Next Issue
Volume 46, February
Previous Issue
Volume 45, December
 
 
cimb-logo

Journal Browser

Journal Browser

Curr. Issues Mol. Biol., Volume 46, Issue 1 (January 2024) – 61 articles

Cover Story (view full-size image): Methoxyfuranocoumarins (MFCs), biologically active plant molecules, have been recently investigated for enzyme inhibitory activity; α-glucosidase, tyrosinase, and cholinesterases, pro-apoptotic potential, antioxidant, anticonvulsant, antidepressant, and antiadipogenic, neuroprotective, anti-amyloid-β, and anti-inflammatory effects (via SIRT 1 expression), as well as activity against hepatitis B virus. Agonistic effects on bitter taste receptors (TAS2R), 3D cell cultures and the zebrafish model, and MFCs as therapeutic adjuvants are promising future research methods. This review highlights the key biological activities of MFCs and promising trends for their further studies. The mechanisms of action of MFCs, which are related to the constantly discovered therapeutic potential of MFCs, are provided. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 2540 KiB  
Review
Ghrelin in Focus: Dissecting Its Critical Roles in Gastrointestinal Pathologies and Therapies
by Wei Wu, Lei Zhu, Zhimin Dou, Qiliang Hou, Sen Wang, Ziqian Yuan and Bin Li
Curr. Issues Mol. Biol. 2024, 46(1), 948-964; https://doi.org/10.3390/cimb46010061 - 22 Jan 2024
Cited by 1 | Viewed by 1170
Abstract
This review elucidates the critical role of ghrelin, a peptide hormone mainly synthesized in the stomach in various gastrointestinal (GI) diseases. Ghrelin participates in diverse biological functions ranging from appetite regulation to impacting autophagy and apoptosis. In sepsis, it reduces intestinal barrier damage [...] Read more.
This review elucidates the critical role of ghrelin, a peptide hormone mainly synthesized in the stomach in various gastrointestinal (GI) diseases. Ghrelin participates in diverse biological functions ranging from appetite regulation to impacting autophagy and apoptosis. In sepsis, it reduces intestinal barrier damage by inhibiting inflammatory responses, enhancing GI blood flow, and modulating cellular processes like autophagy and apoptosis. Notably, in inflammatory bowel disease (IBD), serum ghrelin levels serve as markers for distinguishing between active and remission phases, underscoring its potential in IBD treatment. In gastric cancer, ghrelin acts as an early risk marker, and due to its significant role in increasing the proliferation and migration of gastric cancer cells, the ghrelin–GHS-R axis is poised to become a target for gastric cancer treatment. The role of ghrelin in colorectal cancer (CRC) remains controversial; however, ghrelin analogs have demonstrated substantial benefits in treating cachexia associated with CRC, highlighting the therapeutic potential of ghrelin. Nonetheless, the complex interplay between ghrelin’s protective and potential tumorigenic effects necessitates a cautious approach to its therapeutic application. In post-GI surgery scenarios, ghrelin and its analogs could be instrumental in enhancing recovery and reducing complications. This article accentuates ghrelin’s multifunctionality, shedding light on its influence on disease mechanisms, including inflammatory responses and cancer progression, and examines its therapeutic potential in GI surgeries and disorders, advocating for continued research in this evolving field. Full article
Show Figures

Figure 1

14 pages, 460 KiB  
Article
Genetic Predisposition for White Matter Hyperintensities and Risk of Mild Cognitive Impairment and Alzheimer’s Disease: Results from the HELIAD Study
by Stefanos N. Sampatakakis, Niki Mourtzi, Sokratis Charisis, Eirini Mamalaki, Eva Ntanasi, Alexandros Hatzimanolis, Alfredo Ramirez, Jean-Charles Lambert, Mary Yannakoulia, Mary H. Kosmidis, Efthimios Dardiotis, Georgios Hadjigeorgiou, Paraskevi Sakka and Nikolaos Scarmeas
Curr. Issues Mol. Biol. 2024, 46(1), 934-947; https://doi.org/10.3390/cimb46010060 - 22 Jan 2024
Viewed by 1108
Abstract
The present study investigated the association of genetic predisposition for white matter hyperintensities (WMHs) with incident amnestic mild cognitive impairment (aMCI) or Alzheimer’s disease (AD), as well as whether such an association was influenced by age, sex, and cognitive reserve. Overall, 537 individuals [...] Read more.
The present study investigated the association of genetic predisposition for white matter hyperintensities (WMHs) with incident amnestic mild cognitive impairment (aMCI) or Alzheimer’s disease (AD), as well as whether such an association was influenced by age, sex, and cognitive reserve. Overall, 537 individuals without aMCI or dementia at baseline were included. Among them, 62 individuals developed aMCI/AD at follow up. Genetic propensity to WMH was estimated using a polygenic risk score for WMHs (PRS WMH). The association of PRS WMH with aMCI/AD incidence was examined using COX models. A higher PRS WMH was associated with a 47.2% higher aMCI/AD incidence (p = 0.015) in the fully adjusted model. Subgroup analyses showed significant results in the older age group, in which individuals with a higher genetic predisposition for WMHs had a 3.4-fold higher risk for developing aMCI/AD at follow up (p < 0.001), as well as in the lower cognitive reserve (CR, proxied by education years) group, in which individuals with a higher genetic predisposition for WMHs had an over 2-fold higher risk (p = 0.013). Genetic predisposition for WMHs was associated with aMCI/AD incidence, particularly in the group of participants with a low CR. Thus, CR might be a modifier in the relationship between genetic predisposition for WMHs and incident aMCI/AD. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics in Neurodegenerative Diseases)
Show Figures

Figure 1

11 pages, 5842 KiB  
Article
Evaluation of the Reparative Effect of Sinomenine in an Acetaminophen-Induced Liver Injury Model
by Ahmet Kayalı, Ejder Saylav Bora, Hüseyin Acar and Oytun Erbaş
Curr. Issues Mol. Biol. 2024, 46(1), 923-933; https://doi.org/10.3390/cimb46010059 - 21 Jan 2024
Cited by 1 | Viewed by 876
Abstract
Due to its rising global prevalence, liver failure treatments are urgently needed. Sinomenine (SIN), an alkaloid from sinomenium acutum, is being studied for its liver-repair properties due to Acetaminophen (APAP) overdose. SIN’s effect on APAP-induced hepatotoxicity in rats was examined histologically and biochemically. [...] Read more.
Due to its rising global prevalence, liver failure treatments are urgently needed. Sinomenine (SIN), an alkaloid from sinomenium acutum, is being studied for its liver-repair properties due to Acetaminophen (APAP) overdose. SIN’s effect on APAP-induced hepatotoxicity in rats was examined histologically and biochemically. Three groups of 30 adult male Wistar rats were created: control, APAP-only, and APAP + SIN. Histopathological and biochemical analyses were performed on liver samples after euthanasia. SIN is significantly protected against APAP damage. Compared to APAP-only, SIN reduced cellular injury and preserved hepatocellular architecture. The APAP + SIN Group had significantly lower ALT, MDA, and GSH levels, protecting against hepatocellular damage and oxidative stress. SIN also had dose-dependent antioxidant properties. When examining critical regulatory proteins, SIN partially restored Sirtuin 1 (SIRT1) levels. While BMP-7 levels were unaffected, histopathological evidence and hepatocyte damage percentages supported SIN’s liver-restorative effect. SIN protected and repaired rats’ livers from APAP-induced liver injury. This study suggests that SIN may treat acute liver damage, warranting further research into its long-term effects, optimal dosage, and clinical applications. These findings aid liver-related emergency department interventions and life-saving treatments. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

