The Quantification of Morphological Variation and Development of Morphology-Based Keys to Identify Species of Fusconaia and Pleurobema (Unionidae) in the Green River, Kentucky, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Expert Identification and Validation
2.3. Decision Tree and Random Forest Analyses
2.4. Dichotomous Key
3. Results
3.1. Identification of Shells by Experts
3.2. Decision Trees
3.3. Random Forest Analyses
3.4. Dichotomous Key
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COI | Cytochrome oxidase subunit 1 |
GPS | Global positioning system |
mtDNA | Mitochondrial DNA |
ND1 | NADH dehydrogenase subunit 1 |
OOB | Out-of-bag error rate |
Appendix A
(1) A. Orange foot (1a) | 2 |
B. White foot (1b) | 3 |
1a | 1b | |
(2). A. Shell shape: trapezoidal (2a) | Fusconaia flava | |
B. Shell shape: circular (2b) or oval (2c) | Fusconaia subrotunda | |
2a | 2b | 2c |
2d | 2e | |
(3) A. Beak direction: facing each other (3a) | 4 | |
B. Beak direction: facing forward (3b) | 5 | |
3a | 3b | |
(4) A. Shell shape: trapezoidal (2a) | Fusconaia flava |
B. Shell shape: equilateral (2d) or isosceles (2e) | 6 |
(5) A. Shell sulcus: absent (4a) | Pleurobema sintoxia/rubrum |
B. Shell sulcus: present and either broad and shallow (4b) or narrow and | |
deep (4c) or narrow and shallow (4d) | 7 |
4A | 4B |
4C | 4D |
(6) A. Shell sulcus: absent (4a) | Pleurobema sintoxia/rubrum | |||
B. Shell sulcus: narrow and shallow (4d) | Pleurobema cordatum | |||
(7) A. Position of beak with respect to anterior margin: does not extend beyond | ||||
anterior margin (5a) | Pleurobema cordatum | |||
B. Position of beak with respect to anterior margin: extends beyond | ||||
anterior margin (5b) | Pleurobema plenum | |||
5a | 5b | |||
Appendix B
(1) A. Shape: circular (1a) or oval (1b) | Fusconaia subrotunda |
B. Shape: equilateral (1c), isosceles (1d), or trapezoidal (1e) | 2 |
1a | 1b | 1c |
1d | 1e | |
(2) A. Beak direction: facing each other (2a) | 3 | |
B. Beak direction: facing forward (2b) | 4 | |
2a | 2b | |
3a | 3b |
3c | 3d |
(3) A. Shell shape: trapezoidal (1a) | Fusconaia flava | |||
B. Shell shape: equilateral (1d) or isosceles (1e) triangular | 6 | |||
(4) A. Shell sulcus: absent (3a) | Pleurobema sintoxia/rubrum | |||
B. Shell sulcus: broad and shallow (3b) or narrow and deep (3c) or narrow | ||||
and shallow (3d) | 7 | |||
(5) A. Shell sulcus: absent (3a) | Pleurobema sintoxia/rubrum | |||
B. Shell sulcus: narrow and shallow (3d) | Pleurobema cordatum | |||
(6) A. Position of beak with respect to anterior margin: not close to anterior | ||||
margin (4a) | Pleurobema cordatum | |||
B. Position of beak with respect to anterior margin: past anterior | ||||
margin (4b) | Pleurobema plenum | |||
4a | 4b | |||
References
- Zieritz, A.; Aldridge, D.C. Identification of ecophenotypic trends within three European freshwater mussel species (Bivalvia: Unionoida) using traditional and modern morphometric techniques. Biol. J. Linnaean Soc. 2009, 98, 814–825. [Google Scholar] [CrossRef]
- Olivera-Hyde, M.; Jones, J.W.; Hallerman, E.M. Phylogenetic assessment of endangered and look-alike pigtoe species in a freshwater mussel diversity hotspot. Ecol. Evol. 2023, 13, e9717. [Google Scholar] [CrossRef] [PubMed]
- Crampton, J.S.; Maxwell, P.A. Size: All it’s shaped up to be? Evolution of shape through the lifespan of the Cenozoic bivalve Spissatella (Crassatellidae). Geol. Soc. Lond. Spec. Publ. 2000, 177, 399–423. [Google Scholar] [CrossRef]
- Ortmann, A.E. Correlation of shape and station in fresh-water mussels (Naiades). Proc. Am. Philos. Soc. 1920, 59, 269–312. [Google Scholar]
