The Role of HSP47 in Thrombotic Disorders: Molecular Mechanism and Therapeutic Potential
Abstract
:1. Introduction
2. Background
3. Main Text
3.1. Introduction to Heat Shock Proteins
3.1.1. Ensuring Protein Integrity: The Functions of HSP47 and Chaperones in Endoplasmic Reticulum Stress
3.1.2. The Folding Process of Procollagen
3.1.3. The Role of HSP47 in Procollagen Interaction
3.1.4. Procollagen Stability and the Role of HSP47
3.1.5. Collagen and Connective Tissue Disorders
3.1.6. Binding Characteristics of HSP47
3.1.7. The Importance of Collagen in Atherosclerotic Plaques
3.1.8. The Backbone of Atherosclerotic Plaques
3.1.9. HSP47: Targeting Plaque Stability in Atherosclerosis
3.2. Expression Patterns of HSP47 in Atherosclerosis
3.2.1. Overview of Collagen Types and Their Functions
3.2.2. Role of Collagen in Hemostasis
3.2.3. Platelet Adhesion and Shear Rate Dynamics
3.2.4. Characterization of Collagen Fragments and Platelet Response
3.2.5. Interaction Between Integrins and Collagen
3.2.6. The Implications of GPVI and Integrin Interplay
3.2.7. Novel Investigations into Platelet Collagen Receptors
3.2.8. The Importance of Adhesion Motifs and Cytoskeletal Extension
3.2.9. The Role of Collagen Type I in Thrombus Formation
3.3. Impact of HSP47 on Platelet Binding to Collagen
3.3.1. The Effect of HSP47 Inhibition on Platelet Aggregation
3.3.2. HSP47’s Role in Calcium Mobilization and Platelet Function
3.3.3. Influences of HSP47 on Thrombus Formation and Aggregation
3.3.4. Evaluating the Specificity of HSP47 in Platelet Interactions
3.3.5. Exploring Early Signaling Events Following GPVI Ligation
3.3.6. Intravital Microscopy: Examining Platelet Recruitment Post-Injury
3.3.7. Impact of HSP47 on Hemostasis in Mice
3.3.8. The Role of Surface Receptors in Platelet Activation
3.3.9. Interaction of HSP47 with Collagen in Platelet Function
3.4. Understanding HSP47’s Modulatory Effects on Platelet Responses
3.4.1. Unraveling HSP47’s Role in Collagen Dynamics: Future Research and Therapeutic Implications
3.4.2. Heat Shock Protein 47: A Dual Regulator of Platelet–Collagen Interactions and Immune Response in Plaque Thrombosis and VTE
3.4.3. Investigative Journey of Manuela Thienel
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HSP47 | Heat Shock Protein 47 |
DVT | Deep Vein Thrombosis |
ER | Endoplasmic Reticulum |
ECM | Extracellular Matrix |
UPR | Unfolded Protein Response |
PDI | Protein Disulfide Isomerase |
P4H | Prolyl 4-Hydroxylase |
FACIT | Fibril-Associated Collagens with Interrupted Triple Helices |
MACIT | Membrane-Associated Collagens with Interrupted Triple Helices |
PPARγ | Peroxisome Proliferator-Activated Receptor Gamma |
TZDs | Thiazolidinediones |
GWAS | Genome-Wide Association Studies |
SNPs | Single Nucleotide Polymorphisms |
PRS | Polygenic Risk Score |
VTE | Venous Thromboembolism |
FGF-2 | Fibroblast Growth Factor 2 |
TGF-β1 | Transforming Growth Factor Beta 1 |
MRI | Magnetic Resonance Imaging |
CT | Computed Tomography |
ITAM | Immunoreceptor Tyrosine-Based Activation Motif |
GPVI | Glycoprotein VI |
FRET | Fluorescence Resonance Energy Transfer |
PET | Positron Emission Tomography |
scRNA-seq | Single-Cell RNA Sequencing |
HbA1c | Hemoglobin A1c |
CRISPR/Cas9 | Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 |
PAR-1 and PAR-4 | Protease-Activated Receptors 1 and 4 |
SMIH | Small Molecule Inhibitor of HSP47 |