14 pages, 2972 KiB  
Article
In Vitro Anti-Inflammatory Study of Limonoids Isolated from Chisocheton Plants
by Erina Hilmayanti, Xuhao Huang, Supriatno Salam, Nurlelasari, Unang Supratman, Kazuya Kabayama and Koichi Fukase
Curr. Issues Mol. Biol. 2024, 46(1), 909-922; https://doi.org/10.3390/cimb46010058 - 20 Jan 2024
Viewed by 916
Abstract
Chisocheton plants from the family Meliaceae have traditionally been used to treat several diseases; however, scientific evidence is limited. The most abundant chemical constituents of this plant are the limonoids, which are known for their various biological activities, including anti-inflammatory effects. However, the [...] Read more.
Chisocheton plants from the family Meliaceae have traditionally been used to treat several diseases; however, scientific evidence is limited. The most abundant chemical constituents of this plant are the limonoids, which are known for their various biological activities, including anti-inflammatory effects. However, the anti-inflammatory effects and underlying mechanisms of action of the constituents of Chisocheton plants have not been fully explored. In this report, we evaluated the anti-inflammatory activity of 17 limonoid compounds from Chisocheton plant primarily by measuring their inhibitory effects on the production of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1β, and MCP-1, in LPS-stimulated THP-1 cells using an ELISA assay. Compounds 3, 5, 9, and 1417 exhibited significant activity in inhibiting the evaluated pro-inflammatory markers, with IC50 values less than 20 µM and a high selectivity index (SI) range. Compounds 3, 5, 9, and 15 significantly suppressed the expression of phosphorylated p38 MAPK in THP-1 cells stimulated with LPS. These findings support the use of limonoids from Chisocheton plants as promising candidates for anti-inflammatory therapy. Full article
(This article belongs to the Special Issue The Role of Bioactives in Inflammation)
Show Figures

Figure 1

13 pages, 289 KiB  
Review
Coffee and Microbiota: A Narrative Review
by Federico Rosa, Benedetta Marigliano, Sergio Mannucci, Marcello Candelli, Gabriele Savioli, Giuseppe Merra, Maurizio Gabrielli, Antonio Gasbarrini, Francesco Franceschi and Andrea Piccioni
Curr. Issues Mol. Biol. 2024, 46(1), 896-908; https://doi.org/10.3390/cimb46010057 - 20 Jan 2024
Cited by 1 | Viewed by 3411
Abstract
Coffee is one of the most widely consumed beverages in the world, which has important repercussions on the health of the individual, mainly because of certain compounds it contains. Coffee consumption exerts significant influences on the entire body, including the gastrointestinal tract, where [...] Read more.
Coffee is one of the most widely consumed beverages in the world, which has important repercussions on the health of the individual, mainly because of certain compounds it contains. Coffee consumption exerts significant influences on the entire body, including the gastrointestinal tract, where a central role is played by the gut microbiota. Dysbiosis in the gut microbiota is implicated in the occurrence of numerous diseases, and knowledge of the microbiota has proven to be of fundamental importance for the development of new therapeutic strategies. In this narrative review, we thoroughly investigated the link between coffee consumption and its effects on the gut microbiota and the ensuing consequences on human health. We have selected the most significant articles published on this very interesting link, with the aim of elucidating the latest evidence about the relationship between coffee consumption, its repercussions on the composition of the gut microbiota, and human health. Based on the various studies carried out in both humans and animal models, it has emerged that coffee consumption is associated with changes in the gut microbiota, although further research is needed to understand more about this link and the repercussions for the whole organism. Full article
(This article belongs to the Special Issue Genetics and Natural Bioactive Components in Beverage Plants)
12 pages, 2946 KiB  
Article
Anti-Neuroinflammatory Effects of Arecae pericarpium on LPS-Stimulated BV2 Cells
by Hyeon-gyu Cho, Dong-Uk Kim, Jin-Young Oh, Sung-Joo Park, Bitna Kweon and Gi-Sang Bae
Curr. Issues Mol. Biol. 2024, 46(1), 884-895; https://doi.org/10.3390/cimb46010056 - 19 Jan 2024
Viewed by 967
Abstract
Arecae pericarpium (AP), the fruit peel of the betel palm, is a traditional Oriental herbal medicine. AP is used to treat various diseases and conditions, such as ascites, edema, and urinary retention, in traditional Korean medicine. Recent studies have demonstrated its anti-obesity and [...] Read more.
Arecae pericarpium (AP), the fruit peel of the betel palm, is a traditional Oriental herbal medicine. AP is used to treat various diseases and conditions, such as ascites, edema, and urinary retention, in traditional Korean medicine. Recent studies have demonstrated its anti-obesity and antibacterial effects; however, its anti-neuroinflammatory effects have not yet been reported. Therefore, we investigated the anti-neuroinflammatory effects of AP on lipopolysaccharide (LPS)-stimulated mouse microglia in this study. To determine the anti-neuroinflammatory effects of AP on BV2 microglial cells, we examined the production of nitric oxide (NO) using Griess assay and assessed the mRNA expression levels of inflammatory mediators, such as inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, and pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, using a real-time reverse transcription-polymerase chain reaction. Furthermore, we determined the levels of mitogen-activated protein kinases and IκBα via Western blotting to understand the regulating mechanisms of AP. AP treatment decreased NO production in LPS-stimulated BV2 cells. Additionally, AP suppressed the expression of iNOS and COX-2 and the production of pro-inflammatory cytokines. AP also inhibited the activation of p38 and nuclear factor-kappa B (NF-κB) in LPS-stimulated BV2 cells. Therefore, AP exerts anti-neuroinflammatory effects via inactivation of the p38 and NF-κB pathways. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products)
Show Figures

Figure 1

28 pages, 2974 KiB  
Review
Methoxyfuranocoumarins of Natural Origin–Updating Biological Activity Research and Searching for New Directions—A Review
by Magdalena Bartnik
Curr. Issues Mol. Biol. 2024, 46(1), 856-883; https://doi.org/10.3390/cimb46010055 - 19 Jan 2024
Cited by 1 | Viewed by 986
Abstract
Plant secondary metabolites, including furanocoumarins, have attracted attention for decades as active molecules with therapeutic potential, especially those occurring in a limited number of species as evolutionarily specific and chemotaxonomically important. The most famous methoxyfuranocoumarins (MFCs), bergapten, xanthotoxin, isopimpinellin, phellopterin, byakangelicol, byakangelicin, isobergapten, [...] Read more.
Plant secondary metabolites, including furanocoumarins, have attracted attention for decades as active molecules with therapeutic potential, especially those occurring in a limited number of species as evolutionarily specific and chemotaxonomically important. The most famous methoxyfuranocoumarins (MFCs), bergapten, xanthotoxin, isopimpinellin, phellopterin, byakangelicol, byakangelicin, isobergapten, pimpinellin, sphondin, as well as rare ones such as peucedanin and 8-methoxypeucedanin, apaensin, cnidilin, moellendorffiline and dahuribiethrins, have recently been investigated for their various biological activities. The α-glucosidase inhibitory activity and antioxidant potential of moellendorffiline, the antiproliferative and proapoptotic properties of non-UV-activated bergapten and xanthotoxin, the effect of MFC on the activity of tyrosinase, acetyl- and butylcholinesterase, and the role of these compounds as adjuvants in anticancer and antibacterial tests have been confirmed. The anticonvulsant effects of halfordin, the antidepressant effects of xanthotoxin, and the antiadipogenic, neuroprotective, anti-amyloid-β, and anti-inflammatory (via increasing SIRT 1 protein expression) properties of phellopterin, as well as the activity of sphondin against hepatitis B virus, have also attracted interest. It is worth paying attention to the agonistic effect of xanthotoxin on bitter taste receptors (TAS2Rs) on cardiomyocytes, which may be important in the future treatment of tachycardia, as well as the significant anti-inflammatory activity of dahuribiethrins. It should be emphasized that MFCs, although in many cases isolated for the first time many years ago, are still of great interest as bioactive molecules. The aim of this review is to highlight key recent developments in the study of the diverse biological activities of MFCs and attempt to highlight promising directions for their further research. Where possible, descriptions of the mechanisms of action of MFC are provided, which is related to the constantly discovered therapeutic potential of these molecules. The review covers the results of experiments from the last ten years (2014–2023) conducted on isolated natural cMFCs and includes the activity of molecules that have not been activated by UV rays. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products)
Show Figures

