Global Analysis of the WOX Transcription Factor Family in Akebia trifoliata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Physicochemical Characterization of AktWOX Sequences
2.2. Sequence Characteristic Analysis, Phylogenetic Analyses, GO Enrichment Analysis and Collinearity of AktWOXs
2.3. Detection AktWOX Existence at Expression Level Using the Public Transcriptomic Data of A. trifoliata Fruit
2.4. AktWOX Expression during Adventitious Root Formation
3. Results
3.1. Systemic Characterization of the WOX Gene Family in A. trifoliata
3.2. Phylogenetic Analysis of AktWOX
3.3. Gene Structure and Conserved Motifs of AktWOXs
3.4. Chromosomal Location and Evolutionary Analyses of AktWOXs
3.5. Identification of Cis-Acting Elements of the AktWOX Gene Family
3.6. GO Enrichment Analysis of AktWOX Genes
3.7. AktWOXs Expression during the Growth of Adventitious Roots of A. trifoliata
4. Discussion
4.1. The AktWOX Gene Structure Is Extremely Conserved during Evolution
4.2. AktWOX Gene Family Members May Have Greatly Diverged Functions
4.3. The AktWOX Gene May Be Involved in Adventitious Root Regulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kitaoka, F.; Kakiuchi, N.; Long, C.; Itoga, M.; Yoshimatsu, H.; Mitsue, A.; Atsumi, T.; Mouri, C.; Mikage, M. Difference of ITS sequences of Akebia plants growing in various parts of Japan. J. Nat. Med. 2009, 63, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Maciąg, D.; Dobrowolska, E.; Sharafan, M.; Ekiert, H.; Tomczyk, M.; Szopa, A. Akebia quinata and Akebia trifoliata—A review of phytochemical composition, ethnopharmacological approaches and biological studies. J. Ethnopharmacol. 2021, 280, 114486. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, D.; Shimizu, S.; Shimazaki, A.; Ito, K.; Taira, S. Effects of self-pollen contamination in artificial pollination on fruit set of ‘Fuji Murasaki’ Akebia trifoliata. Hort. J. 2022, 91, 431–436. [Google Scholar] [CrossRef]
- Wu, L.; Ke, B.; Gong, C.; Ma, Y.; Lei, X.L.; Li, J.A. Tissue culture and rapid propagation of Akebia trifoliate var. australis. Plant Physiol. 2015, 51, 903–908. [Google Scholar]
- Zou, S.; Yao, X.; Zhong, C.; Li, D.; Wang, Z.; Huang, H. Recurrent somatic embryogenesis and development of somatic embryos in Akebia trifoliata (Thunb.) Koidz (Lardizabalaceae). Plant Cell 2019, 139, 493–504. [Google Scholar] [CrossRef]
- Wu, X.; Tang, H.; Zhong, J.; Wang, Y.; Niu, J.; Xiao, J.; Luan, M. Effects of different factors on the rooting of Akebia trifoliata cuttings based on orthogonal experiment. Hunan Agric. Sci. 2022, 52, 33–36. (In Chinese) [Google Scholar]
- Tian, D.; Yu, Z. Analysis on the cultivation factors affect the success of cuttage of Akebia trifoliata Koidz. Hunan Agric. Sci. 2009, 29, 129–131. (In Chinese) [Google Scholar]
- Steffens, B.; Rasmussen, A. The physiology of adventitious roots. Plant Physiol. 2016, 170, 603–617. [Google Scholar] [CrossRef]
- Hu, X.; Xu, L. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiol. 2016, 172, 2363–2373. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, L.; Xu, Y.; Li, J.; Yang, Z.; Huang, H.; Xu, L. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 2014, 26, 1081–1093. [Google Scholar] [CrossRef]
- Cho, S.H.; Kang, K.; Lee, S.H.; Lee, I.J.; Paek, N.C. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in Rice (Oryza sativa). J. Exp. Bot. 2016, 67, 1677–1687. [Google Scholar] [CrossRef] [PubMed]
- Nardmann, J.; Werr, W. Symplesiomorphies in the WUSCHEL clade suggest that the last common ancestor of seed plants contained at least four independent stem cell niches. New Phytol. 2013, 199, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Hedman, H.; Zhu, T.; Von Arnold, S.; Sohlberg, J.J. Analysis of the WUSCHEL-related Homeobox gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. BMC Plant Biol. 2013, 13, 89. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Niu, C.; Li, K.; Fan, L.; Liu, Z.; Li, S.; Ma, D.; Tahir, M.M.; Xing, L.; Zhao, C.; et al. Cytokinin-responsive MdTCP17 interacts with MdWOX11 to repress adventitious root primordium formation in apple rootstocks. Plant Cell 2023, 35, 1202–1221. [Google Scholar] [CrossRef] [PubMed]
