How Does the Sample Preparation of Phytophthora infestans Mycelium Affect the Quality of Isolated RNA?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation and Collection of Mycelium
2.2. Grinding of Mycelium
- With a mortar and pestle in liquid nitrogen.
- The frozen material was subjected to grinding using Tissue Lyser LT (QIAGEN, Hilden, Germany): oscillation frequency of 50 Hz, processing times of 15 s, 30 s, and 1 min, bead material–stainless steel. The rotor was cooled down to −70 °C. Immediately after grinding, 1 mL TRIzol (Thermo Fischer Scientific, Waltham, MA, USA) or 450 μL RLT buffer (QIAGEN, Hilden, Germany) with beta-mercaptoethanol for RNase inhibition was added to the samples.
- Similar to point 2, but with TRIzol and RLT buffer (RNEasy Plant Mini Kit, QIAGEN, Hilden, Germany) added before grinding.
2.3. RNA Isolation
- A standard TRIzol protocol according to the manufacturer’s recommendations [13].
- RNEasy Plant Mini Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s protocol.
- A combination of TRIzol and RNEasy spin column (QIAGEN, Hilden, Germany) methods.
2.4. Evaluation of the Amount and Quality of Isolated RNA
2.5. Statistical Analysis
3. Results
3.1. Evaluation of Isolated RNA Quality
3.2. RNA Concentration Measurements
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leite, G.M.; Magan, N.; Medina, Á. Comparison of different bead-beating RNA extraction strategies: An optimized method for filamentous fungi. J. Microbiol. Methods 2012, 88, 413–418. [Google Scholar] [CrossRef]
- Cortés-Maldonado, L.; Marcial-Quino, J.; Gómez-Manzo, S.; Fierro, F.; Tomasini, A. A method for the extraction of high quality fungal RNA suitable for RNA-seq. J. Microbiol. Methods 2020, 170, 105855. [Google Scholar] [CrossRef]
- Patyshakuliyeva, A.; Mäkelä, M.R.; Sietiö, O.M.; de Vries, R.P.; Hildén, K.S. An improved and reproducible protocol for the extraction of high quality fungal RNA from plant biomass substrates. Fungal Genet. Biol. 2014, 72, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Papp, L.A.; Ács-Szabó, L.; Póliska, S.; Miklós, I. A modified culture medium and hyphae isolation method can increase quality of the RNA extracted from mycelia of a dimorphic fungal species. Curr. Genet. 2021, 67, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rodríguez, A.; Portal, O.; Rojas, L.E.; Ocaña, B.; Mendoza, M.; Acosta, M.; Jiménez, E.; Höfte, M. An efficient method for the extraction of high-quality fungal total RNA to study the Mycosphaerella fijiensis-Musa spp. interaction. Mol. Biotechnol. 2008, 40, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Müller, C.; Peiter, E. Membrane-assisted culture of fungal mycelium on agar plates for RNA extraction and pharmacological analyses. Anal. Biochem. 2014, 453, 58–60. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.R.; Teixeira, R.C.; Daúde, M.M.; Augusto, A.N.L.; Ságio, S.A.; de Almeida, A.F.; Barreto, H.G. Comparative assessment of three RNA extraction methods for obtaining high-quality RNA from Candida viswanathii biomass. J. Microbiol. Methods 2021, 184, 106200. [Google Scholar] [CrossRef] [PubMed]
- Fry, W.E. Phytophthora infestans: The plant (and R gene) destroyer. Mol. Plant Pathol. 2008, 9, 385–402. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wu, H.; Zhao, G.; He, Y.; Kong, W.; Zhang, J.; Liu, S.; Liu, M.; Hu, K.; Liu, L.; et al. Transcriptome analysis clarified genes involved in resistance to Phytophthora capsici in melon. PLoS ONE 2020, 15, e0227284. [Google Scholar] [CrossRef] [PubMed]
- Roquigny, R.; Novinscak, A.; Arseneault, T.; Joly, D.L.; Filion, M. Transcriptome alteration in Phytophthora infestans in response to phenazine-1-carboxylic acid production by Pseudomonas fluorescens strain LBUM223. BMC Genom. 2018, 19, 474. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.; Mueller, O.; Stocker, S.; Salowsky, R.; Leiber, M.; Gassmann, M.; Lightfoot, S.; Menzel, W.; Granzow, M.; Ragg, T. The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 2006, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Rye B Agar. Available online: https://www.protocols.io/view/Rye-B-Agar-36wgqj2ovk57/v1 (accessed on 2 October 2022).
- Thermo Fisher Scientific. Procedural Guidelines. Available online: https://www.thermofisher.com/trizolfaqs (accessed on 2 October 2022).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; Sage: Thousand Oaks, CA, USA, 2012; Available online: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion (accessed on 15 October 2022).
- BGI Transcriptome Sequencing—Fast, Accurate—BGI Global, NGS. Available online: https://www.bgi.com/global/science-detail/transcriptome-sequencing (accessed on 6 October 2022).
- Schumann, U.; Smith, N.A.; Wang, M.B. A fast and efficient method for preparation of high-quality RNA from fungal mycelia. BMC Res. Notes 2013, 6, 71. [Google Scholar] [CrossRef] [PubMed]
Grinding Method | Tissue Lyser | Mortar & Pestle | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Grinding time | 15 s | 30 s | 60 s | - | ||||||
Grinding in buffer | No | Yes | No | No | Yes | No | ||||
Extraction protocol | TRIzol | Qiagen | Qiagen + TRIzol | Qiagen | TRIzol | Qiagen | Qiagen | Qiagen | TRIzol | Qiagen |
Protocol code | NB_T-15 | NB_Q-15 | B_TQ-15 | B_Q-15 | B_T-15 | NB_Q-30 | NB_Q-60 | B_Q-60 | MP_T | MP_Q |
Number of technical replicates | 2 | 3 | 5 | 3 | 2 | 3 | 3 | 3 | 6 | 3 |
TRIzol + RNEasy Spin Column Protocol |
---|
|
|
|
|
|
|
Then the RNEasy Plant Mini Kit is used according to the manufacturer protocol. |
Protocol Code | Mean RIN ± SEM | Mean C ± SEM (ng/uL) |
---|---|---|
NB_Q-15 | 4.13 ± 0.33 | 87.87 ± 0.96 |
NB_Q-30 | 3.00 ± 0.32 | 39.93 ± 15.34 |
NB_Q-60 | 2.40 ± 0.00 | 114.20 ± 19.10 |
NB_T-15 | 5.40 ± 1.30 | 117.20 ± 38.80 |
B_Q-15 | 5.77 ± 0.43 | 52.53 ± 6.41 |
B_Q-60 | 2.70 ± 0.20 | 135.00 ± 3.00 |
B_T-15 | 5.30 ± 1.10 | 83.60 ± 9.40 |
B_TQ-15 | 5.96 ± 0.43 | 54.00 ± 11.98 |
MP_Q | 6.03 ± 0.83 | 114.80 ± 12.32 |
MP_T | 6.45 ± 0.18 | 145.93 ± 20.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, A.A.; Tyapkin, A.V.; Golubeva, T.S. How Does the Sample Preparation of Phytophthora infestans Mycelium Affect the Quality of Isolated RNA? Curr. Issues Mol. Biol. 2023, 45, 3517-3524. https://doi.org/10.3390/cimb45040230
Ivanov AA, Tyapkin AV, Golubeva TS. How Does the Sample Preparation of Phytophthora infestans Mycelium Affect the Quality of Isolated RNA? Current Issues in Molecular Biology. 2023; 45(4):3517-3524. https://doi.org/10.3390/cimb45040230
Chicago/Turabian StyleIvanov, Artemii A., Alexandr V. Tyapkin, and Tatiana S. Golubeva. 2023. "How Does the Sample Preparation of Phytophthora infestans Mycelium Affect the Quality of Isolated RNA?" Current Issues in Molecular Biology 45, no. 4: 3517-3524. https://doi.org/10.3390/cimb45040230
APA StyleIvanov, A. A., Tyapkin, A. V., & Golubeva, T. S. (2023). How Does the Sample Preparation of Phytophthora infestans Mycelium Affect the Quality of Isolated RNA? Current Issues in Molecular Biology, 45(4), 3517-3524. https://doi.org/10.3390/cimb45040230