Graphical abstract

14 pages, 3646 KiB  
Article
Inflammation and Starvation Affect Housekeeping Gene Stability in Adipose Mesenchymal Stromal Cells
by Enrico Ragni, Simona Piccolo, Michela Taiana, Caterina Visconte, Giulio Grieco and Laura de Girolamo
Curr. Issues Mol. Biol. 2024, 46(1), 842-855; https://doi.org/10.3390/cimb46010054 - 19 Jan 2024
Viewed by 815
Abstract
Due to the scientific success of in vitro and in vivo model studies, the interest in using mesenchymal stromal cells (MSCs) for the treatment of orthopaedic conditions is growing. In the context of osteoarthritis (OA), MSCs, and, in particular, those derived from adipose [...] Read more.
Due to the scientific success of in vitro and in vivo model studies, the interest in using mesenchymal stromal cells (MSCs) for the treatment of orthopaedic conditions is growing. In the context of osteoarthritis (OA), MSCs, and, in particular, those derived from adipose tissues (ASCs), have found broader access to clinical use as active components of minimally manipulated orthobiologics, as well as clinically expanded cell preparations, or to collect their released factors (secretome) for cell-free approaches. In this regard, while both inflammatory priming and starvation are common strategies used to empower cell potency or collect the secretome, respectively, little is known about the possible influence of these approaches on the stability of housekeeping genes (HKGs) for molecular studies able to fingerprint cell phenotype or potency. In this report, the reliability of five commonly used HKGs (ACTB, B2M, GAPDH, HPRT1 and RPLP0) was tested in ASCs cultured under standard protocol after inflammatory priming or starvation. Gene expression data were computed with four different applets able to rank genes depending on their stability in either single or combined conditions. The obtained final ranking suggests that for each treatment, a specific HKG is needed, and that starvation is the condition with the stronger effect on HKGs’ stability and, therefore, reliability. The normalization effect of proper HKGs’ use was then validated on three genes involved in OA and whose product is released by ASCs. Overall, data presented herein confirm that the choice of the best HKG has to be carefully considered and that each specific condition has to be tested to identify the most reliable candidate. Full article
(This article belongs to the Special Issue Molecular Research in Stem Cells)
Show Figures

Graphical abstract

21 pages, 9187 KiB  
Review
Epoxyalcohol Synthase Branch of Lipoxygenase Cascade
by Yana Y. Toporkova, Elena O. Smirnova and Svetlana S. Gorina
Curr. Issues Mol. Biol. 2024, 46(1), 821-841; https://doi.org/10.3390/cimb46010053 - 18 Jan 2024
Viewed by 750
Abstract
Oxylipins are one of the most important classes of bioregulators, biosynthesized through the oxidative metabolism of unsaturated fatty acids in various aerobic organisms. Oxylipins are bioregulators that maintain homeostasis at the cellular and organismal levels. The most important oxylipins are mammalian eicosanoids and [...] Read more.
Oxylipins are one of the most important classes of bioregulators, biosynthesized through the oxidative metabolism of unsaturated fatty acids in various aerobic organisms. Oxylipins are bioregulators that maintain homeostasis at the cellular and organismal levels. The most important oxylipins are mammalian eicosanoids and plant octadecanoids. In plants, the main source of oxylipins is the lipoxygenase cascade, the key enzymes of which are nonclassical cytochromes P450 of the CYP74 family, namely allene oxide synthases (AOSs), hydroperoxide lyases (HPLs), and divinyl ether synthases (DESs). The most well-studied plant oxylipins are jasmonates (AOS products) and traumatin and green leaf volatiles (HPL products), whereas other oxylipins remain outside of the focus of researchers’ attention. Among them, there is a large group of epoxy hydroxy fatty acids (epoxyalcohols), whose biosynthesis has remained unclear for a long time. In 2008, the first epoxyalcohol synthase of lancelet Branchiostoma floridae, BfEAS (CYP440A1), was discovered. The present review collects data on EASs discovered after BfEAS and enzymes exhibiting EAS activity along with other catalytic activities. This review also presents the results of a study on the evolutionary processes possibly occurring within the P450 superfamily as a whole. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

13 pages, 2490 KiB  
Article
The Role of Nicotinic Receptors on Ca2+ Signaling in Bovine Chromaffin Cells
by Amparo Gil, Virginia González-Vélez, Luis Miguel Gutiérrez and José Villanueva
Curr. Issues Mol. Biol. 2024, 46(1), 808-820; https://doi.org/10.3390/cimb46010052 - 17 Jan 2024
Viewed by 661
Abstract
Chromaffin cells have been used as a physiological model to understand neurosecretion in mammals for many years. Nicotinic receptors located in the cells’ membrane are stimulated by acetylcholine, and they participate in the exocytosis of chromaffin granules, releasing catecholamines in response to stress. [...] Read more.
Chromaffin cells have been used as a physiological model to understand neurosecretion in mammals for many years. Nicotinic receptors located in the cells’ membrane are stimulated by acetylcholine, and they participate in the exocytosis of chromaffin granules, releasing catecholamines in response to stress. In this work, we discuss how the participation of nicotinic receptors and the localization of active zones in the borders of the cytoskeleton can generate local calcium signals leading to secretion. We use a computational model of a cytoskeleton cage to simulate Ca2+ levels in response to voltage and acetylcholine pulses. We find that nicotinic receptors are able to enhance the differences between local and average calcium values, as well as the heterogeneous distributions around the active zones, producing a non-linear, highly localized Ca2+ entry that, although consisting of a few ions, is able to improve secretion responses in chromaffin cells. Our findings emphasize the intricate interplay among nicotinic receptors, the cytoskeleton, and active zones within chromaffin cells as an example of Ca2+-dependent neurosecretion in mammals. Full article
(This article belongs to the Special Issue Molecular Imaging of Cells and Tissues)
Show Figures

Figure 1

20 pages, 3143 KiB  
Article
Identification of the Candidate mGlu2 Allosteric Modulator THRX-195518 through In Silico Method and Evaluation of Its Neuroprotective Potential against Glutamate-Induced Neurotoxicity in SH-SY5Y Cell Line
by Fadime Canbolat, Nigar Kantarci-Carsibasi, Sevim Isik, Suhair Rami Mohammed Shamshir and Münteha Girgin
Curr. Issues Mol. Biol. 2024, 46(1), 788-807; https://doi.org/10.3390/cimb46010051 - 17 Jan 2024
Viewed by 924
Abstract
Glutamate (Glu) toxicity has been an important research topic in toxicology and neuroscience studies. In vitro and in vivo studies have shown that Group II metabotropic Glu2 (mGlu2) activators have cell viability effects. This study aims to determine a candidate ligand with high [...] Read more.
Glutamate (Glu) toxicity has been an important research topic in toxicology and neuroscience studies. In vitro and in vivo studies have shown that Group II metabotropic Glu2 (mGlu2) activators have cell viability effects. This study aims to determine a candidate ligand with high mGlu2 allosteric region activity among cytotoxicity-safe molecules using the in silico positioning method and to evaluate its cell viability effect in vitro. We investigated the candidate molecule’s cell viability effect on the SH-SY5Y human neuroblastoma cell line by MTT analysis. In the study, LY 379268 (agonist) and JNJ-46281222 (positive allosteric modulator; PAM) were used as control reference molecules. Drug bank screening yielded THRX-195518 (docking score being −12.4 kcal/mol) as a potential novel drug candidate that has a high docking score and has not been mentioned in the literature so far. The orthosteric agonist LY 379268 exhibited a robust protective effect in our study. Additionally, our findings demonstrate that JNJ-46281222 and THRX-195518, identified as activating the mGlu2 allosteric region through in silico methods, preserve cell viability against Glu toxicity. Therefore, our study not only emphasizes the positive effects of this compound on cell viability against Glu toxicity but also sheds light on the potential of THRX-195518, acting as a mGlu2 PAM, based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) data, as a candidate drug molecule. These findings underscore the potential utility of THRX-195518 against both neurotoxicity and Central Nervous System (CNS) disorders, providing valuable insights. Full article
Show Figures

Figure 1

15 pages, 4846 KiB  
Review
Molecular Profiling of Circulating Tumour Cells and Circulating Tumour DNA: Complementary Insights from a Single Blood Sample Utilising the Parsortix® System
by Gabrielle Wishart, Amy Templeman, Francesca Hendry, Karen Miller and Anne-Sophie Pailhes-Jimenez
Curr. Issues Mol. Biol. 2024, 46(1), 773-787; https://doi.org/10.3390/cimb46010050 - 17 Jan 2024
Viewed by 1472
Abstract
The study of molecular drivers of cancer is an area of rapid growth and has led to the development of targeted treatments, significantly improving patient outcomes in many cancer types. The identification of actionable mutations informing targeted treatment strategies are now considered essential [...] Read more.
The study of molecular drivers of cancer is an area of rapid growth and has led to the development of targeted treatments, significantly improving patient outcomes in many cancer types. The identification of actionable mutations informing targeted treatment strategies are now considered essential to the management of cancer. Traditionally, this information has been obtained through biomarker assessment of a tissue biopsy which is costly and can be associated with clinical complications and adverse events. In the last decade, blood-based liquid biopsy has emerged as a minimally invasive, fast, and cost-effective alternative, which is better suited to the requirement for longitudinal monitoring. Liquid biopsies allow for the concurrent study of multiple analytes, such as circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA), from a single blood sample. Although ctDNA assays are commercially more advanced, there is an increasing awareness of the clinical significance of the transcriptome and proteome which can be analysed using CTCs. Herein, we review the literature in which the microfluidic, label-free Parsortix® system is utilised for CTC capture, harvest and analysis, alongside the analysis of ctDNA from a single blood sample. This detailed summary of the literature demonstrates how these two analytes can provide complementary disease information. Full article
(This article belongs to the Special Issue Advanced Molecular Solutions for Cancer Therapy)
Show Figures