- Romani, F.; Reinheimer, R.; Florent, S.N.; Bowman, J.L.; Moreno, J.E. Evolutionary history of homeodomain leucine zipper transcription factors during plant transition to land. New Phytol. 2018, 219, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Haecker, A.; Gross-Hardt, R.; Geiges, B.; Sarkar, A.; Breuninger, H.; Herrmann, M.; Laux, T. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 2004, 131, 657–668. [Google Scholar] [CrossRef] [PubMed]
- van der Graaff, E.; Laux, T.; Rensing, S.A. The WUS Homeobox-containing (WOX) protein family. Genome Biol. 2009, 10, 248. [Google Scholar] [CrossRef]
- Mukherjee, K.; Brocchieri, L.; Bürglin, T.R. A comprehensive classification and evolutionary analysis of plant Homeobox genes. Mol. Biol. Evol. 2009, 26, 2775–2794. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for Interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C.J.; Lu, S.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017, 45, D200–D203. [Google Scholar] [CrossRef]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; De Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef] [PubMed]
- Sawal, H.A.; Nighat, S.; Safdar, T.; Anees, L. Comparative in silico analysis and functional characterization of tank-binding kinase 1-binding protein 1. Bioinform. Biol. Insights 2023, 17, 11779322231164828. [Google Scholar] [CrossRef] [PubMed]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Iyer, L.M.; Subramanian, S.; Aravind, L. Evolutionary convergence and divergence in archaeal chromosomal proteins and chromo-like domains from bacteria and eukaryotes. Sci. Rep. 2018, 8, 6196. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Navarro, A.; Barton, N.H. Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes. Science 2003, 300, 321–324. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed]
- Sazegari, S.; Niazi, A.; Ahmadi, F.S. A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes. Bioinformation 2015, 11, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Suleski, M.; Craig, J.M.; Kasprowicz, A.E.; Sanderford, M.; Li, M.; Stecher, G.; Hedges, S.B. TimeTree 5: An expanded resource for species divergence times. Mol. Biol. Evol. 2022, 39, msac174. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Riccucci, E.; Vanni, C.; Vangelisti, A.; Fambrini, M.; Giordani, T.; Cavallini, A.; Mascagni, F.; Pugliesi, C. Genome-wide analysis of WOX multigene family in sunflower (Helianthus annuus L.). Int. J. Mol. Sci. 2023, 24, 3352. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xu, L. Recruitment of IC-WOX genes in root evolution. Trends Plant Sci. 2018, 23, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Youngstrom, C.E.; Geadelmann, L.F.; Irish, E.E.; Cheng, C.L. A fern WUSCHEL-related Homeobox gene functions in both gametophyte and sporophyte generations. BMC Plant Biol. 2019, 19, 416. [Google Scholar] [CrossRef]
- Baesso, B.; Terzaghi, M.; Chiatante, D.; Scippa, G.S.; Montagnoli, A. WOX Genes expression during the formation of new lateral roots from secondary structures in Populus nigra (L.). Taproot. Sci. Rep. 2020, 10, 18890. [Google Scholar] [CrossRef]
- Akbulut, S.E.; Okay, A.; Aksoy, T.; Aras, E.S.; Büyük, İ. The Genome-wide characterization of WOX gene family in Phaseolus vulgaris L. during salt stress. Physiol. Mol. Biol. Plants 2022, 28, 1297–1309. [Google Scholar] [CrossRef]