- Inoue, K.; Hayes, D.M.; Harris, J.L.; Christian, A.D. Phylogenetic and morphometric analyses reveal ecophenotypic plasticity in freshwater mussels Obovaria jacksoniana and Villosa arkansasensis (Bivalvia: Unionidae). Ecol. Evol. 2013, 3, 2670–2683. [Google Scholar] [CrossRef]
- Simeone, D.; Tagliaro, C.H.; Lima, J.O.; Beasley, C.R. Relative importance of the environment and sexual dimorphism in determining shell shape in the Amazonian freshwater mussel Castalia ambigua (Unionida: Hyriidae) along a hydrological gradient. Zoomorphology 2022, 141, 233–243. [Google Scholar] [CrossRef]
- Grabarkiewicz, J.D.; Davis, W.S. An Introduction to Freshwater Fishes as Biological Indicators; EPA-260-R-08-015; Office of Environmental Information, U.S. Environmental Protection Agency: Washington, DC, USA, 2008. [Google Scholar]
- Schilling, D.E. Assessment of Morphological and Molecular Genetic Variation of Freshwater Mussel Species Belonging to the Genera Fusconaia, Pleurobema, and Pleuronaia in the Upper Tennessee River Basin. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2015. [Google Scholar]
- Lydeard, C.; Mulvey, M.; Davis, G.M. Molecular systematics and evolution of reproductive traits of North American freshwater unionacean mussels (Mollusca: Bivalvia) as inferred from 16S rRNA gene sequences. Philos. Trans. Royal Soc. Lond. B Biol. Sci. 1996, 351, 1593–1603. [Google Scholar]
- Lydeard, C.; Minton, R.L.; Williams, J.D. Prodigious polyphyly in imperiled freshwater pearly-mussels (Bivalvia: Unionidae): A phylogenetic test of species and generic designations. Geol. Soc. Lond. Spec. Publ. 2000, 177, 145–158. [Google Scholar] [CrossRef]
- Haag, W.R.; Warren, M.L. Host fishes and infection strategies of freshwater mussels in large Mobile Basin streams, USA. J. N. Am. Benthol. Soc. 2003, 22, 78–91. [Google Scholar] [CrossRef]
- Barnhart, M.C.; Haag, W.R.; Roston, W.N. Adaptations to host infection and larval parasitism in Unionoida. J. N. Am. Benthol. Soc. 2008, 27, 370–394. [Google Scholar] [CrossRef]
- Stansbery, D.H. A Provisional Classification of the Pleurobema cordatum Complex in the Mississippi Drainage Basin of North America; Ohio State Museum: Columbus, OH, USA, 1967; 2p. [Google Scholar]
- Cicerello, R.R.; Schuster, G.A. A Guide to the Freshwater Mussels of Kentucky; Kentucky State Nature Preserves Commission: Frankfort, KY, USA, 2003. [Google Scholar]
- Watters, G.T.; Hoggarth, M.A.; Stansbery, D.H. The Freshwater Mussels of Ohio; The Ohio State University Press: Columbus, OH, USA, 2009. [Google Scholar]
- Pennsylvania Chapter, American Fisheries Society. A Field Guide to Pennsylvania’s Freshwater Mussels; Pennsylvania Chapter, American Fisheries Society: Bethesda, MD, USA, 2018; Available online: https://pa.fisheries.org/wp-content/uploads/2018/02/Mussel-ID-workshop-field-guide-2-9-18.pdf (accessed on 23 October 2019).
- Watters, G.T.; Byrne, C. Freshwater Mussel Identification Workshop. Museum of Biological Diversity; The Ohio State University: Columbus, OH, USA, 2016. [Google Scholar]
- Johnson, N.A.; Henderson, A.R.; Jones, J.W.; Beaver, C.E.; Ahlstedt, S.A.; Dinkins, G.R.; Eckert, N.L.; Endries, M.J.; Garner, J.T.; Harris, J.L.; et al. Glacial vicariance and secondary contact shape demographic histories in a freshwater mussel species complex. J. Hered. 2014, 115, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Hothorn, T.; Zeileis, A.; Hornik, K. Package ‘Party’. 2019. Available online: http://cran.r-project.org/web/packages/party/party.pdf (accessed on 23 October 2019).
- Therneau, T.; Atkinson, B.; Ripley, B.; Ripley, M.B. Package ‘Rpart’. 2015. Available online: http://cran.r-project.org/web/packages/rpart/rpart.pdf (accessed on 23 October 2019).