Figure 1

20 pages, 2689 KiB  
Article
Growth, Survival, and Intestinal Health Alterations in Mediterranean Yellowtail (Seriola dumerili) Due to Alternatives to Fishmeal and Fish Oil
by Maria Consolación Milián-Sorribes, Silvia Martínez-Llorens, David S. Peñaranda, Ignacio Jauralde, Miguel Jover-Cerdá and Ana Tomás-Vidal
Curr. Issues Mol. Biol. 2024, 46(1), 753-772; https://doi.org/10.3390/cimb46010049 - 17 Jan 2024
Viewed by 1575
Abstract
Fishmeal and fish oil substitution in aquafeeds might have adverse effects on fish growth and health, mainly in carnivorous species, such as Mediterranean yellowtail (Seriola dumerili). Mediterranean yellowtail shows great potential as an alternative aquaculture species due to its fast growth [...] Read more.
Fishmeal and fish oil substitution in aquafeeds might have adverse effects on fish growth and health, mainly in carnivorous species, such as Mediterranean yellowtail (Seriola dumerili). Mediterranean yellowtail shows great potential as an alternative aquaculture species due to its fast growth and high price on the market, but the need for high-quality protein and fatty acid content in its diets is limiting its production. In order to improve the sustainability of its production, this study was conducted with 360 fish of 35 g to evaluate the effects on fish growth and health. Six diets were used: one control diet without replacement, three with FM replacement (FM66, FM33, and FM0) (33%, 66%, and 100% FM replacement), and two with FO replacement (FO50 and FO0) (50% and 100% FO replacement). The substitution of FM was with vegetable (VM) (corn gluten) and animal (AM) (krill and meat meal) meals. The reductions in FM and FO of up to 33 and 0%, respectively, did not affect the growth and survival of S. dumerili at the intestinal morphology level, except for the anterior intestine regarding the lower villi length and width and the posterior intestine regarding the lower width of the lamina propria. On the other hand, the substitution of fish ingredients in the diet affects liver morphology, indicating alterations in the major diameter of hepatocytes or their nuclei. Finally, diet did not affect the gut microbiota with respect to the control, but significant differences were found in alpha and beta diversity when FO and FM microbiota were compared. A 66% FM replacement and total FO replacement would be possible without causing major alterations in the fish. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

12 pages, 7839 KiB  
Communication
The Role of the Aryl Hydrocarbon Receptor in Vascular Factors Related to Preeclampsia in a Smoking Mouse Model
by Ho-Yeon Kim, Ye-Seon Seok, Hye-Yeon Moon, Geum-Joon Cho, Ki-Hoon Ahn, Soon-Cheol Hong, Min-Jeong Oh and Hai-Joong Kim
Curr. Issues Mol. Biol. 2024, 46(1), 741-752; https://doi.org/10.3390/cimb46010048 - 16 Jan 2024
Viewed by 915
Abstract
Smoking cigarettes is known to lower the risk of preeclampsia. The objective of this study is to evaluate the effect of smoking on the expression of soluble FMS-like tyrosine kinase-1 (sFlt-1), vascular endothelial growth factor (VEGF), and endoglin (sEng)-1 and the role of [...] Read more.
Smoking cigarettes is known to lower the risk of preeclampsia. The objective of this study is to evaluate the effect of smoking on the expression of soluble FMS-like tyrosine kinase-1 (sFlt-1), vascular endothelial growth factor (VEGF), and endoglin (sEng)-1 and the role of the aryl hydrocarbon receptor (AhR) in pregnant mice. We developed a smoking mouse model using a gas-filling system. One or two cigarettes per day were exposed to each of the five pregnant mice for five days a week throughout pregnancy. AhR agonist and antagonist were injected. Serum levels and expression in the placenta of sFlt-1, VEGF, and sEng-1 were analyzed and compared among the cigarette smoke and no-exposure groups after delivery. Compared to the no-smoke exposure group, the serum level of sFlt-1 was significantly decreased in the two-cigarette-exposed group (p < 0.001). When the AhR antagonist was added to the two-cigarette-exposed group, sFlt-1 levels were significantly increased compared to the two-cigarette group (p = 0.002). The levels of sFlt-1 in the AhR antagonist group did not change regardless of two-cigarette exposure (p = 0.064). With the AhR agonist, sFlt-1 decreased significantly compared to the control (p = 0.001) and AhR antagonist group (p = 0.002). The sFlt-1 level was significantly decreased after the injection of the AhR agonist compared to the control group (p = 0.001). Serum levels of VEGF were significantly decreased in the one-cigarette-exposed group compared to the control group; however, there was no difference between the control and the two-cigarette-exposed groups. The placental expression of sFlt-1, VEGF, and sEng were inconsistent. This study offers insights into the potential role of AhR on antiangiogenic sFlt-1 associated with preeclampsia. It may support the invention of a new treatment strategy for preeclampsia using AhR activation. Full article
(This article belongs to the Special Issue Molecular Studies of Female Pregnancy Disorders)
Show Figures

Figure 1

12 pages, 2346 KiB  
Article
A Potential Role for the Receptor for Advanced Glycation End-Products (RAGE) in the Development of Secondhand Smoke-Induced Chronic Sinusitis
by Hannah Robin, Courtney Trudeau, Adam Robbins, Emily Chung, Erum Rahman, Olivia Gangmark-Strickland, Frank W. Licari, Duane R. Winden, Dan L. Orr, Juan A. Arroyo and Paul R. Reynolds
Curr. Issues Mol. Biol. 2024, 46(1), 729-740; https://doi.org/10.3390/cimb46010047 - 13 Jan 2024
Viewed by 813
Abstract
Chronic sinusitis (CS) is characterized by sinonasal inflammation, mucus overproduction, and edematous mucosal tissue. CS impacts one in seven adults and estimates suggest up to 15% of the general U.S. population may be affected. This research sought to assess a potential role for [...] Read more.
Chronic sinusitis (CS) is characterized by sinonasal inflammation, mucus overproduction, and edematous mucosal tissue. CS impacts one in seven adults and estimates suggest up to 15% of the general U.S. population may be affected. This research sought to assess a potential role for receptors for advanced glycation end-products (RAGE), an inflammatory receptor expressed in tissues exposed to secondhand smoke (SHS). Human sinus tissue sections were stained for RAGE and S100s, common RAGE ligands. Wild-type mice and mice that over-express RAGE in sinonasal epithelium (RAGE TG) were maintained in room air (RA) or exposed to secondhand smoke (SHS) via a nose-only delivery system five days a week for 6 weeks. Mouse sections were stained for RAGE and tissue lysates were assayed for cleaved caspase 3, cytokines, or matrix metalloproteases. We discovered increased RAGE expression in sinus tissue following SHS exposure and in sinuses from RAGE TG mice in the absence of SHS. Cleaved caspase-3, cytokines (IL-1β, IL-3, and TNF-α), and MMPs (-9 and -13) were induced by SHS and in tissues from RAGE TG mice. These results expand the inflammatory role of RAGE signaling, a key axis in disease progression observed in smokers. In this relatively unexplored area, enhanced understanding of RAGE signaling during voluntary and involuntary smoking may help to elucidate potential therapeutic targets that may attenuate the progression of smoke-related CS. Full article
(This article belongs to the Special Issue Advances in Understanding Molecular Basis of Inflammatory Diseases)
Show Figures