- Magadum, S.; Banerjee, U.; Murugan, P.; Gangapur, D.; Ravikesavan, R. Gene duplication as a major force in evolution. J. Genet. 2013, 92, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Wang, J.; Wu, L.; Kong, H.; Yang, L.; Feng, C.; Wang, K.; Rausher, M.; Kang, M. The genome of a cave plant, Primulina huaijiensis, provides insights into adaptation to limestone karst habitats. New Phytol. 2020, 227, 1249–1263. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, W.; Fu, P.; Zhong, S.; Guan, J.; Luo, P. Developmental stages of Akebia trifoliata fruit based on volume. Hortic. Sci. Technol. 2021, 39, 823–831. [Google Scholar] [CrossRef]
- Minh-Thu, P.T.; Kim, J.S.; Chae, S.; Jun, K.M.; Lee, G.S.; Kim, D.E.; Cheong, J.J.; Song, S.I.; Nahm, B.H.; Kim, Y.K. A WUSCHEL Homeobox transcription factor, OsWOX13, enhances drought tolerance and triggers early flowering in Rice. Mol. Cells 2018, 41, 781–798. [Google Scholar] [PubMed]
- Cheng, S.; Huang, Y.; Zhu, N.; Zhao, Y. The Rice WUSCHEL-related Homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Gene 2014, 549, 266–274. [Google Scholar] [CrossRef]
- Yaghobi, M.; Heidari, P. Genome-wide analysis of Aquaporin gene family in Triticum turgidum and its expression profile in response to salt stress. Genes 2023, 14, 202. [Google Scholar] [CrossRef]
- Hashemipetroudi, S.H.; Arab, M.; Heidari, P.; Kuhlmann, M. Genome-wide analysis of the Laccase (LAC) gene family in Aeluropus littoralis: A focus on identification, evolution and expression patterns in response to abiotic stresses and ABA treatment. Front. Plant Sci. 2023, 14, 1112354. [Google Scholar] [CrossRef]
- Dolzblasz, A.; Nardmann, J.; Clerici, E.; Causier, B.; van der Graaff, E.; Chen, J.; Davies, B.; Werr, W.; Laux, T. Stem cell regulation by Arabidopsis WOX genes. Mol. Plant 2016, 9, 1028–1039. [Google Scholar] [CrossRef]
WOX Genes | Gene Length | Chromosome Location | Exon | Cell Location | Putative Protein | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Length AA | MW (kDa) | PI | Instability Index | Hydrophilic | Signal Peptide | |||||||
AktWOX1 | 2840 | chr1 | 25,213,082 | 25,215,922 | 5 | Nucleus | 361 | 40.173 | 6.8 | 57.89 | −0.593 | 0.0009 |
AktWOX2 | 5392 | chr2 | 896,118 | 901,510 | 3 | Nucleus | 279 | 31.869 | 6.02 | 59.79 | −0.946 | 0.0005 |
AktWOX3 | 2204 | chr2 | 7,184,275 | 7,186,479 | 3 | Nucleus | 212 | 24.462 | 9.03 | 52.78 | −1.06 | 0.0023 |
AktWOX4 | 11,328 | chr3 | 50,099,349 | 50,110,677 | 3 | Nucleus | 307 | 35.238. | 5.65 | 65.16 | −0.927 | 0.0003 |
AktWOX5 | 796 | chr6 | 6,820,221 | 6,821,017 | 2 | Nucleus | 232 | 26.506 | 8.42 | 51.72 | −0.919 | 0.0006 |
AktWOX6 | 1120 | chr8 | 2,341,031 | 2,342,151 | 2 | Nucleus | 198 | 23.316 | 8.75 | 61.48 | −0.891 | 0.0003 |
AktWOX7 | 1950 | chr9 | 5,460,894 | 5,462,844 | 4 | Nucleus | 316 | 36.673 | 8.44 | 75.25 | −0.949 | 0.015 |
AktWOX8 | 2212 | chr15 | 429,281 | 431,493 | 3 | Nucleus | 265 | 29.411 | 5.85 | 60.72 | −0.317 | 0.0007 |
AktWOX9 | 657 | chr15 | 27,705,270 | 27,705,927 | 2 | Nucleus | 176 | 20.500 | 8.85 | 53.15 | −0.903 | 0.0044 |
AktWUS | 1622 | chr2 | 2,976,634 | 2,978,256 | 3 | Nucleus | 267 | 29.505 | 6.83 | 60.26 | −0.788 | 0.0012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Yang, H.; Zhang, Y.; Chen, C.; Ren, T.; Tan, F.; Luo, P. Global Analysis of the WOX Transcription Factor Family in Akebia trifoliata. Curr. Issues Mol. Biol. 2024, 46, 11-24. https://doi.org/10.3390/cimb46010002
Chen S, Yang H, Zhang Y, Chen C, Ren T, Tan F, Luo P. Global Analysis of the WOX Transcription Factor Family in Akebia trifoliata. Current Issues in Molecular Biology. 2024; 46(1):11-24. https://doi.org/10.3390/cimb46010002
Chicago/Turabian StyleChen, Shengpeng, Huai Yang, Yongle Zhang, Chen Chen, Tianheng Ren, Feiquan Tan, and Peigao Luo. 2024. "Global Analysis of the WOX Transcription Factor Family in Akebia trifoliata" Current Issues in Molecular Biology 46, no. 1: 11-24. https://doi.org/10.3390/cimb46010002
APA StyleChen, S., Yang, H., Zhang, Y., Chen, C., Ren, T., Tan, F., & Luo, P. (2024). Global Analysis of the WOX Transcription Factor Family in Akebia trifoliata. Current Issues in Molecular Biology, 46(1), 11-24. https://doi.org/10.3390/cimb46010002