The Role of Methyl Canthin-6-one-2-carboxylate in Targeting the NLRP3 Inflammasome in Rheumatoid Arthritis Treatment
Abstract
:1. Introduction
2. Mechanism of Action of Methyl Canthin-6-one-2-carboxylate and Its Derivatives in RA and Other Diseases
3. The Role of the NLRP3 Inflammasome in RA Pathogenesis
4. Potential Benefits of Traditional and Alternative Medicine in RA Treatment
5. Role of the Gut Microbiota in RA: Mechanisms, Therapeutic Potential, and Clinical Implications
6. Mesenchymal Stem/Stromal Cells as a Potential Therapy for RA
7. Summary
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RA | rheumatoid arthritis |
Cant | methyl canthin-6-one-2-carboxylate |
NLRP3 | nucleotide-binding domain, leucine-rich repeat family, pyrin domain-containing-3 |
ROS | reactive oxygen species |
TCM | traditional Chinese medicine |
DMARD | disease-modifying antirheumatic drug |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
MAPK | mitogen-activated protein kinase |
IL | interleukin |
FLS | fibroblast-like synoviocytes |
MMP | matrix metalloproteinase |
TNF-α | tumor necrosis factor-α |
MSC | mesenchymal stem cell |
EV | extracellular vesicles |
CRP | C-reactive protein |
RF | rheumatoid factor |
ACPAs | anti-citrullinated protein antibodies |
CCP | cyclic citrullinated peptide |
PD | periodontal disease |
PAD | peptidyl arginine deiminase |
MAMPs | microbe-associated molecular patterns |
DAMPs | damage-associated molecular patterns |
LPS | lipopolysaccharide |
MyD88 | myeloid differentiation primary response 88 |
IRAK | interleukin-1 receptor-associated kinase |
TRAF6 | TNF receptor-associated factor 6 |
IKK | IκB kinase |
References
- Chen, Y.; Zhang, Z.; Yao, Y.; Zhou, X.; Ling, Y.; Mao, L.; Gu, Z. Methyl Canthin-6-one-2-carboxylate Inhibits the Activation of the NLRP3 Inflammasome in Synovial Macrophages by Upregulating Nrf2 Expression. Curr. Issues Mol. Biol. 2025, 47, 38. [Google Scholar] [CrossRef]
- Ding, J.; Sun, T.; Wu, H.; Zheng, H.; Wang, S.; Wang, D.; Shan, W.; Ling, Y.; Zhang, Y. Novel Canthin-6-one Derivatives: Design, Synthesis, and Their Antiproliferative Activities via Inducing Apoptosis, Deoxyribonucleic Acid Damage, and Ferroptosis. ACS Omega 2023, 8, 31215–31224. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, Y.; Liu, X. Rheumatoid arthritis: Pathogenesis and therapeutic advances. MedComm 2024, 5, e509. [Google Scholar] [CrossRef] [PubMed]
- Blevins, H.M.; Xu, Y.; Biby, S.; Zhang, S. The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front. Aging Neurosci. 2022, 14, 879021. [Google Scholar] [CrossRef]
- Rosa, C.P.; Belo, T.C.A.; Santos, N.C.M.; Silva, E.N.; Gasparotto, J.; Corsetti, P.P.; de Almeida, L.A. Reactive oxygen species trigger inflammasome activation after intracellular microbial interaction. Life Sci. 2023, 331, 122076. [Google Scholar] [CrossRef]
- Luchkova, A.; Mata, A.; Cadenas, S. Nrf2 as a regulator of energy metabolism and mitochondrial function. FEBS Lett. 2024, 598, 2092–2105. [Google Scholar] [CrossRef]
- Ding, Q.; Hu, W.; Wang, R.; Yang, Q.; Zhu, M.; Li, M.; Cai, J.; Rose, P.; Mao, J.; Zhu, Y.Z. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy. Signal Transduct. Target. Ther. 2023, 8, 68. [Google Scholar] [CrossRef]
- Liao, H.; Zheng, J.; Lu, J.; Shen, H.L. NF-kappaB Signaling Pathway in Rheumatoid Arthritis: Mechanisms and Therapeutic Potential. Mol. Neurobiol. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Ye, L.; Wang, F.; Wang, J.; Wu, H.; Yang, H.; Yang, Z.; Huang, H. Role and mechanism of miR-211 in human cancer. J. Cancer 2022, 13, 2933–2944. [Google Scholar] [CrossRef]