Figure 1

19 pages, 4810 KiB  
Article
The Identification of New c-FLIP Inhibitors for Restoring Apoptosis in TRAIL-Resistant Cancer Cells
by Katherine Yaacoub, Rémy Pedeux, Pierre Lafite, Ulrich Jarry, Samia Aci-Sèche, Pascal Bonnet, Richard Daniellou and Thierry Guillaudeux
Curr. Issues Mol. Biol. 2024, 46(1), 710-728; https://doi.org/10.3390/cimb46010046 - 12 Jan 2024
Viewed by 2202
Abstract
The catalytically inactive caspase-8-homologous protein, c-FLIP, is a potent antiapoptotic protein highly expressed in various types of cancers. c-FLIP competes with caspase-8 for binding to the adaptor protein FADD (Fas-Associated Death Domain) following death receptors’ (DRs) activation via the ligands of the TNF-R [...] Read more.
The catalytically inactive caspase-8-homologous protein, c-FLIP, is a potent antiapoptotic protein highly expressed in various types of cancers. c-FLIP competes with caspase-8 for binding to the adaptor protein FADD (Fas-Associated Death Domain) following death receptors’ (DRs) activation via the ligands of the TNF-R family. As a consequence, the extrinsic apoptotic signaling pathway involving DRs is inhibited. The inhibition of c-FLIP activity in tumor cells might enhance DR-mediated apoptosis and overcome immune and anticancer drug resistance. Based on an in silico approach, the aim of this work was to identify new small inhibitory molecules able to bind selectively to c-FLIP and block its anti-apoptotic activity. Using a homology 3D model of c-FLIP, an in silico screening of 1880 compounds from the NCI database (National Cancer Institute) was performed. Nine molecules were selected for in vitro assays, based on their binding affinity to c-FLIP and their high selectivity compared to caspase-8. These molecules selectively bind to the Death Effector Domain 2 (DED2) of c-FLIP. We have tested in vitro the inhibitory effect of these nine molecules using the human lung cancer cell line H1703, overexpressing c-FLIP. Our results showed that six of these newly identified compounds efficiently prevent FADD/c-FLIP interactions in a molecular pull-down assay, as well as in a DISC immunoprecipitation assay. The overexpression of c-FLIP in H1703 prevents TRAIL-mediated apoptosis; however, a combination of TRAIL with these selected molecules significantly restored TRAIL-induced cell death by rescuing caspase cleavage and activation. Altogether, our findings indicate that new inhibitory chemical molecules efficiently prevent c-FLIP recruitment into the DISC complex, thus restoring the caspase-8-dependent apoptotic cascade. These results pave the way to design new c-FLIP inhibitory molecules that may serve as anticancer agents in tumors overexpressing c-FLIP. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Cancer Cell Death)
Show Figures

Figure 1

21 pages, 3381 KiB  
Article
Phenotyping and Exploitation of Kompetitive Allele-Specific PCR Assays for Genes Underpinning Leaf Rust Resistance in New Spring Wheat Mutant Lines
by Saule Kenzhebayeva, Shynarbek Mazkirat, Sabina Shoinbekova, Saule Atabayeva, Alfia Abekova, Nargul Omirbekova, Gulina Doktyrbay, Saltant Asrandina, Dinara Zharassova, Aigul Amirova and Albrecht Serfling
Curr. Issues Mol. Biol. 2024, 46(1), 689-709; https://doi.org/10.3390/cimb46010045 - 12 Jan 2024
Cited by 1 | Viewed by 911
Abstract
Leaf rust (Puccinia triticina Eriks) is a wheat disease causing substantial yield losses in wheat production globally. The identification of genetic resources with permanently effective resistance genes and the generation of mutant lines showing increased levels of resistance allow the efficient incorporation [...] Read more.
Leaf rust (Puccinia triticina Eriks) is a wheat disease causing substantial yield losses in wheat production globally. The identification of genetic resources with permanently effective resistance genes and the generation of mutant lines showing increased levels of resistance allow the efficient incorporation of these target genes into germplasm pools by marker-assisted breeding. In this study, new mutant (M3 generation) lines generated from the rust-resistant variety Kazakhstanskaya-19 were developed using gamma-induced mutagenesis through 300-, 350-, and 400-Gy doses. In field trials after leaf rust inoculation, 75 mutant lines showed adult plant resistance. These lines were evaluated for resistance at the seedling stage via microscopy in greenhouse experiments. Most of these lines (89.33%) were characterized as resistant at both developmental stages. Hyperspectral imaging analysis indicated that infected leaves of wheat genotypes showed increased relative reflectance in visible and near-infrared light compared to the non-infected genotypes, with peak means at 462 and 644 nm, and 1936 and 2392 nm, respectively. Five spectral indexes, including red edge normalized difference vegetation index (RNDVI), structure-insensitive pigment index (SIPI), ratio vegetation index (RVSI), water index (WI), and normalized difference water index (NDWI), demonstrated significant potential for determining disease severity at the seedling stage. The most significant differences in reflectance between susceptible and resistant mutant lines appeared at 694.57 and 987.51 nm. The mutant lines developed were also used for the development and validation of KASP markers for leaf rust resistance genes Lr1, Lr2a, Lr3, Lr9, Lr10, and Lr17. The mutant lines had high frequencies of “a” resistance alleles (0.88) in all six Lr genes, which were significantly associated with seedling resistance and suggest the potential of favorable haplotype introgression through functional markers. Nine mutant lines characterized by the presence of “b” alleles in Lr9 and Lr10—except for one line with allele “a” in Lr9 and three mutant lines with allele “a” in Lr10—showed the progressive development of fungal haustorial mother cells 72 h after inoculation. One line from 300-Gy-dosed mutant germplasm with “b” alleles in Lr1, Lr2a, Lr10, and Lr17 and “a” alleles in Lr3 and Lr9 was characterized as resistant based on the low number of haustorial mother cells, suggesting the contribution of the “a” alleles of Lr3 and Lr9. Full article
(This article belongs to the Special Issue Advanced Research in Wheat Genome and Breeding)
Show Figures

Figure 1

12 pages, 1354 KiB  
Article
Thrombomodulin Serum Levels—A Predictable Biomarker for the Acute Onset of Ischemic Stroke
by Andrei-Lucian Zaharia, Dana Tutunaru, Violeta Diana Oprea, Claudiu Elisei Tănase, Ana Croitoru, Bianca Stan, Doina Carina Voinescu, Ana-Maria Ionescu, Camelia Alexandra Coadǎ and Mihaiela Lungu
Curr. Issues Mol. Biol. 2024, 46(1), 677-688; https://doi.org/10.3390/cimb46010044 - 12 Jan 2024
Viewed by 760
Abstract
The early diagnosis of acute ischemic stroke (AIS) can be challenging in cases presenting with a scarcity of clinical signs, normal cerebral imaging in early stages and a lack of specific serum markers. Thrombomodulin has been shown to be associated with cerebrovascular ischemic [...] Read more.
The early diagnosis of acute ischemic stroke (AIS) can be challenging in cases presenting with a scarcity of clinical signs, normal cerebral imaging in early stages and a lack of specific serum markers. Thrombomodulin has been shown to be associated with cerebrovascular ischemic events and can be considered an important biomarker for the acute onset of ischemic stroke. In our study, we compared the serum levels of thrombomodulin (sTM) between a relevant patient group of 70 AIS patients and a control group of patients without AIS admitted into the neurology department between June 2022 and May 2023. sTM levels were measured at 24 h and 48 h after patients’ admissions into the hospital. There was a significant difference between the two groups (AIS: 23.2 ± 9.17 ng/mL vs. controls: 3.64 ± 1.72 ng/mL; p-value < 0.001). sTM values were correlated with the score of neurological deficits, with gender and dyslipidemia. The association of sTM values with the acute onset of AIS as an end point was significant, which allows rapid therapeutic interventions, even in the absence of a well-defined clinical syndrome (AUC = 0.99). Reanalysis of the patients after propensity score matching increased the power of sTM as a biomarker (AUC = 1). sTM represents a potentially useful biomarker to diagnose the onset of an AIS, even in scarce clinical presentations, which makes thrombomodulin a valuable indicator for early treatment initiation. Full article
(This article belongs to the Special Issue Pathophysiology and Molecular Mechanisms of Acute Stroke)
Show Figures

