025). Introduction of Non-Native Fish Species in Red Sea Aquaculture: Implications for Marine Ecosystem Integrity. Diversity, 17(4), 296. https://doi.org/10.3390/d17040296