- Cheng, L.; Rong, X. Clinical application of biological agents in rheumatoid arthritis. Transpl. Immunol. 2025, 89, 102187. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.; Bi, L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed. Pharmacother. 2020, 130, 110542. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Xu, Q.; Zhou, X.; Ling, Y.; Zhang, J.; Mao, L. Methyl Canthin-6-one-2-carboxylate Restrains the Migration/Invasion Properties of Fibroblast-like Synoviocytes by Suppressing the Hippo/YAP Signaling Pathway. Pharmaceuticals 2023, 16, 1440. [Google Scholar] [CrossRef]
- O’Donnell, G.; Gibbons, S. Antibacterial activity of two canthin-6-one alkaloids from Allium neapolitanum. Phytother. Res. 2007, 21, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Liu, N.; Sigdel, K.R.; Duan, L. Role of NLRP3 Inflammasome in Rheumatoid Arthritis. Front. Immunol. 2022, 13, 931690. [Google Scholar] [CrossRef]
- Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol. 2021, 18, 1106–1121. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ye, X.; Escames, G.; Lei, W.; Zhang, X.; Li, M.; Jing, T.; Yao, Y.; Qiu, Z.; Wang, Z.; et al. The NLRP3 inflammasome: Contributions to inflammation-related diseases. Cell. Mol. Biol. Lett. 2023, 28, 51. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Z.; Qiu, Y.; Gao, Y.; Fan, Y.; Wang, Q.; Zhou, Q. NLRP3 inflammasome activation in response to metals. Front. Immunol. 2023, 14, 1055788. [Google Scholar] [CrossRef]
- Xu, Z.; Kombe Kombe, A.J.; Deng, S.; Zhang, H.; Wu, S.; Ruan, J.; Zhou, Y.; Jin, T. NLRP inflammasomes in health and disease. Mol. Biomed. 2024, 5, 14. [Google Scholar] [CrossRef]
- Que, X.; Zheng, S.; Song, Q.; Pei, H.; Zhang, P. Fantastic voyage: The journey of NLRP3 inflammasome activation. Genes Dis. 2024, 11, 819–829. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, L. Mechanistic and therapeutic insights into the function of NLRP3 inflammasome in sterile arthritis. Front. Immunol. 2023, 14, 1273174. [Google Scholar] [CrossRef]
- Liu, J.; Han, X.; Zhang, T.; Tian, K.; Li, Z.; Luo, F. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: From mechanism to therapy. J. Hematol. Oncol. 2023, 16, 116. [Google Scholar] [CrossRef]
- Koziel, J.; Mydel, P.; Potempa, J. The link between periodontal disease and rheumatoid arthritis: An updated review. Curr. Rheumatol. Rep. 2014, 16, 408. [Google Scholar] [CrossRef]
- Courbon, G.; Rinaudo-Gaujous, M.; Blasco-Baque, V.; Auger, I.; Caire, R.; Mijola, L.; Vico, L.; Paul, S.; Marotte, H. Porphyromonas gingivalis experimentally induces periodontis and an anti-CCP2-associated arthritis in the rat. Ann. Rheum. Dis. 2019, 78, 594–599. [Google Scholar] [CrossRef]
- González-Febles, J.; Rodríguez-Lozano, B.; Sánchez-Piedra, C.; Garnier-Rodríguez, J.; Bustabad, S.; Hernández-González, M.; González-Dávila, E.; Sanz, M.; Díaz-González, F. Association between periodontitis and anti-citrullinated protein antibodies in rheumatoid arthritis patients: A cross-sectional study. Arthritis Res. Ther. 2020, 22, 27. [Google Scholar] [CrossRef]
- Mikuls, T.R.; Payne, J.B.; Yu, F.; Thiele, G.M.; Reynolds, R.J.; Cannon, G.W.; Markt, J.; McGowan, D.; Kerr, G.S.; Redman, R.S.; et al. Periodontitis and Porphyromonas gingivalis in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014, 66, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Ziebolz, D.; Pabel, S.O.; Lange, K.; Krohn-Grimberghe, B.; Hornecker, E.; Mausberg, R.F. Clinical periodontal and microbiologic parameters in patients with rheumatoid arthritis. J. Periodontol. 2011, 82, 1424–1432. [Google Scholar] [CrossRef]