Graphical abstract

14 pages, 1628 KiB  
Review
Pathological and Therapeutical Implications of Pyroptosis in Psoriasis and Hidradenitis Suppurativa: A Narrative Review
by Piotr K. Krajewski, Maria Tsoukas and Jacek C. Szepietowski
Curr. Issues Mol. Biol. 2024, 46(1), 663-676; https://doi.org/10.3390/cimb46010043 - 11 Jan 2024
Viewed by 1386
Abstract
This manuscript explores the role of pyroptosis, an inflammatory programmed cell death, in the pathogenesis of two chronic dermatoses, psoriasis and hidradenitis suppurativa (HS). The diseases, though clinically diverse, share common pathogenetic pathways involving the unbalanced interaction between the adaptive and innate immune [...] Read more.
This manuscript explores the role of pyroptosis, an inflammatory programmed cell death, in the pathogenesis of two chronic dermatoses, psoriasis and hidradenitis suppurativa (HS). The diseases, though clinically diverse, share common pathogenetic pathways involving the unbalanced interaction between the adaptive and innate immune systems. This review focuses on the molecular changes in psoriatic and HS skin, emphasizing the activation of dendritic cells, secretion of interleukins (IL-17, IL-22, and TNF-α), and the involvement of inflammasomes, particularly NLRP3. This manuscript discusses the role of caspases, especially caspase-1, in driving pyroptosis and highlights the family of gasdermins (GSDMs) as key players in the formation of pores leading to cell rupture and the release of proinflammatory signals. This study delves into the potential therapeutic implications of targeting pyroptosis in psoriasis and HS, examining existing medications like biologics and Janus kinase inhibitors. It also reviews the current limitations and challenges in developing therapies that selectively target pyroptosis. Additionally, the manuscript explores the role of pyroptosis in various inflammatory disorders associated with psoriasis and HS, such as inflammatory bowel disease, diabetes mellitus, and cardiovascular disorders. The review concludes by emphasizing the need for further research to fully elucidate the pathomechanisms of these dermatoses and develop effective, targeted therapies. Full article
(This article belongs to the Special Issue Molecular Research in Chronic Dermatoses)
Show Figures

Figure 1

13 pages, 3975 KiB  
Article
Isocorydine Exerts Anticancer Activity by Disrupting the Energy Metabolism and Filamentous Actin Structures of Oral Squamous Carcinoma Cells
by Qiaozhen Zhou, Qianqian Zhang, Lingzi Liao, Qian Li, Huidan Qu, Xinyu Wang, Ying Zhou, Guangzeng Zhang, Mingliang Sun, Kailiang Zhang and Baoping Zhang
Curr. Issues Mol. Biol. 2024, 46(1), 650-662; https://doi.org/10.3390/cimb46010042 - 9 Jan 2024
Cited by 1 | Viewed by 928
Abstract
Isocorydine (ICD) exhibits strong antitumor effects on numerous human cell lines. However, the anticancer activity of ICD against oral squamous cell carcinoma (OSCC) has not been reported. The anticancer activity, migration and invasion ability, and changes in the cytoskeleton morphology and mechanical properties [...] Read more.
Isocorydine (ICD) exhibits strong antitumor effects on numerous human cell lines. However, the anticancer activity of ICD against oral squamous cell carcinoma (OSCC) has not been reported. The anticancer activity, migration and invasion ability, and changes in the cytoskeleton morphology and mechanical properties of ICD in OSCC were determined. Changes in the contents of reactive oxygen species (ROS), the mitochondrial membrane potential (MMP), ATP, and mitochondrial respiratory chain complex enzymes Ⅰ–Ⅳ in cancer cells were studied. ICD significantly inhibited the proliferation of oral tongue squamous cells (Cal-27), with an IC50 of 0.61 mM after 24 h of treatment. The invasion, migration, and adhesion of cancer cells were decreased, and cytoskeletal actin was deformed and depolymerized. In comparison to an untreated group, the activities of mitochondrial respiratory chain complex enzymes I-IV were significantly decreased by 50.72%, 27.39%, 77.27%, and 73.89%, respectively. The ROS production increased, the MMP decreased by 43.65%, and the ATP content decreased to 17.1 ± 0.001 (mmol/mL); ultimately, the apoptosis rate of cancer cells increased up to 10.57% after 24 h of action. These findings suggest that ICD exerted an obvious anticancer activity against OSCC and may inhibit Cal-27 proliferation and growth by causing mitochondrial dysfunction and interrupting cellular energy. Full article
(This article belongs to the Special Issue Adhesion, Metastasis and Inhibition of Cancer Cells, 2nd Edition)
Show Figures

Figure 1

16 pages, 722 KiB  
Review
Phosphorylation Codes in IRS-1 and IRS-2 Are Associated with the Activation/Inhibition of Insulin Canonical Signaling Pathways
by Anabel Martínez Báez, Guadalupe Ayala, Adolfo Pedroza-Saavedra, Hilda M. González-Sánchez and Lilia Chihu Amparan
Curr. Issues Mol. Biol. 2024, 46(1), 634-649; https://doi.org/10.3390/cimb46010041 - 9 Jan 2024
Viewed by 1084
Abstract
Insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) are signaling adaptor proteins that participate in canonical pathways, where insulin cascade activation occurs, as well as in non-canonical pathways, in which phosphorylation of substrates is carried out by a diverse array of receptors [...] Read more.
Insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) are signaling adaptor proteins that participate in canonical pathways, where insulin cascade activation occurs, as well as in non-canonical pathways, in which phosphorylation of substrates is carried out by a diverse array of receptors including integrins, cytokines, steroid hormones, and others. IRS proteins are subject to a spectrum of post-translational modifications essential for their activation, encompassing phosphorylation events in distinct tyrosine, serine, and threonine residues. Tyrosine residue phosphorylation is intricately linked to the activation of the insulin receptor cascade and its interaction with SH2 domains within a spectrum of proteins, including PI3K. Conversely, serine residue phosphorylation assumes a different function, serving to attenuate the effects of insulin. In this review, we have identified over 50 serine residues within IRS-1 that have been reported to undergo phosphorylation orchestrated by a spectrum of kinases, thereby engendering the activation or inhibition of different signaling pathways. Furthermore, we delineate the phosphorylation of over 10 distinct tyrosine residues at IRS-1 or IRS-2 in response to insulin, a process essential for signal transduction and the subsequent activation of PI3K. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

0 pages, 1148 KiB  
Review
Sodium Dodecyl Sulfate Analogs as a Potential Molecular Biology Reagent
by Tsutomu Arakawa, Takako Niikura, Yoshiko Kita and Teruo Akuta
Curr. Issues Mol. Biol. 2024, 46(1), 621-633; https://doi.org/10.3390/cimb46010040 - 9 Jan 2024
Viewed by 1508
Abstract
In this study, we review the properties of three anionic detergents, sodium dodecyl sulfate (SDS), Sarkosyl, and sodium lauroylglutamate (SLG), as they play a critical role in molecular biology research. SDS is widely used in electrophoresis and cell lysis for proteomics. Sarkosyl and, [...] Read more.
In this study, we review the properties of three anionic detergents, sodium dodecyl sulfate (SDS), Sarkosyl, and sodium lauroylglutamate (SLG), as they play a critical role in molecular biology research. SDS is widely used in electrophoresis and cell lysis for proteomics. Sarkosyl and, more frequently, SDS are used for the characterization of neuropathological protein fibrils and the solubilization of proteins. Many amyloid fibrils are resistant to SDS or Sarkosyl to different degrees and, thus, can be readily isolated from detergent-sensitive proteins. SLG is milder than the above two detergents and has been used in the solubilization and refolding of proteins isolated from inclusion bodies. Here, we show that both Sarkosyl and SLG have been used for protein refolding, that the effects of SLG on the native protein structure are weaker for SLG, and that SLG readily dissociates from the native proteins. We propose that SLG may be effective in cell lysis for functional proteomics due to no or weaker binding of SLG to the native proteins. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2024)
Show Figures