- Keogh, S.M.; Simons, A.M. Molecules and morphology reveal “new” widespread North American freshwater mussel species (Bivalvia: Unionidae). Molec. Phylogenet. Evol. 2019, 138, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Liaw, A. Package ‘randomForest’. 2018. Available online: http://cran.r-project.org/web/packages/randomForest/randomForest.pdf (accessed on 28 October 2019).
- Kuhn, M. The Caret Package. 2012. Available online: http://cran.r-project.org/package=caret (accessed on 28 October 2019).
- Bartsch, M.R.; Bartsch, L.A.; Richardson, W.B.; Vallazza, J.M.; Moraska Lafrancois, B. Effects of food resources on the fatty acid composition, growth and survival of freshwater mussels. PLoS ONE 2017, 12, e0173419. [Google Scholar] [CrossRef] [PubMed]
- Ball, G.H. Variation in fresh-water mussels. Ecology 1922, 3, 93–121. [Google Scholar] [CrossRef]
- Hornbach, D.J.; Kurth, V.J.; Hove, M.C. Variation in freshwater mussel shell sculpture and shape along a river gradient. Amer. Midl. Natural. 2010, 164, 22–36. [Google Scholar] [CrossRef]
- Hinch, S.G.; Bailey, R.C.; Green, R.H. Growth of Lampsilis radiata (Bivalvia: Unionidae) in sand and mud: A reciprocal transplant experiment. Canad. J. Fish. Aquat. Sci. 1986, 43, 548–552. [Google Scholar] [CrossRef]
- Bailey, R.C.; Green, R.H. Within-basin variation in the shell morphology and growth rate of a freshwater mussel. Canad. J. Zool. 1988, 66, 1704–1708. [Google Scholar] [CrossRef]
- Dycus, J.C.; Wisniewski, J.M.; Peterson, J.T. The effects of flow and stream characteristics on the variation in freshwater mussel growth in a southeast US river basin. Freshwat. Biol. 2015, 60, 395–409. [Google Scholar] [CrossRef]
- Keogh, S.M.; Pfeiffer, J.M.; Simons, A.M.; Edie, S.M. Riverine flow rate drives widespread convergence in the shell morphology of imperiled freshwater mussels. Evolution 2024, 78, 39–52. [Google Scholar] [CrossRef]
- Haag, W.R.; Rypel, A.L. Growth and longevity in freshwater mussels: Evolutionary and conservation implications. Biol. Rev. 2011, 86, 225–247. [Google Scholar] [CrossRef]
- Haag, W.R. North American Freshwater Mussels: Natural History, Ecology, and Conservation; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Rosenberg, G.D.; Henschen, M.T. Sediment particles as a cause of nacre staining in the freshwater mussel, Amblema plicata (Say) (Bivalvia: Unionidae). Hydrobiologia 1986, 135, 167–178. [Google Scholar] [CrossRef]
- Parmalee, P.W.; Bogan, A.E. The Freshwater Mussels of Tennessee; University of Tennessee Press: Knoxville, TN, USA, 1998. [Google Scholar]
- Lane, T.W.; Hallerman, E.M.; Jones, J.W. Population genetic assessment of two critically endangered freshwater mussel species, Tennessee bean Venustaconcha trabalis and Cumberland bean Venustaconcha troostensis. Conserv. Genet. 2019, 20, 759–779. [Google Scholar] [CrossRef]
Variable | Fusconaia flava | Fusconaia subrotunda | Pleurobema cordatum | Pleurobema plenum | Pleurobema sintoxia/rubrum |
---|---|---|---|---|---|
Beak direction | Beaks typically face each other, occasionally face forward, or are destroyed | Beaks face forward or are destroyed | Beaks typically face forward, occasionally face each other, or are destroyed | Beaks typically face forward, occasionally face each other, or are destroyed | Beaks face each other or face forward |
Beak orientation to anterior margin | Beaks are not close to anterior margin | Beaks are either not close to anterior margin or just at anterior margin | Beaks typically not close to the anterior margin, occasionally are at or slightly pass anterior margin | Beaks typically pass anterior margin, occasionally are at or slightly pass anterior margin | Beaks typically not close to the anterior margin, occasionally at or slightly pass anterior margin |
Foot color | Typically orange and occasionally white | Orange | White | White | White |
Nacre color | White and sometimes pink | White | White | White | White or pink |
Shape | Trapezoidal | Small individuals are circular, while medium- and large-sized individuals are oval | Small individuals have equilateral shape Medium-sized individuals are equilateral or sometimes isosceles Large individuals mostly are isosceles | Small individuals have equilateral shape Medium-sized individuals also have equilateral shape but sometimes isosceles | Small individuals have equilateral shape but are occasionally isosceles. Medium-sized individuals have isosceles shape but sometimes can be equilateral. Large individuals have isosceles shape |
Sulcus presence | Broad and deep | Absent | Narrow and deep or narrow and shallow, nearly always present | Typically, broad and shallow, occasionally narrow and shallow Sometimes sulcus is absent | Typically absent in individuals from the Green River but occasionally may have a narrow and deep or narrow and shallow sulcus |
Beak depth–maximum length | Range 0.04–0.11 | Range 0.04–0.1 | Range 0.03–0.11 | Range 0.06–0.11 | Range 0.02–0.07 |
Hinge length–maximum length | Range 0.26–0.38 | Range 0.34–0.47 | Range 0.29–0.48 | Range 0.36–0.48 | Range 0.32–0.53 |
Relative height | Ratio of small individuals range from 0.79 to 0.94 Ratio of medium-sized individuals range from 0.82 to 0.92 | Ratio of medium-sized individuals range from 0.66 to 0.85 Ratio of large individuals range from 0.59 to 0.77 | Ratio of small individuals range from 0.86 to 0.99 Ratio of medium-sized individuals range from 0.81 to 0.99 Ratio of large individuals range from 0.74 to 0.85 | Ratio of medium individuals range from 0.81 to 1.12 | Ratio of small individuals range from 0.86 to 1.03 Ratio of medium-sized individuals range from 0.70 to 0.87 |
Shell obesity | Range 0.50–0.76 | Range 0.41–0.66 | Range 0.49–0.79 | Range 0.56–0.75 | Range 0.48–0.86 |
Wet weight–maximum length | Ratio of medium-sized individuals range from 0.84 to 2.86 | Ratio of small individuals range from 0.47 to 0.29 Ratio of medium-sized individuals range from 1.38 to 1.75 | Ratio of small individuals range from 0.38 to 1.07 Ratio of medium-sized individuals range from 0.95 to 1.92 |
Shell Size Classes | Characteristics Used in Decision Tree and Random Forest Analyses | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Categorical Variables | Quantitative Variables | |||||||||||
Beak Position to Anterior Margin | Beak Direction | Foot Color | Nacre Color | Shape | Sulcus Presence | Beak Depth: Maximum Length | Hinge Length: Maximum Length | Relative Height | Shell Obesity | Wet Weight: Maximum Length | ||
Fusconaia flava | small | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 1 |
medium | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 12 | |
large | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
total | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 13 | |
Fusconaia subrotunda | small | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
medium | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 0 | |
large | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 0 | |
total | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 2 | |
Pleurobema cordatum | small | 7 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 4 |
medium | 29 | 28 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 7 | |
large | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 0 | |
total | 42 | 40 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 11 | |
Pleurobema plenum | small | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 |
medium | 17 | 5 | 17 | 0 | 17 | 17 | 0 | 0 | 17 | 17 | 0 | |
total | 19 | 5 | 19 | 0 | 19 | 19 | 0 | 0 | 19 | 19 | 0 | |
Pleurobema sintoxia/rubrum | small | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 13 |
medium | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 7 | |
large | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |
total | 39 | 39 | 39 | 39 | 39 | 39 | 39 | 39 | 39 | 39 | 21 |