- Nesse, W.; Westra, J.; van der Wal, J.E.; Abbas, F.; Nicholas, A.P.; Vissink, A.; Brouwer, E. The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anti-citrullinated protein antibody) formation. J. Clin. Periodontol. 2012, 39, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Münzer, P.; Negro, R.; Fukui, S.; di Meglio, L.; Aymonnier, K.; Chu, L.; Cherpokova, D.; Gutch, S.; Sorvillo, N.; Shi, L.; et al. NLRP3 Inflammasome Assembly in Neutrophils Is Supported by PAD4 and Promotes NETosis Under Sterile Conditions. Front. Immunol. 2021, 12, 683803. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Lv, Y.; Gao, K.; Liu, Z.; Zhao, Y.; Chen, X.; He, X.; Chu, Y.; Wu, X.; et al. Chinese Herbal Formula Huayu-Qiangshen-Tongbi Decoction Compared With Leflunomide in Combination With Methotrexate in Patients With Active Rheumatoid Arthritis: An Open-Label, Randomized, Controlled, Pilot Study. Front. Med. 2020, 7, 484. [Google Scholar] [CrossRef]
- Shah, D.K.; Ghosh, S.; More, N.; Choppadandi, M.; Sinha, M.; Srivalliputtur, S.B.; Velayutham, R.; Kapusetti, G. ECM-mimetic, NSAIDs loaded thermo-responsive, immunomodulatory hydrogel for rheumatoid arthritis treatment. BMC Biotechnol. 2024, 24, 26. [Google Scholar] [CrossRef]
- Jakobsson, P.J.; Robertson, L.; Welzel, J.; Zhang, M.; Zhihua, Y.; Kaixin, G.; Runyue, H.; Zehuai, W.; Korotkova, M.; Goransson, U. Where traditional Chinese medicine meets Western medicine in the prevention of rheumatoid arthritis. J. Intern. Med. 2022, 292, 745–763. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; Li, D.; Tang, X.; Zhao, Y.; Cai, X.; Chen, X.; Chen, X.; Huang, Q.; Huang, R. Traditional Chinese medicine Biqi capsule compared with leflunomide in combination with methotrexate in patients with rheumatoid arthritis: A randomized controlled trial. Chin. Med. 2020, 15, 36. [Google Scholar] [CrossRef]
- Chen, X.M.; Wu, J.Q.; Huang, Q.C.; Zhang, J.Y.; Pen, J.H.; Huang, Z.S.; Chu, Y.L.; He, X.H.; Wang, M.J.; Huang, R.Y. Systematic review and meta-analysis of the efficacy and safety of Biqi capsule in rheumatoid arthritis patients. Exp. Ther. Med. 2018, 15, 5221–5230. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.C.; Pai, F.T.; Lin, C.C.; Chang, C.M.; Chang, H.H.; Lee, Y.C.; Sun, M.F.; Yen, H.R. Characteristics of traditional Chinese medicine use in patients with rheumatoid arthritis in Taiwan: A nationwide population-based study. J. Ethnopharmacol. 2015, 176, 9–16. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Du, K.; Liang, C.; Wang, S.; Owusu Boadi, E.; Li, J.; Pang, X.; He, J.; Chang, Y.X. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis. J. Ethnopharmacol. 2021, 279, 114368. [Google Scholar] [CrossRef]
- Kaur, C.; Mishra, Y.; Kumar, R.; Singh, G.; Singh, S.; Mishra, V.; Tambuwala, M.M. Pathophysiology, diagnosis, and herbal medicine-based therapeutic implication of rheumatoid arthritis: An overview. Inflammopharmacology 2024, 32, 1705–1720. [Google Scholar] [CrossRef]
- Jo, H.G.; Seo, J.; Lee, D. Clinical evidence construction of East Asian herbal medicine for inflammatory pain in rheumatoid arthritis based on integrative data mining approach. Pharmacol. Res. 2022, 185, 106460. [Google Scholar] [CrossRef]
- Han, R.; Ren, H.C.; Zhou, S.; Gu, S.; Gu, Y.Y.; Sze, D.M.; Chen, M.H. Conventional disease-modifying anti-rheumatic drugs combined with Chinese Herbal Medicines for rheumatoid arthritis: A systematic review and meta-analysis. J. Tradit. Complement. Med. 2022, 12, 437–446. [Google Scholar] [CrossRef]