Figure 1

9 pages, 4766 KiB  
Communication
Comparison of Retinal Metabolic Activity and Structural Development between rd10 Mice and Normal Mice Using Multiphoton Fluorescence Lifetime Imaging Microscopy
by Erin Su, Niranjana Kesavamoorthy, Jason A. Junge, Mengmei Zheng, Cheryl Mae Craft and Hossein Ameri
Curr. Issues Mol. Biol. 2024, 46(1), 612-620; https://doi.org/10.3390/cimb46010039 - 6 Jan 2024
Viewed by 891
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a technique that analyzes the metabolic state of tissues based on the spatial distribution of fluorescence lifetimes of certain interacting molecules. We used multiphoton FLIM to study the metabolic state of developing C57BL6/J and rd10 retinas based [...] Read more.
Fluorescence lifetime imaging microscopy (FLIM) is a technique that analyzes the metabolic state of tissues based on the spatial distribution of fluorescence lifetimes of certain interacting molecules. We used multiphoton FLIM to study the metabolic state of developing C57BL6/J and rd10 retinas based on the fluorescence lifetimes of free versus bound nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate (NAD(P)H), with free NAD(P)H percentages suggesting increased glycolysis and bound NAD(P)H percentages indicating oxidative phosphorylation. The mice were sacrificed and enucleated at various time points throughout their first 3 months of life. The isolated eyecups were fixed, sectioned using a polyacrylamide gel embedding technique, and then analyzed with FLIM. The results suggested that in both C57BL6/J mice and rd10 mice, oxidative phosphorylation initially decreased and then increased, plateauing over time. This trend, however, was accelerated in rd10 mice, with its turning point occurring at p10 versus the p30 turning point in C57BL6/J mice. There was also a noticeable difference in oxidative phosphorylation rates between the outer and inner retinas in both strains, with greater oxidative phosphorylation present in the latter. A greater understanding of rd10 and WT metabolic changes during retinal development may provide deeper insights into retinal degeneration and facilitate the development of future treatments. Full article
(This article belongs to the Special Issue Molecular Imaging of Cells and Tissues)
Show Figures

Figure 1

27 pages, 2402 KiB  
Review
Harnessing Natural Polymers for Nano-Scaffolds in Bone Tissue Engineering: A Comprehensive Overview of Bone Disease Treatment
by Sushmita Saurav, Prashish Sharma, Anil Kumar, Zeba Tabassum, Madhuri Girdhar, Narsimha Mamidi and Anand Mohan
Curr. Issues Mol. Biol. 2024, 46(1), 585-611; https://doi.org/10.3390/cimb46010038 - 5 Jan 2024
Cited by 2 | Viewed by 1707
Abstract
Numerous surgeries are carried out to replace tissues that have been harmed by an illness or an accident. Due to various surgical interventions and the requirement of bone substitutes, the emerging field of bone tissue engineering attempts to repair damaged tissues with the [...] Read more.
Numerous surgeries are carried out to replace tissues that have been harmed by an illness or an accident. Due to various surgical interventions and the requirement of bone substitutes, the emerging field of bone tissue engineering attempts to repair damaged tissues with the help of scaffolds. These scaffolds act as template for bone regeneration by controlling the development of new cells. For the creation of functional tissues and organs, there are three elements of bone tissue engineering that play very crucial role: cells, signals and scaffolds. For the achievement of these aims, various types of natural polymers, like chitosan, chitin, cellulose, albumin and silk fibroin, have been used for the preparation of scaffolds. Scaffolds produced from natural polymers have many advantages: they are less immunogenic as well as being biodegradable, biocompatible, non-toxic and cost effective. The hierarchal structure of bone, from microscale to nanoscale, is mostly made up of organic and inorganic components like nanohydroxyapatite and collagen components. This review paper summarizes the knowledge and updates the information about the use of natural polymers for the preparation of scaffolds, with their application in recent research trends and development in the area of bone tissue engineering (BTE). The article extensively explores the related research to analyze the advancement of nanotechnology for the treatment of bone-related diseases and bone repair. Full article
Show Figures

Figure 1

15 pages, 5861 KiB  
Article
The Development of a CRISPR-FnCpf1 System for Large-Fragment Deletion and Multiplex Gene Editing in Acinetobacter baumannii
by Shuai Wang, Yue Ding, Hua Rong and Yu Wang
Curr. Issues Mol. Biol. 2024, 46(1), 570-584; https://doi.org/10.3390/cimb46010037 - 5 Jan 2024
Viewed by 1010
Abstract
Acinetobacter baumannii is a low-GC-content Gram-negative opportunistic pathogen that poses a serious global public health threat. Convenient and rapid genetic manipulation is beneficial for elucidating its pathogenic mechanisms and developing novel therapeutic methods. In this study, we report a new CRISPR-FnCpf1-based two-plasmid system [...] Read more.
Acinetobacter baumannii is a low-GC-content Gram-negative opportunistic pathogen that poses a serious global public health threat. Convenient and rapid genetic manipulation is beneficial for elucidating its pathogenic mechanisms and developing novel therapeutic methods. In this study, we report a new CRISPR-FnCpf1-based two-plasmid system for versatile and precise genome editing in A. baumannii. After identification, this new system prefers to recognize the 5′-TTN-3′ (N = A, T, C or G) and the 5′-CTV-3′ (V = A, C or G) protospacer-adjacent motif (PAM) sequence and utilize the spacer with lengths ranging from 19 to 25 nt. In direct comparison with the existing CRISPR-Cas9 system, it exhibits approximately four times the targetable range in A. baumannii. Moreover, by employing a tandem dual crRNA expression cassette, the new system can perform large-fragment deletion and simultaneous multiple gene editing, which is difficult to achieve via CRISPR-Cas9. Therefore, the new system is valuable and can greatly expand the genome editing toolbox of A. baumannii. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 3055 KiB  
Article
AG1® Induces a Favorable Impact on Gut Microbial Structure and Functionality in the Simulator of Human Intestinal Microbial Ecosystem® Model
by Trevor O. Kirby, Philip A. Sapp, Jeremy R. Townsend, Marlies Govaert, Cindy Duysburgh, Massimo Marzorati, Tess M. Marshall and Ralph Esposito
Curr. Issues Mol. Biol. 2024, 46(1), 557-569; https://doi.org/10.3390/cimb46010036 - 5 Jan 2024
Viewed by 2025
Abstract
Modulation of the human gut microbiome has become an area of interest in the nutraceutical space. We explored the effect of the novel foundational nutrition supplement AG1® on the composition of human microbiota in an in vitro experimental design. Employing the Simulator [...] Read more.
Modulation of the human gut microbiome has become an area of interest in the nutraceutical space. We explored the effect of the novel foundational nutrition supplement AG1® on the composition of human microbiota in an in vitro experimental design. Employing the Simulator of Human Intestinal Microbial Ecosystem (SHIME®) model, AG1® underwent digestion, absorption, and subsequent colonic microenvironment simulation under physiologically relevant conditions in healthy human fecal inocula. Following 48 h of colonic simulation, the gut microbiota were described using shallow shotgun, whole genome sequencing. Metagenomic data were used to describe changes in community structure (alpha diversity, beta diversity, and changes in specific taxa) and community function (functional heterogeneity and changes in specific bacterial metabolic pathways). Results showed no significant change in alpha diversity, but a significant effect of treatment and donor and an interaction between the treatment and donor effect on structural heterogeneity likely stemming from the differential enrichment of eight bacterial taxa. Similar findings were observed for community functional heterogeneity likely stemming from the enrichment of 20 metabolic pathways characterized in the gene ontology term database. It is logical to conclude that an acute dose of AG1 has significant effects on gut microbial composition that may translate into favorable effects in humans. Full article
(This article belongs to the Collection Bioinformatics Approaches to Biomedicine)
Show Figures

Graphical abstract

15 pages, 2563 KiB  
Article
Production of Recombinant Single-Chain Eel Luteinizing Hormone and Follicle-Stimulating Hormone Analogs in Chinese Hamster Ovary Suspension Cell Culture
by Munkhzaya Byambaragchaa, Sang-Gwon Kim, Sei Hyun Park, Min Gyu Shin, Shin-Kwon Kim, Myung-Hwa Kang and Kwan-Sik Min
Curr. Issues Mol. Biol. 2024, 46(1), 542-556; https://doi.org/10.3390/cimb46010035 - 5 Jan 2024
Viewed by 817
Abstract
We produced rec-single chain eel luteinizing (rec-eel LH) and follicle-stimulating (rec- eel FSH) hormones displaying high biological activity in Chinese hamster ovary suspension (CHO-S) cells. We constructed several mutants, in which a linker, including an O-linked glycosylated carboxyl-terminal peptide (CTP) of an equine [...] Read more.
We produced rec-single chain eel luteinizing (rec-eel LH) and follicle-stimulating (rec- eel FSH) hormones displaying high biological activity in Chinese hamster ovary suspension (CHO-S) cells. We constructed several mutants, in which a linker, including an O-linked glycosylated carboxyl-terminal peptide (CTP) of an equine chorionic gonadotropin (eCG) β-subunit, was attached between the β- and α-subunit (LH-M and FSH-M) or in the N-terminal (C-LH and C-FSH) or C-terminal (LH-C and FSH-C) regions. The plasmids were transfected into CHO-S cells, and culture supernatants were collected. The secretion of mutants from the CHO-S cells was faster than that of eel LHβ/α-wt and FSHβ/α-wt proteins. The molecular weight of eel LHβ/α-wt and eel FSHβ/α-wt was 32–34 and 34–36 kDa, respectively, and that of LH-M and FSH-M was 40–43 and 42–45 kDa, respectively. Peptide-N-glycanase F-treatment markedly decreased the molecular weight by approximately 8–10 kDa. The EC50 value and the maximal responsiveness of the eel LH-M and eel FSH-M increased compared with the wild-type proteins. These results show that the CTP region plays a pivotal role in early secretion and signal transduction. We suggest that novel rec-eel LH and FSH proteins, exhibiting potent activity, could be produced in large quantities using a stable CHO cell system. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