Fusconaia flava | Fusconaia subrotunda | Pleurobema cordatum | Pleurobema plenum | Pleurobema sintoxia/rubrum | All Species | |
---|---|---|---|---|---|---|
Expert 1 | 0.97 | 1.00 | 0.37 | 0.73 | 0.69 | 0.65 |
Expert 2 | 0.89 | 0.33 | 0.40 | 0.80 | 0.81 | 0.57 |
Expert 3 | 1.00 | 0.78 | 0.82 | 0.73 | 0.81 | 0.83 |
Expert 4 | 0.95 | 0.92 | 0.67 | 0.22 | 0.74 | 0.66 |
Expert 5 | 0.96 | 1.00 | 0.71 | 0.84 | 0.80 | 0.80 |
N | 5 | 5 | 5 | 5 | 5 | 5 |
Average | 0.95 | 0.81 | 0.59 | 0.67 | 0.77 | 0.70 |
SD | 0.04 | 0.28 | 0.20 | 0.25 | 0.06 | 0.11 |
CI (95%) | 0.04 | 0.25 | 0.17 | 0.22 | 0.05 | 0.10 |
CI (99%) | 0.05 | 0.32 | 0.23 | 0.29 | 0.06 | 0.12 |
Actual | ||||||||
---|---|---|---|---|---|---|---|---|
Fusconaia flava | Fusconaia subrotunda | Pleurobema cordatum | Pleurobema plenum | Pleurobema sintoxia/rubrum | Classification Error Rate | |||
Predictions for Live Individuals | Training data | Fusconaia flava | 25 | - | - | - | - | 0% |
Fusconaia subrotunda | - | 12 | - | - | - | 0% | ||
Pleurobema cordatum | - | - | 32 | - | 3 | 8.6% | ||
Pleurobema plenum | - | - | 2 | 7 | - | 22.2% | ||
Pleurobema sintoxia/rubrum | - | - | - | 8 | 30 | 21.1% | ||
Validation data | Fusconaia flava | 2 | - | - | - | - | 0% | |
Fusconaia subrotunda | - | 3 | - | - | - | 0% | ||
Pleurobema cordatum | - | - | 8 | - | - | 0% | ||
Pleurobema plenum | - | - | - | 2 | - | 0% | ||
Pleurobema sintoxia/rubrum | - | - | - | 2 | 6 | 25% | ||
Predictions for Shells | Training data | Fusconaia flava | 25 | - | - | - | - | 0% |
Fusconaia subrotunda | - | 12 | - | - | - | 0% | ||
Pleurobema cordatum | - | - | 34 | - | 3 | 8.6% | ||
Pleurobema plenum | - | - | - | 14 | 1 | 6.7% | ||
Pleurobema sintoxia/rubrum | - | - | - | 1 | 29 | 3.3% | ||
Validation data | Fusconaia flava | 2 | - | - | - | - | 0% | |
Fusconaia subrotunda | - | 3 | - | - | - | 0% | ||
Pleurobema cordatum | - | - | 8 | - | - | 0% | ||
Pleurobema plenum | - | - | - | 4 | - | 0% | ||
Pleurobema sintoxia/rubrum | - | - | - | - | 6 | 0% |
Predicted | ||||||||
---|---|---|---|---|---|---|---|---|
Fusconaia flava | Fusconaia subrotunda | Pleurobema cordatum | Pleurobema plenum | Pleurobema sintoxia/rubrum | Classification Error | |||
Live mussels | Actual | Fusconaia flava | 17 | - | - | - | - | 0 |
Fusconaia subrotunda | - | 11 | - | - | - | 0 | ||
Pleurobema cordatum | - | - | 29 | 2 | - | 6.50% | ||
Pleurobema plenum | - | - | 1 | 13 | 1 | 13.30% | ||
Pleurobema sintoxia/rubrum | - | - | 2 | - | 24 | 7.70% | ||
Shells only | Actual | Fusconaia flava | 17 | - | - | - | - | 0 |
Fusconaia subrotunda | - | 11 | - | - | - | 0 | ||
Pleurobema cordatum | - | - | 31 | - | - | 0 | ||
Pleurobema plenum | - | - | 1 | 14 | - | 6.70% | ||
Pleurobema sintoxia/rubrum | - | - | 2 | - | 24 | 7.70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivera-Hyde, M.; Jones, J.W.; Hallerman, E.M. The Quantification of Morphological Variation and Development of Morphology-Based Keys to Identify Species of Fusconaia and Pleurobema (Unionidae) in the Green River, Kentucky, USA. Diversity 2025, 17, 298. https://doi.org/10.3390/d17040298
Olivera-Hyde M, Jones JW, Hallerman EM. The Quantification of Morphological Variation and Development of Morphology-Based Keys to Identify Species of Fusconaia and Pleurobema (Unionidae) in the Green River, Kentucky, USA. Diversity. 2025; 17(4):298. https://doi.org/10.3390/d17040298
Chicago/Turabian StyleOlivera-Hyde, Miluska, Jess W. Jones, and Eric M. Hallerman. 2025. "The Quantification of Morphological Variation and Development of Morphology-Based Keys to Identify Species of Fusconaia and Pleurobema (Unionidae) in the Green River, Kentucky, USA" Diversity 17, no. 4: 298. https://doi.org/10.3390/d17040298
APA StyleOlivera-Hyde, M., Jones, J. W., & Hallerman, E. M. (2025). The Quantification of Morphological Variation and Development of Morphology-Based Keys to Identify Species of Fusconaia and Pleurobema (Unionidae) in the Green River, Kentucky, USA. Diversity, 17(4), 298. https://doi.org/10.3390/d17040298