- Syed Zameer Ahmed, K.; Ahmed, S.S.Z.; Thangakumar, A.; Krishnaveni, R. Therapeutic effect of Parmotrema tinctorum against complete Freund’s adjuvant-induced arthritis in rats and identification of novel Isophthalic ester derivative. Biomed. Pharmacother. 2019, 112, 108646. [Google Scholar] [CrossRef]
- Venkatesha, S.H.; Astry, B.; Nanjundaiah, S.M.; Kim, H.R.; Rajaiah, R.; Yang, Y.; Tong, L.; Yu, H.; Berman, B.M.; Moudgil, K.D. Control of autoimmune arthritis by herbal extracts and their bioactive components. Asian J. Pharm. Sci. 2016, 11, 301–307. [Google Scholar]
- Nanjundaiah, S.M.; Lee, D.Y.; Ma, Z.; Fong, H.H.; Lao, L.; Berman, B.M.; Moudgil, K.D. Modified huo-luo-xiao-ling dan suppresses adjuvant arthritis by inhibiting chemokines and matrix-degrading enzymes. Evid. Based Complement. Alternat. Med. 2012, 2012, 589256. [Google Scholar] [CrossRef]
- Tong, L.; Moudgil, K.D. Celastrus aculeatus Merr. suppresses the induction and progression of autoimmune arthritis by modulating immune response to heat-shock protein 65. Arthritis Res. Ther. 2007, 9, R70. [Google Scholar] [CrossRef]
- Adcocks, C.; Collin, P.; Buttle, D.J. Catechins from green tea (Camellia sinensis) inhibit bovine and human cartilage proteoglycan and type II collagen degradation in vitro. J. Nutr. 2002, 132, 341–346. [Google Scholar] [CrossRef]
- Deligiannidou, G.E.; Gougoula, V.; Bezirtzoglou, E.; Kontogiorgis, C.; Constantinides, T.K. The Role of Natural Products in Rheumatoid Arthritis: Current Knowledge of Basic In Vitro and In Vivo Research. Antioxidants 2021, 10, 599. [Google Scholar] [CrossRef] [PubMed]
- Soeken, K.L.; Miller, S.A.; Ernst, E. Herbal medicines for the treatment of rheumatoid arthritis: A systematic review. Rheumatology 2003, 42, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Sergeant, S.; Rahbar, E.; Chilton, F.H. Gamma-linolenic acid, Dihommo-gamma linolenic, Eicosanoids and Inflammatory Processes. Eur. J. Pharmacol. 2016, 785, 77–86. [Google Scholar] [CrossRef]
- Nishimoto, N.; Yoshizaki, K.; Miyasaka, N.; Yamamoto, K.; Kawai, S.; Takeuchi, T.; Hashimoto, J.; Azuma, J.; Kishimoto, T. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: A multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 2004, 50, 1761–1769. [Google Scholar] [CrossRef]
- Cambridge, G.; Leandro, M.J.; Edwards, J.C.; Ehrenstein, M.R.; Salden, M.; Bodman-Smith, M.; Webster, A.D. Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis. Arthritis Rheum. 2003, 48, 2146–2154. [Google Scholar] [CrossRef]
- Emery, P.; Breedveld, F.C.; Hall, S.; Durez, P.; Chang, D.J.; Robertson, D.; Singh, A.; Pedersen, R.D.; Koenig, A.S.; Freundlich, B. Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): A randomised, double-blind, parallel treatment trial. Lancet 2008, 372, 375–382. [Google Scholar] [CrossRef]
- Chang, C.S.; Sun, H.L.; Lii, C.K.; Chen, H.W.; Chen, P.Y.; Liu, K.L. Gamma-linolenic acid inhibits inflammatory responses by regulating NF-kappaB and AP-1 activation in lipopolysaccharide-induced RAW 264.7 macrophages. Inflammation 2010, 33, 46–57. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, H.; Wang, S.; Wei, Q. Glycyrol suppresses collagen-induced arthritis by regulating autoimmune and inflammatory responses. PLoS ONE 2014, 9, e98137. [Google Scholar] [CrossRef]
- Zhai, K.F.; Duan, H.; Cui, C.Y.; Cao, Y.Y.; Si, J.L.; Yang, H.J.; Wang, Y.C.; Cao, W.G.; Gao, G.Z.; Wei, Z.J. Liquiritin from Glycyrrhiza uralensis Attenuating Rheumatoid Arthritis via Reducing Inflammation, Suppressing Angiogenesis, and Inhibiting MAPK Signaling Pathway. J. Agric. Food Chem. 2019, 67, 2856–2864. [Google Scholar] [CrossRef] [PubMed]
- Al-Nahain, A.; Jahan, R.; Rahmatullah, M. Zingiber officinale: A Potential Plant against Rheumatoid Arthritis. Arthritis 2014, 2014, 159089. [Google Scholar] [CrossRef]
- Lee, W.S.; Lim, J.H.; Sung, M.S.; Lee, E.G.; Oh, Y.J.; Yoo, W.H. Ethyl acetate fraction from Angelica sinensis inhibits IL-1β-induced rheumatoid synovial fibroblast proliferation and COX-2, PGE2, and MMPs production. Biol. Res. 2014, 47, 41. [Google Scholar] [CrossRef] [PubMed]
- He, D.Y.; Dai, S.M. Anti-inflammatory and immunomodulatory effects of paeonia lactiflora pall., a traditional chinese herbal medicine. Front. Pharmacol. 2011, 2, 10. [Google Scholar] [CrossRef]
- Ci, B.; Wang, W.; Ni, Y. Inhibitory effect of Saposhnikovia divaricate polysaccharide on fibroblast-like synoviocytes from rheumatoid arthritis rat in vitro. Pak. J. Pharm. Sci. 2018, 31, 2791–2798. [Google Scholar] [PubMed]
- Li, W.; Wang, K.; Liu, Y.; Wu, H.; He, Y.; Li, C.; Wang, Q.; Su, X.; Yan, S.; Su, W.; et al. A Novel Drug Combination of Mangiferin and Cinnamic Acid Alleviates Rheumatoid Arthritis by Inhibiting TLR4/NFκB/NLRP3 Activation-Induced Pyroptosis. Front. Immunol. 2022, 13, 912933. [Google Scholar] [CrossRef]
- Xia, X.; May, B.H.; Zhang, A.L.; Guo, X.; Lu, C.; Xue, C.C.; Huang, Q. Chinese Herbal Medicines for Rheumatoid Arthritis: Text-Mining the Classical Literature for Potentially Effective Natural Products. Evid.-Based Complement. Alternat. Med. 2020, 2020, 7531967. [Google Scholar] [CrossRef]
- Wang, Q.; Shu, Z.; Xing, N.; Xu, B.; Wang, C.; Sun, G.; Sun, X.; Kuang, H. A pure polysaccharide from Ephedra sinica treating on arthritis and inhibiting cytokines expression. Int. J. Biol. Macromol. 2016, 86, 177–188. [Google Scholar] [CrossRef]
- Gu, S.; Li, L.; Huang, H.; Wang, B.; Zhang, T. Antitumor, Antiviral, and Anti-Inflammatory Efficacy of Essential Oils from Atractylodes macrocephala Koidz. Produced with Different Processing Methods. Molecules 2019, 24, 2956. [Google Scholar] [CrossRef]
- Liu, L.; Ning, Z.Q.; Shan, S.; Zhang, K.; Deng, T.; Lu, X.P.; Cheng, Y.Y. Phthalide Lactones from Ligusticum chuanxiong inhibit lipopolysaccharide-induced TNF-alpha production and TNF-alpha-mediated NF-kappaB Activation. Planta Med. 2005, 71, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Blunder, M.; Liu, X.; Kunert, O.; Winkler, N.A.; Schinkovitz, A.; Schmiderer, C.; Novak, J.; Bauer, R. Polyacetylenes from Radix et Rhizoma Notopterygii incisi with an inhibitory effect on nitric oxide production in vitro. Planta Med. 2014, 80, 415–418. [Google Scholar] [CrossRef]
- Lee, S.R.; Lee, S.; Moon, E.; Park, H.J.; Park, H.B.; Kim, K.H. Bioactivity-guided isolation of anti-inflammatory triterpenoids from the sclerotia of Poria cocos using LPS-stimulated Raw264.7 cells. Bioorg. Chem. 2017, 70, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Wei, Y.; Zhu, Y.; Xie, Z.; Hai, Q.; Li, Z.; Qin, D. Gut microbiota and rheumatoid arthritis: From pathogenesis to novel therapeutic opportunities. Front. Immunol. 2022, 13, 1007165. [Google Scholar] [CrossRef]
- Tsetseri, M.N.; Silman, A.J.; Keene, D.J.; Dakin, S.G. The role of the microbiome in rheumatoid arthritis: A review. Rheumatol. Adv. Pract. 2023, 7, rkad034. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, K.; Xiong, Q.; Zhang, J.; Cai, B.; Huang, Z.; Yang, B.; Wei, B.; Chen, J.; Niu, Q. Gut microbiota in pre-clinical rheumatoid arthritis: From pathogenesis to preventing progression. J. Autoimmun. 2023, 141, 103001. [Google Scholar] [CrossRef]
- Opoku, Y.K.; Asare, K.K.; Ghartey-Quansah, G.; Afrifa, J.; Bentsi-Enchill, F.; Ofori, E.G.; Koomson, C.K.; Kumi-Manu, R. Intestinal microbiome-rheumatoid arthritis crosstalk: The therapeutic role of probiotics. Front. Microbiol. 2022, 13, 996031. [Google Scholar] [CrossRef]
- Ferro, M.; Charneca, S.; Dourado, E.; Guerreiro, C.S.; Fonseca, J.E. Probiotic Supplementation for Rheumatoid Arthritis: A Promising Adjuvant Therapy in the Gut Microbiome Era. Front. Pharmacol. 2021, 12, 711788. [Google Scholar] [CrossRef]
- Pang, J.; Ma, S.; Xu, X.; Zhang, B.; Cai, Q. Effects of rhizome of Atractylodes koreana (Nakai) Kitam on intestinal flora and metabolites in rats with rheumatoid arthritis. J. Ethnopharmacol. 2021, 281, 114026. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Jia, H.; Feng, Q.; Wang, D.; Liang, D.; Wu, X.; Li, J.; Tang, L.; Li, Y.; et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 2015, 21, 895–905. [Google Scholar] [CrossRef]
- Zhong, D.; Wu, C.; Zeng, X.; Wang, Q. The role of gut microbiota in the pathogenesis of rheumatic diseases. Clin. Rheumatol. 2018, 37, 25–34. [Google Scholar] [CrossRef]
- Scher, J.U.; Littman, D.R.; Abramson, S.B. Microbiome in Inflammatory Arthritis and Human Rheumatic Diseases. Arthritis Rheumatol. 2016, 68, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Chasov, V.; Gilyazova, E.; Ganeeva, I.; Zmievskaya, E.; Davletshin, D.; Valiullina, A.; Bulatov, E. Gut Microbiota Modulation: A Novel Strategy for Rheumatoid Arthritis Therapy. Biomolecules 2024, 14, 1653. [Google Scholar] [CrossRef]
- Rooney, C.M.; Jeffery, I.B.; Mankia, K.; Wilcox, M.H.; Emery, P. Dynamics of the gut microbiome in individuals at risk of rheumatoid arthritis: A cross-sectional and longitudinal observational study. Ann. Rheum. Dis. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Koh, J.H.; Lee, E.H.; Cha, K.H.; Pan, C.H.; Kim, D.; Kim, W.U. Factors associated with the composition of the gut microbiome in patients with established rheumatoid arthritis and its value for predicting treatment responses. Arthritis Res. Ther. 2023, 25, 32. [Google Scholar] [CrossRef] [PubMed]
- Longo, U.G.; Lalli, A.; Bandini, B.; de Sire, R.; Angeletti, S.; Lustig, S.; Ammendolia, A.; Budhiparama, N.C.; de Sire, A. Role of the Gut Microbiota in Osteoarthritis, Rheumatoid Arthritis, and Spondylarthritis: An Update on the Gut-Joint Axis. Int. J. Mol. Sci. 2024, 25, 3242. [Google Scholar] [CrossRef] [PubMed]
- Zaiss, M.M.; Joyce Wu, H.J.; Mauro, D.; Schett, G.; Ciccia, F. The gut-joint axis in rheumatoid arthritis. Nat. Rev. Rheumatol. 2021, 17, 224–237. [Google Scholar] [CrossRef]
- Bungau, S.G.; Behl, T.; Singh, A.; Sehgal, A.; Singh, S.; Chigurupati, S.; Vijayabalan, S.; Das, S.; Palanimuthu, V.R. Targeting Probiotics in Rheumatoid Arthritis. Nutrients 2021, 13, 3376. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, M.; Cheng, Y.; Wang, X.; Wang, W. Prevention and treatment of rheumatoid arthritis through traditional Chinese medicine: Role of the gut microbiota. Front. Immunol. 2023, 14, 1233994. [Google Scholar] [CrossRef]
- Pianta, A.; Arvikar, S.; Strle, K.; Drouin, E.E.; Wang, Q.; Costello, C.E.; Steere, A.C. Evidence of the Immune Relevance of Prevotella copri, a Gut Microbe, in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2017, 69, 964–975. [Google Scholar] [CrossRef]
- Maeda, Y.; Takeda, K. Role of Gut Microbiota in Rheumatoid Arthritis. J. Clin. Med. 2017, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Cai, X.; Fei, W.; Ren, F.; Wang, F.; Luan, X.; Chen, F.; Zheng, C. Regulating Gut Microbiome: Therapeutic Strategy for Rheumatoid Arthritis During Pregnancy and Lactation. Front. Pharmacol. 2020, 11, 594042. [Google Scholar] [CrossRef]
- Xu, Q.; Hou, W.; Zhao, B.; Fan, P.; Wang, S.; Wang, L.; Gao, J. Mesenchymal stem cells lineage and their role in disease development. Mol. Med. 2024, 30, 207. [Google Scholar] [CrossRef]
- Babaahmadi, M.; Tayebi, B.; Gholipour, N.M.; Kamardi, M.T.; Heidari, S.; Baharvand, H.; Eslaminejad, M.B.; Hajizadeh-Saffar, E.; Hassani, S.N. Rheumatoid arthritis: The old issue, the new therapeutic approach. Stem Cell. Res. Ther. 2023, 14, 268. [Google Scholar] [CrossRef]
- Sarsenova, M.; Issabekova, A.; Abisheva, S.; Rutskaya-Moroshan, K.; Ogay, V.; Saparov, A. Mesenchymal Stem Cell-Based Therapy for Rheumatoid Arthritis. Int. J. Mol. Sci. 2021, 22, 11592. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yang, Y.; Yao, M.; Yang, L.; Ao, L.; Hu, X.; Li, Z.; Wu, X.; Tan, Y.; Xing, W.; et al. Combination of human umbilical cord mesenchymal stem (stromal) cell transplantation with IFN-gamma treatment synergistically improves the clinical outcomes of patients with rheumatoid arthritis. Ann. Rheum. Dis. 2020, 79, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Vij, R.; Stebbings, K.A.; Kim, H.; Park, H.; Chang, D. Safety and efficacy of autologous, adipose-derived mesenchymal stem cells in patients with rheumatoid arthritis: A phase I/IIa, open-label, non-randomized pilot trial. Stem Cell Res. Ther. 2022, 13, 88. [Google Scholar] [CrossRef]
- Tsiapalis, D.; Floudas, A.; Tertel, T.; Boerger, V.; Giebel, B.; Veale, D.J.; Fearon, U.; O’Driscoll, L. Therapeutic Effects of Mesenchymal/Stromal Stem Cells and Their Derived Extracellular Vesicles in Rheumatoid Arthritis. Stem Cells Transl. Med. 2023, 12, 849–862. [Google Scholar] [CrossRef]
- Mesa, L.E.; Lopez, J.G.; Lopez Quiceno, L.; Barrios Arroyave, F.; Halpert, K.; Camacho, J.C. Safety and efficacy of mesenchymal stem cells therapy in the treatment of rheumatoid arthritis disease: A systematic review and meta-analysis of clinical trials. PLoS ONE 2023, 18, e0284828. [Google Scholar] [CrossRef]
- Sun, Y.; Deng, W.; Geng, L.; Zhang, L.; Liu, R.; Chen, W.; Yao, G.; Zhang, H.; Feng, X.; Gao, X.; et al. Mesenchymal stem cells from patients with rheumatoid arthritis display impaired function in inhibiting Th17 cells. J. Immunol. Res. 2015, 2015, 284215. [Google Scholar] [CrossRef]
- Liu, L.; Wong, C.W.; Han, M.; Farhoodi, H.P.; Liu, G.; Liu, Y.; Liao, W.; Zhao, W. Meta-analysis of preclinical studies of mesenchymal stromal cells to treat rheumatoid arthritis. eBioMedicine 2019, 47, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Alivernini, S.; Masserdotti, A.; Magatti, M.; Cargnoni, A.; Papait, A.; Silini, A.R.; Romoli, J.; Ficai, S.; Di Mario, C.; Gremese, E.; et al. Exploring perinatal mesenchymal stromal cells as a potential therapeutic strategy for rheumatoid arthritis. Heliyon 2025, 11, e41438. [Google Scholar] [CrossRef]
- Pignatti, E.; Maccaferri, M.; Pisciotta, A.; Carnevale, G.; Salvarani, C. A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Rev. Clin. Immunol. 2024, 20, 463–484. [Google Scholar] [CrossRef] [PubMed]
TCM | Source | Mechanism | Related Actions in RA | References |
---|---|---|---|---|