15 pages, 5358 KiB  
Article
Cytotoxic Effect of Andrographis paniculata Associated with 2-Aminoethyl Dihydrogen Phosphate in Triple-Negative Breast Cells
by Rosa Andrea Nogueira Laiso, Julia Carolina Ferreira, Rose Eli Grassi Rici, Laertty Garcia de Sousa Cabral and Durvanei Augusto Maria
Curr. Issues Mol. Biol. 2024, 46(1), 527-541; https://doi.org/10.3390/cimb46010034 - 5 Jan 2024
Viewed by 1430
Abstract
Cancer stands out as a major global public health concern and a significant impediment to increasing life expectancy worldwide. Natural bioactives derived from plants are renowned for their efficacy in treating various types of cancer. Andrographis paniculata (Burm.f.) is a well-known plant traditionally [...] Read more.
Cancer stands out as a major global public health concern and a significant impediment to increasing life expectancy worldwide. Natural bioactives derived from plants are renowned for their efficacy in treating various types of cancer. Andrographis paniculata (Burm.f.) is a well-known plant traditionally employed in diverse medical systems across the globe. The 2-AEH2P monophosphoester, a molecule intricately involved in phospholipid turnover, demonstrates antiproliferative effects across a broad spectrum of cancer types. This study aims to assess the antitumor, antiproliferative, and pharmacological effects of andrographolide at different concentrations, both individually and in conjunction with 2-aminoethyl dihydrogen phosphate. The cytotoxicity of the treatments was evaluated using the colorimetric MTT method, cell cycle phases, mitochondrial electrical potential, and markers expression via flow cytometry, while the pharmacological effects were assessed using SynergyFinder software 3.0. Treatments with A. paniculata, isolated at concentrations of 10%, 30%, and 50% of andrographolide, induced cell death in tumor cells, resulting in a reduction in mitochondrial electrical potential and alterations in cell cycle phases, particularly a decrease in the population of MDA MB-231 cells in the G0/G1 phase. The combination treatments exhibited significant cytotoxicity toward tumor cells, with minimal toxicity observed in normal fibroblast cells FN1. This led to a reduction in mitochondrial electrical potential and cell cycle arrest in the S phase for MDA MB-231 cells. Across all concentrations, the combined treatments demonstrated a synergistic pharmacological effect, underscoring the efficacy of the association. There was a change in the markers involved in cell death, such as p53, caspase 3, Bcl-2, and cytochrome c, suggesting the induction of regulated cell death. Markers associated with progression and proliferation, such as cyclin D1 and p21, corroborate the findings for cytotoxicity and cell cycle arrest. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products)
Show Figures

Figure 1

14 pages, 1677 KiB  
Article
Suppression of UVB-Induced MMP-1 Expression in Human Skin Fibroblasts Using Lysate of Lactobacillus iners Derived from Korean Women’s Skin in Their Twenties
by Jin-Sung Lee, Jin-Woo Min, Seong-Bong Gye, Yong-Woo Kim, Hee-Cheol Kang, Yoon-Seo Choi, Won-Sang Seo and Bun-Yeoul Lee
Curr. Issues Mol. Biol. 2024, 46(1), 513-526; https://doi.org/10.3390/cimb46010033 - 4 Jan 2024
Viewed by 1726
Abstract
The process of skin aging is intricate, involving intrinsic aging, influenced by internal factors, and extrinsic aging, mainly caused by exposure to UV radiation, resulting in photoaging. Photoaging manifests as skin issues such as wrinkles and discoloration. The skin microbiome, a diverse community [...] Read more.
The process of skin aging is intricate, involving intrinsic aging, influenced by internal factors, and extrinsic aging, mainly caused by exposure to UV radiation, resulting in photoaging. Photoaging manifests as skin issues such as wrinkles and discoloration. The skin microbiome, a diverse community of microorganisms on the skin’s surface, plays a crucial role in skin protection and can be affected by factors like humidity and pH. Probiotics, beneficial microorganisms, have been investigated for their potential to enhance skin health by regulating the skin microbiome. This can be accomplished through oral probiotics, impacting the gut–skin axis, or topical applications introducing live bacteria to the skin. Probiotics mitigate oxidative stress, suppress inflammation, and maintain the skin’s extracellular matrix, ultimately averting skin aging. However, research on probiotics derived from human skin is limited, and there is no established product for preventing photoaging. The mechanism by which probiotics shield the skin microbiome and skin layers from UV radiation remains unclear. Recently, researchers have discovered Lactobacillus in the skin, with reports indicating a decrease in this microorganism with age. In a recent study, scientists isolated Lactobacillus iners KOLBM20 from the skin of individuals in their twenties and confirmed its effectiveness. A comparative analysis of genetic sequences revealed that strain KOLBM20 belongs to the Lactobacillus genus and closely relates to L. iners DSM13335(T) with a 99.20% similarity. Importantly, Lactobacillus iners KOLBM20 displayed anti-wrinkle properties by inhibiting MMP-1. This investigation demonstrated the inhibitory effect of KOLBM20 strain lysate on MMP-1 expression. Moreover, the data suggest that KOLBM20 strain lysate may prevent UVB-induced MMP-1 expression by inhibiting the activation of the ERK, JNK, and p38 signaling pathways induced by UVB. Consequently, KOLBM20 strain lysate holds promise as a potential therapeutic agent for preventing and treating skin photoaging. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

15 pages, 3382 KiB  
Article
Rapid Visual Detection of Elite Erect Panicle Dense and Erect Panicle 1 Allele for Marker-Assisted Improvement in Rice (Oryza sativa L.) Using the Loop-Mediated Isothermal Amplification Method
by Yonghang Tian, Xiyi Chen, Peizhou Xu, Yuping Wang, Xianjun Wu, Kun Wu, Xiangdong Fu, Yaoxian Chin and Yongxiang Liao
Curr. Issues Mol. Biol. 2024, 46(1), 498-512; https://doi.org/10.3390/cimb46010032 - 4 Jan 2024
Viewed by 941
Abstract
Molecular-assisted breeding is an effective way to improve targeted agronomic traits. dep1 (dense and erect panicle 1) is a pleiotropic gene that regulates yield, quality, disease resistance, and stress tolerance, traits that are of great value in rice (Oryza sativa [...] Read more.
Molecular-assisted breeding is an effective way to improve targeted agronomic traits. dep1 (dense and erect panicle 1) is a pleiotropic gene that regulates yield, quality, disease resistance, and stress tolerance, traits that are of great value in rice (Oryza sativa L.) breeding. In this study, a colorimetric LAMP (loop-mediated isothermal amplification) assay was developed for the detection of the dep1 allele and tested for the screening and selection of the heavy-panicle hybrid rice elite restorer line SHUHUI498, modified with the allele. InDel (Insertion and Deletion) primers (DEP1_F and DEP1_R) and LAMP primers (F3, B3, FIP, and BIP) for genotyping were designed using the Primer3 Plus (version 3.3.0) and PrimerExplore (version 5) software. Our results showed that both InDel and LAMP markers could be used for accurate genotyping. After incubation at a constant temperature of 65 °C for 60 min with hydroxynaphthol blue (HNB) as a color indicator, the color of the LAMP assay containing the dep1 allele changed to sky blue. The SHUHUI498 rice line that was detected in our LAMP assay displayed phenotypes consistent with the dep1 allele such as having a more compact plant architecture, straight stems and leaves, and a significant increase in the number of effective panicles and spikelets, demonstrating the effectiveness of our method in screening for the dep1 allele in rice breeding. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetics Research in Plants)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop