Microbial Carbonates of Upper Triassic Doi Long Formation, Lampang Group: A Study of New Outcrop Localities in Northern Lampang, Central North Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Background
2.2. Samples and Methodology
3. Results
3.1. Microfacies
3.1.1. Bioclastic Wackestone (F1)
3.1.2. Peloidal-Bioclastic Packstone (F2)
3.1.3. Cyanobacterial Packstone (F3)
3.1.4. Microbial Packstone-Grainstone (F4)
3.1.5. Stromatolitic Algal Boundstone (F5)
3.2. Stromatolites, Microproblematic Organisms, and Other Significant Fossils
4. Discussion
4.1. Microfacies Interpretation
4.1.1. Back-Reef/Lagoon Environment
4.1.2. Reef Setting
4.2. Microbial Communities and Fossils
4.3. Importance of the Microbial Doi Long Limestone and Its Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ueno, K. Gondwana/tethys divide in east Asia: Solution from late Paleozoic foraminiferal paleobiogeography. In Proceedings of the International Symposium on Shallow Tethys (ST) (5), Chiang Mai, Thailand, 1–5 February 1999; Ratanasthien, B., Rieb, S.L., Eds.; Department of Geological Sciences, Chiang Mai University: Chiang Mai, Thailand, 1999; pp. 45–54. [Google Scholar]
- Feng, Q.; Chonglakmani, C.; Helmcke, D.; Ingavat-Helmcke, R.; Liu, B. Correlation of Triassic stratigraphy between the Simao and Lampang-Phrae basins: Implications for the tectonopaleogeography of Southeast Asia. J. Asian Earth Sci. 2005, 24, 777–785. [Google Scholar] [CrossRef]
- Hara, H.; Kunii, M.; Miyake, Y.; Hisada, K.; Kamata, Y.; Ueno, K.; Kon, Y.; Kurihara, T.; Ueda, H.; Assavapatchara, S.; et al. Sandstone provenance and U-Pb ages of detrital zircons from Permian–Triassic forearc sediments within the Sukhothai Arc, northern Thailand: Record of volcanicarc evolution in response to Paleo-Tethys subduction. J. Asian Earth Sci. 2017, 146, 30–55. [Google Scholar] [CrossRef]
- Ueno, K.; Kamata, Y.; Uno, K.; Charoentitirat, T.; Charusiri, P.; Vilaykham, K.; Martini, R. The Sukhothai zone (Permian–Triassic island-arc domain of Southeast Asia) in northern Laos: Insights from Triassic carbonates and foraminifers. Gondwana Res. 2018, 61, 88–99. [Google Scholar] [CrossRef]
- Moonpa, K.; Motanated, K. Carbonate microfacies and depositional model of Triassic Pha Kan and Doi Long Formations, Lampang Group, Sukhothai Zone, northern Thailand. Heliyon 2021, 7, e08130. [Google Scholar] [CrossRef]
- Chonglakmani, C. Triassic. In The Geology of Thailand; Ridd, M.F., Barber, A.J., Crow, M.J., Eds.; Geological Society: London, UK, 2011; pp. 137–150. [Google Scholar]
- Charoenprawat, A.; Chuavirot, S.; Hinthong, C.; Chonglakmani, C. Geologic Map of Sheet Changwat Lampang. Scale 1:250,000; Geological Survey Division, Department of Mineral Resources: Bangkok, Thailand, 1994. [Google Scholar]
- Ueno, K.; Charoentitirat, T. Carboniferous and Permian. In The Geology of Thailand; Ridd, M.F., Barber, A.J., Crow, M.J., Eds.; Geological Society: London, UK, 2011; pp. 71–135. [Google Scholar]
- Kobayashi, F.; Martini, R.; Rettori, R.; Zaninetti, L.; Ratanasthien, B.; Saegusa, H.; Nakaya, H. Triassic foraminifers of the Lampang group (northern Thailand). J. Asian Earth Sci. 2006, 27, 312–325. [Google Scholar] [CrossRef]
- Miyahigashi, A.; Ueno, K.; Charoentitirat, T.; Kamata, Y. Foraminiferal assemblage and depositional environment of the Doi Long Formation (Triassic Lampang group), northern Thailand. Acta Geosci. Sin 2012, 33, 45–49. [Google Scholar]