Cant | Zanthoxylum chiloperone, Aerva lanata, Eurycoma longifolia, and Simaba ferruginea A. St.-Hil. | IL-1β, IL-6, IL-18, tumor necrosis factor-α (TNF-α), nitric oxide (NO), cyclooxygenase-2 (COX-2), and NLRP3 | Anti-inflammatory | [1] |
Biqi capsule (combined with methotrexate) | Strychnos nux-vomica L., Pheretima aspergillum (E. Perrier), Codonopsis pilosula (Franch.) Nannf., Poria cocos (Schw.) Wolf., Atractylodes macrocephala Koidz., Ligusticum chuanxiong Hort., Salvia miltiorrhiza Bunge, Panax notoginseng (Burk.) F. H. Chen ex C. Chow, Achyranthes bidentata BL., and Glycyrrhiza uralensis Fisch. | IL-4 and IL-13 signaling | Anti-inflammatory | [32,33] |
Extract | Parmotrema tinctorum | TNF-α | Anti-inflammatory | [39] |
Huo-luo-xiao-ling dan | Angelica sinensis (Oliv.) Diels, Salvia miltiorrhiza Bge., Boswellia carterii Birdw., and Commiphora myrrha Engl. | Chemokines, IL-6, IL-17, MMP-2, and MMP-9 | Anti-inflammatory | [41] |
Ethanol extract | Celastrus aculeatus Merr. | Interferon-γ (IFN-γ), IL-10, and NO production | Anti-inflammatory | [42] |
Catechins | Camellia sinensis | TNF and IL-1 | Anti-inflammatory and slowing cartilage breakdown | [43] |
Gamma-linolenic acid | Plant seed oils | NF-κB, activator protein 1 (AP-1), and IL-1β | Anti-inflammatory | [45,46,50] |
Glycyrol | Glycyrrhiza uralensis | NF-κB, nuclear factor of activated T cell (NFAT), and IL-2 | Downregulated autoimmune reactions | [51] |
Liquiritin | Glycyrrhiza uralensis | MAPK and caspase-3 | Anti-inflammatory | [52] |
Gingerol | Zingiber officinale Rosc. | IL-1 and IL-6 signaling | Anti-inflammatory | [53] |
Ethyl acetate fraction | Angelica sinensis | IL-1β signaling | Proliferation of RA synovial fibroblasts | [54] |
Total glucosides of peony | Paeonia lactiflora Pall. | Prostaglandin E2 (PGE2), TNF-α, IL-1β | Anti-inflammatory | [55] |
Polysaccharide | Saposhnikovia divaricata | TNF-α, IL-1β, p53, and caspase-3 | Anti-inflammatory | [56] |
Cinnamic acid (combined with mangiferin) | Cinnamomum cassia | IL-1β, IL-18, TLR4, NF-κB, and NLRP3 | Anti-inflammatory | [57,58] |
Acidic polysaccharides | Ephedra sinica | TLR4 and MAPK signaling | Anti-inflammatory and immuno-suppressive | [59] |
Atractylone | Atractylodes macrocephala Koidz | NO production | Anti-inflammatory | [60] |
Senkyunolide A | Ligusticum chuanxiong Hort. | TNF-α and NF-κB | Anti-inflammatory | [61] |
Polyacetylenes | Notopterygium incisum Ting | NO production | Anti-inflammatory | [62] |
Triterpenoids | Poria cocos Schw. Wolf | NO, PGE2, and COX-2 | Anti-inflammatory | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, C.-C.; Chu, T.-Y.; Hsu, P.-C.; Kuo, C.-Y. The Role of Methyl Canthin-6-one-2-carboxylate in Targeting the NLRP3 Inflammasome in Rheumatoid Arthritis Treatment. Curr. Issues Mol. Biol. 2025, 47, 254. https://doi.org/10.3390/cimb47040254
Tsai C-C, Chu T-Y, Hsu P-C, Kuo C-Y. The Role of Methyl Canthin-6-one-2-carboxylate in Targeting the NLRP3 Inflammasome in Rheumatoid Arthritis Treatment. Current Issues in Molecular Biology. 2025; 47(4):254. https://doi.org/10.3390/cimb47040254
Chicago/Turabian StyleTsai, Chung-Che, Tin-Yi Chu, Po-Chih Hsu, and Chan-Yen Kuo. 2025. "The Role of Methyl Canthin-6-one-2-carboxylate in Targeting the NLRP3 Inflammasome in Rheumatoid Arthritis Treatment" Current Issues in Molecular Biology 47, no. 4: 254. https://doi.org/10.3390/cimb47040254
APA StyleTsai, C.-C., Chu, T.-Y., Hsu, P.-C., & Kuo, C.-Y. (2025). The Role of Methyl Canthin-6-one-2-carboxylate in Targeting the NLRP3 Inflammasome in Rheumatoid Arthritis Treatment. Current Issues in Molecular Biology, 47(4), 254. https://doi.org/10.3390/cimb47040254