- Ketmuangmoon, P.; Chitnarin, A.; Forel, M.B.; Tepnarong, P. Diversity and paleoenvironmental significance of middle Triassic ostracods (Crustacea) from northern Thailand: Pha Kan Formation (Anisian, Lampang group). Rev. Micropaleontol. 2018, 61, 3–22. [Google Scholar] [CrossRef]
- Ueno, K. The Permian fusulinoidean faunas of the Sibumasu and Baoshan blocks: Their implications for the paleogeographic and paleoclimatologic reconstruction of the Cimmerian Continent. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 193, 1–24. [Google Scholar] [CrossRef]
- Sone, M.; Metcalfe, I. Parallel Tethyan sutures in mainland SE Asia: New insights for Palaeo-Tethys closure. Comptes Rendus Geosci. 2008, 340, 166–179. [Google Scholar] [CrossRef]
- Metcalfe, I. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res. 2011, 19, 3–21. [Google Scholar] [CrossRef]
- Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 2013, 66, 1–33. [Google Scholar] [CrossRef]
- Barr, S.M.; Macdonald, A.S. Toward a late Paleozoic-early Mesozoic tectonic model for Thailand. J. Thai Geosci. 1991, 1, 11–22. [Google Scholar]
- Singharajwarapan, S.; Berry, R.F. Tectonic implications of the Nan suture zone and its relationship to the Sukhothai Fold Belt, northern Thailand. J. Asian Earth Sci. 2008, 18, 663–673. [Google Scholar] [CrossRef]
- Chonglakmani, C. The Systematics and Biostratigraphy of Triassic Bivalves and Ammonoids of Thailand. PhD Thesis, Auckland University, Auckland, New Zealand, 1981. [Google Scholar]
- Charusiri, P.; Chonglakmani, C.; Daorerk, V.; Supananthi, S.; Imasmut, S. Detailed stratigraphy of the Ban Thasi area, Lampang, northern Thailand: Implications for paleoenvironments and tectonic history. In Proceedings of the International Symposium on Stratigraphic Correlation of Southeast Asia, Bangkok, Thailand, 15–20 November 1994; Angsuwathana, P., Wongwanich, T., Tansathien, W., Wongsomsak, S., Tulyatid, J., Eds.; Department of Mineral Resources of Thailand and Thai Working Group of IGCP 306: Bangkok, Thailand, 1994; pp. 226–244. [Google Scholar]
- Chonglakmani, C.; Grant-Mackie, J.A. Biostratigraphy and facies variation of the marine Triassic sequences in Thailand. In Proceedings of the International Symposium on Biostratigraphy of Mainland Southeast Asia: Facies and Paleontology (BIOSEA), Chiang Mai, Thailand, 31 January–5 February 1993; Thanasuthipitak, T., Ed.; 1993; pp. 97–123. [Google Scholar]
- Dunham, R.J. Classification of carbonate rocks according to depositional texture. In Classification of Carbonate Rocks; Ham, W.E., Ed.; Memoir American Association of Petroleum Geologists: Tulsa, OK, USA, 1962; pp. 108–121. [Google Scholar]
- Embry, A.F.; Klovan, J.E. A late Devonian reef tract on northeastern Banks Island, NWT. Bull. Can. Pet. Geol. 1971, 19, 730–781. [Google Scholar]
- Flügel, E. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application; Springer: Berlin, Germany, 2004. [Google Scholar]
- Flügel, E. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, 2nd ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Huang, W.T.; Zhang, Y.L.; Guan, C.Q.; Miao, Z.W.; Chen, X.H.; Yang, Z.Y.; Li, X.; Gong, E.P. Role of calcimicrobes and microbial carbonates in the Late Carboniferous (Moscovian) mounds in southern Guizhou, South China. J. Palaeogeogr. 2019, 8, 26. [Google Scholar] [CrossRef]
- Wright, V.P. Morphogenesis of oncoids in the lower Carboniferous Llanelly Formation of south Wales. In Coated Grains; Peryt, T.M., Ed.; Springer: Berlin, Germany, 1983; pp. 424–434. [Google Scholar]
- Tucker, M.E.; Wright, P. Carbonate Sedimentology; Blackwell Publishers Ltd.: Oxford, UK, 1990. [Google Scholar]
- Wright, V.P.; Burchette, T.P. Shallow-water carbonate environments. In Sedimentary Environments: Processes, Facies and Stratigraphy; Reading, H.G., Ed.; Blackwell Science: Oxford, UK, 1996; pp. 325–394. [Google Scholar]
- Conley, C.D. Origin of distorted ooliths and pisoliths. J. Sediment. Res. 1977, 47, 554–564. [Google Scholar]
- Kiessling, W.; Flügel, E. Late Paleozoic and late Triassic limestones from north Palawan Block (Philippines): Microfacies and paleogeographical implications. Facies 2000, 43, 39–77. [Google Scholar] [CrossRef]
- Olivier, N.; Fara, E.; Vennin, E.; Bylund, K.G.; Jenks, J.F.; Escarguel, G.; Stephen, D.A.; Goudemand, N.; Snyder, D.; Thomazo, C.; et al. Late Smithian microbial deposits and their lateral marine fossiliferous limestones (Early Triassic, Hurricane Cliffs, Utah, USA). Facies 2018, 64, 13. [Google Scholar] [CrossRef]
- Carozzi, A.V. Reef petrography in the Beaverhill lake formation, upper Devonian, Swan Hills area, Alberta, Canada. J. Sediment. Res. 1961, 31, 497–513. [Google Scholar]
- Gong, E.P.; Samankassou, E.; Guan, C.Q.; Zhang, Y.L.; Sun, B.L. Paleoecology of Pennsylvanian phylloid algal buildups in South Guizhou, China. Facies 2007, 53, 615–623. [Google Scholar]
- Gong, E.P.; Zhang, Y.L.; Guan, C.Q.; Sun, B.L. Main features of the Carboniferous organic reefs in the world. J. Palaeogeogr. (Chin. Ed.) 2010, 12, 127–139, (In Chinese with English Abstract). [Google Scholar]
- Onoue, T.; Stanley, G.D. Sedimentary facies from Upper Triassic reefal limestone of the Sambosan accretionary complex in Japan: Mid-ocean patch reef development in the Panthalassa Ocean. Facies 2008, 54, 529–547. [Google Scholar] [CrossRef]
- Riding, R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology 2000, 47, 179–214. [Google Scholar] [CrossRef]
- Riding, R. Reefal microbial crusts. In Encyclopedia of Modern Coral Reefs; Hopley, D., Ed.; Encyclopedia of Earth Science Series; Springer: Heidelberg, Germany, 2011; pp. 911–915. [Google Scholar]
- Zhang, Y.Y.; Li, Q.J.; Li, Y.; Kiessling, W.; Wang, J.P. Cambrian to Lower Ordovician reefs on the Yangtze Platform, South China Block, and their controlling factors. Facies 2016, 62, 16–34. [Google Scholar] [CrossRef]
- Riding, R.; TomÁS, S. Stromatolite reef crusts, Early Cretaceous, Spain: Bacterial origin of in situ-precipitated peloid microspar? Sedimentology 2006, 53, 23–34. [Google Scholar] [CrossRef]
- Kershaw, S.; Crasquin, S.; Li, Y.; Collin, P.Y.; Forel, M.B.; Mu, X.; Baud, Y.; Wang, S.; Xie, F.; Maurer, L.; et al. Microbialites and global environmental change across the Permian–Triassic boundary: A synthesis. Geobiology 2012, 10, 25–47. [Google Scholar] [CrossRef]
- Yu, S.; Li, Q.; Kershaw, S.; Li, Y.; Mao, Y.; Mu, X. Microbial reefs in eastern Yangtze Platform, South China Block: The last golden age of stromatolites in the Ordovician. Facies 2020, 66, 12. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.Q.; Wu, S.; Feng, X. Anisian (Middle Triassic) stromatolites from Southwest China: Biogeological features and implications for variations of filament size and diversity of Triassic cyanobacteria. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 601, 111150. [Google Scholar] [CrossRef]
- Hillgärtner, H.; Dupraz, C.; Hug, W. Microbially induced cementation of carbonate sands: Are micritic meniscus cements good indicators of vadose diagenesis? Sedimentology 2001, 48, 117–131. [Google Scholar] [CrossRef]
- Jiang, H.; Wu, Y.; Cai, C. Filamentous cyanobacteria fossils and their significance in the Permian-Triassic boundary section at Laolongdong, Chongqing. Chin. Sci. Bull. 2008, 53, 1871–1879. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Zhou, C.Y.; Lu, T.; Xie, T.; Lou, X.Y.; Liu, W.; Sun, Y.Y.; Wang, X.S. Discovery and significance of the Middle Triassic Anisian Biota. Geol. Rev. 2008, 54, 523–527, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.L.; Gong, E.P.; Wilson, M.A.; Guan, C.Q.; Sun, B.L.; Chang, H.L. Paleoecology of a Pennsylvanian encrusting colonial rugose coral in South Guizhou, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 280, 507–516. [Google Scholar] [CrossRef]
- Wu, Y.S.; Yu, G.L.; Li, R.H.; Song, L.R.; Jiang, H.X.; Riding, R.; Liu, L.J.; Liu, D.Y.; Zhao, R. Cyanobacterial fossils from 252 Ma old microbialites and their environmental significance. Sci. Rep. 2014, 4, 3820. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, F.; Kano, A. Composition and spatial distribution of microencrusters and microbial crusts in upper Jurassic–lowermost Cretaceous reef limestone (Torinosu Limestone, southwest Japan). Facies 2004, 50, 217–227. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kołodziej, B.; Skupien, P. Microencruster-microbial framework and synsedimentary cements in the Štramberk Limestone (Carpathians, Czech Republic): Insights into reef zonation. Ann. Soc. Geol. Pol. 2017, 87, 325–347. [Google Scholar] [CrossRef]
- Perri, E.; Borrelli, M.; Bernasconi, M.P.; Gindre-Chanu, L.; Spadafora, A.; Critelli, S. Microbial-dominated carbonate depositional systems: A biosedimentary and stratigraphic reconstruction in the Late Triassic of Western Tethys (northern Calabria, Italy). Facies 2019, 65, 31. [Google Scholar] [CrossRef]
- Wetzel, A.; Ankel, W.E. Obituary for Friedrich Hemplemann. Zool. Anz. 1956, 19, 483–484. [Google Scholar]
- Kristan-Tollmann, E. Rotaliidea (Foraminifera) aus der Trias der Ostalpen. Jahrb. Geol.Bundesanst. Sonderband 1956, 5, 47–78. [Google Scholar]
- Brönnimann, P.; Whittaker, J.E.; Zaninetti, L. Triassic forminiferal biostratigraphy of the Kyaukme-Longtawkno area, northern Shan State, Burma. Riv. Ital. Paleontol. Stratigr. 1975, 81, 1–30. [Google Scholar]
- Trifonova, E. New foraminifera species from the Lower and Middle Triassic in Bulgaria. Dokl. Bolg. Akad. Nauk. 1978, 31, 1151–1154. [Google Scholar]
- Vachard, D.; Martini, R.; Rettori, R.; Zaninetti, L. Nouvelle classification des Foraminifères endothyroides du Trias. Geobios 1994, 27, 543–557. [Google Scholar] [CrossRef]
- Piros, O. Anisian to Carnian carbonate platform facies and dasycladacean biostratigraphy of the Aggtelek Mts, Northeastern Hungary. Acta Geol. Hung. 2002, 45, 119–151. [Google Scholar] [CrossRef]
- Caggiati, M.; Gianolla, P.; Breda, A.; Celarc, B.; Preto, N. The startup of the Dolomia Principale/Hauptdolomit carbonate platform (Upper Triassic) in the eastern Southern Alps. Sedimentology 2017, 65, 1097–1131. [Google Scholar] [CrossRef]
- Perri, E.; Borrelli, M.; Spadafora, A.; Critelli, S. The role of microbialitic facies in the micro- and nano-pore system of dolomitized carbonate platforms (Upper Triassic of southern Italy). Mar. Pet. Geol. 2017, 88, 1–17. [Google Scholar] [CrossRef]
- Climaco, A.; Boni, M.; Iannace, A.; Zamparelli, V. Platform margins, microbial/serpulids bioconstructions and slope-to-basin sediments in the Upper Triassic of the ‘Verbicaro Unit’(Lucania and Calabria, Southern Italy). Facies 1997, 36, 37–56. [Google Scholar] [CrossRef]
- Del Piero, N.; Rigaud, S.; Peybernes, C.; Forel, M.B.; Farley, N.; Martini, R. Upper Triassic carbonate records: Insights from the Most complete Panthalassan platform (lime peak, Yukon, Canada). Geosciences 2022, 12, 292. [Google Scholar] [CrossRef]
- Galli, M.T.; Jadoul, F.; Bernasconi, S.M.; Cirilli, S.; Weissert, H. Stratigraphy and palaeoenvironmental analysis of the Triassic–Jurassic transition in the western Southern Alps (Northern Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 244, 52–70. [Google Scholar] [CrossRef]
- Marangon, A.; Gattolin, G.; Della Porta, G.; Preto, N. The Latemar: A Flat-Topped, Steep Fronted Platform Dominated by Microbialites and Synsedimentary Cements. Sediment. Geol. 2011, 240, 97–114. [Google Scholar] [CrossRef]
- Bernecker, M. Late Triassic Reefs from the Northwest and South Tethys: Distribution, Setting, and Biotic Composition. Facies 2005, 51, 442–453. [Google Scholar] [CrossRef]
- Jiang, L.; Hu, S.; Zhao, W.; Xu, Z.; Shi, S.; Fu, Q.; Zeng, H.; Liu, W.; Fall, A. Diagenesis and its impact on a microbially derived carbonate reservoir from the Middle Triassic Leikoupo Formation, Sichuan Basin, China. AAPG Bull. 2018, 102, 2599–2628. [Google Scholar] [CrossRef]
- Peyrotty, G.; Rigaud, S.; Kemkin, I.; Martini, R. Sedimentology and biostratigraphy of upper Triassic atoll-type carbonates from the Dalnegorsk area, Taukha terrane, far East Russia. Glob. Planet. Chang. 2020, 184, 103072. [Google Scholar] [CrossRef]
- Senowbari-Daryan, B.; Stanley, G.D.; Onoue, T. Upper Triassic (Carnian) reef biota from the Sambosan Accretionary Complex, Kyushu, Japan. Facies 2012, 58, 671–684. [Google Scholar] [CrossRef]
- Tosti, F.; Mastandrea, A.; Guido, A.; Demasi, F.; Russo, F.; Riding, R. Biogeochemical and redox record of mid–late Triassic reef evolution in the Italian Dolomites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 399, 52–66. [Google Scholar] [CrossRef]
- Gale, L.; Peybernes, C.; Celarc, B.; Hočevar, M.; Šelih, V.S.; Martini, R. Biotic composition and microfacies distribution of Upper Triassic build-ups: New insights from the Lower Carnian limestone of Lesno Brdo, central Slovenia. Facies 2018, 64, 17. [Google Scholar] [CrossRef]
- Senowbari-Daryan, B.; Bernecker, M.; Krystyn, L.; Siblik, M. Carnian reef biota from a megabreccia of the Hawasina Complex (Al Aqil), Oman. Riv. Ital. Paleontol. Stratigr. 1999, 105, 327–342. [Google Scholar]
- Peybernes, C.; Chablais, J.; Martini, R. Upper Triassic (Ladinian?-Carnian) reef biota from the Sambosan Accretionary Complex, Shikoku, Japan. Facies 2015, 61, 20. [Google Scholar] [CrossRef]
- Flügel, E. Evolution of Triassic reefs: Current concepts and problems. Facies 1982, 6, 297–328. [Google Scholar] [CrossRef]
- Flügel, E. Triassic reef patterns. In Phanerozoic Reef Patterns; Kiessling, W., Flügel, E., Golonka, J., Eds.; Society for Sedimentary Geology (SEPM): Tulsa, OK, USA, 2002; Volume 72, pp. 391–463. [Google Scholar]
- Martindale, R.C.; Foster, W.J.; Velledits, F. The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 513, 100–115. [Google Scholar] [CrossRef]
- Peybernes, C.; Chablais, J.; Onoue, T.; Escarguel, G.; Martini, R. Paleoecology, biogeography, and evolution of reef ecosystems in the Panthalassa Ocean during the Triassic: Insights from reef limestone of the Sambosan Accretionary Complex, Shikoku, Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 457, 31–51. [Google Scholar] [CrossRef]
Sample Localities | Microfacies | Non-Skeletal Components | Skeletal Components | Interpretation |
---|---|---|---|---|
DL-1 | Bioclastic wackestone (F1) | Major: inhomogeneous micrite with minor quartz | Rare skeletal grains (shell fragments and foraminifera) | Lagoon |
DL-2 | Bioclastic wackestone (F1) | Major: peloids (microbial, reworked mud grains, micritized grains) | Major: bivalves, microproblematica such Tubiphytes sp. Subordinate: foraminifera and rare ostracods | Lagoon |
DL-3 | Peloidal bioclastic packstone (F2) | Major: micritized grains | Major: microproblematica such as Tubiphytes sp. and Microtubus sp., and calcareous algae Subordinate: debris of echinoderm, foraminifera, bivalves, and gastropods | Lagoon |
Cyanobacteria packestone (F3) | Major: peloids (microbial, reworked mud grains, micritized grains) | Major: Microproblematica such Tubiphytes sp., Bacinella sp., and Microtubus sp., debris of algae, bivalves, and green algae (dasycladecean) Subordinate: foraminifera and ostracods | Back-reef, Lagoon | |
DL-4 | Cyanibacteria packestone (F3) | Major: peloids (microbial, reworked mud grains, micritized grains) | Major: microproblematica and fragments of green algae | Back-reef, Lagoon |
DL-5 to DL-6 | Microbial packstone- grainstone (F4) | Very rare | Major: microproblematica such as Tubiphytes sp., Cladogirvanella sp., Bacinella sp., and Microtubus sp., foraminifera, green algae (dasycladecean), and echinoderm, Subordinate: bivalve and ostracods | Reef |
Stromatolitic algall boundstone (F5) | None | Major: algal-microbial crusts and microbial laminated stromatolites, and microproblematic organisms (Cayeuxia sp., Garwoodia sp., and Tubiphytes sp.) Subordinate: smaller foraminifera | microbial build-up or mound-like | |
DL-7 to DL-8 | Cyanobacteria packestone (F3) | Mainly peloid grains, large isopaquous and blocky cements | Major: fragments of microproblematica Subordinate: bivalve shells and foraminifera | Back-reef, Lagoon |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moonpa, K.; Udchachon, M.; Jainanta, J.; Kanthata, S. Microbial Carbonates of Upper Triassic Doi Long Formation, Lampang Group: A Study of New Outcrop Localities in Northern Lampang, Central North Thailand. Diversity 2025, 17, 299. https://doi.org/10.3390/d17040299
Moonpa K, Udchachon M, Jainanta J, Kanthata S. Microbial Carbonates of Upper Triassic Doi Long Formation, Lampang Group: A Study of New Outcrop Localities in Northern Lampang, Central North Thailand. Diversity. 2025; 17(4):299. https://doi.org/10.3390/d17040299
Chicago/Turabian StyleMoonpa, Kritsada, Mongkol Udchachon, Jirattikarn Jainanta, and Sathit Kanthata. 2025. "Microbial Carbonates of Upper Triassic Doi Long Formation, Lampang Group: A Study of New Outcrop Localities in Northern Lampang, Central North Thailand" Diversity 17, no. 4: 299. https://doi.org/10.3390/d17040299
APA StyleMoonpa, K., Udchachon, M., Jainanta, J., & Kanthata, S. (2025). Microbial Carbonates of Upper Triassic Doi Long Formation, Lampang Group: A Study of New Outcrop Localities in Northern Lampang, Central North Thailand. Diversity, 17(4), 299. https://doi.org/10.3390/d17040299