DiOC6 | 3,3′-Dihexyloxacarbocyanine Iodide |
GPIb | Glycoprotein Ib |
VWF | Von Willebrand Factor |
FIX | Factor IX |
ADP | Adenosine Diphosphate |
Ca2+ | Calcium Ion |
scFvs | Single-Chain Variable Fragments |
ELISA | Enzyme-Linked Immunosorbent Assay |
FTO | Fat Mass and Obesity-Associated Gene |
FRET | Förster (or Fluorescence) Resonance Energy Transfer |
PET | Positron Emission Tomography |
NET | Neutrophil Extracellular Trap |
References
- Ito, S.; Nagata, K. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J. Biol. Chem. 2019, 294, 2133–2141. [Google Scholar] [CrossRef]
- Thienel, M.; Müller-Reif, J.B.; Zhang, Z.; Ehreiser, V.; Huth, J.; Shchurovska, K.; Kilani, B.; Schweizer, L.; Geyer, P.E.; Zwiebel, M.; et al. Immobility-associated thromboprotection is conserved across mammalian species from bear to human. Science 2023, 380, eabo5044. [Google Scholar] [CrossRef]
- Grover, S.P.; Mackman, N.; Bendapudi, P.K. Heat shock protein 47 and venous thrombosis: Letting sleeping bears lie. J. Thromb. Haemost. 2023, 21, 2648–2651. [Google Scholar] [CrossRef]
- Khan, E.S.; Däinghaus, T. HSP47 in human diseases: Navigating pathophysiology, diagnosis, and therapeutic strategies. Clin. Transl. Med. 2024, 14, e1755. [Google Scholar] [CrossRef]
- Nagata, K. Hsp47 as a collagen-specific molecular chaperone: Function and expression in normal and pathological conditions. Histol. Histopathol. 2003, 18, 473–480. [Google Scholar]
- Sasikumar, P.; AlOuda, K.S.; Kaiser, W.J.; Holbrook, L.M.; Kriek, N.; Unsworth, A.J.; Bye, A.P.; Sage, T.; Ushioda, R.; Nagata, K.; et al. The chaperone protein HSP47: A platelet collagen binding protein that contributes to thrombosis and hemostasis. J. Thromb. Haemost. 2018, 16, 946–959. [Google Scholar] [CrossRef]
- Mala, J.G.; Rose, C. Interactions of heat shock protein 47 with collagen and the stress response: An unconventional chaperone model? Life Sci. 2010, 87, 579–586. [Google Scholar] [CrossRef]
- Dafforn, T.R.; Della, M.; Miller, A.D. The molecular interactions of heat shock protein 47 (Hsp47) and their implications for collagen biosynthesis. J. Biol. Chem. 2001, 276, 49310–49319. [Google Scholar] [CrossRef]
- Bellaye, P.-S.; Burgy, O.; Kolb, M. HSP47: A potential target for fibrotic diseases and implications for therapy. Expert Opin. Ther. Targets 2021, 25, 49–62. [Google Scholar] [CrossRef]
- Akkız, H.; Gieseler, R.K.; Canbay, A. Liver Fibrosis: From Basic Science towards Clinical Progress, Focusing on the Central Role of Hepatic Stellate Cells. Int. J. Mol. Sci. 2024, 25, 7873. [Google Scholar] [CrossRef]
- Sakamoto, N.; Okuno, D.; Tokito, T.; Yura, H.; Kido, T.; Ishimoto, H.; Tanaka, Y.; Mukae, H. HSP47: A therapeutic target in pulmonary fibrosis. Biomedicines 2023, 11, 2387. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, S.; Iwasaka, H.; Shingu, C.; Matumoto, S.; Hasegawa, A.; Noguchi, T. Heat shock protein 47 (HSP47) antisense oligonucleotides reduce cardiac remodeling and improve cardiac function in a rat model of myocardial infarction. Thorac. Cardiovasc. Surg. 2011, 59, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.; Kanisicak, O.; Vagnozzi, R.J.; Johansen, A.K.; Maliken, B.D.; Prasad, V.; Boyer, J.G.; Brody, M.J.; Schips, T.; Kilian, K.K.; et al. Cell-specific ablation of Hsp47 defines the collagen-producing cells in the injured heart. JCI Insight 2019, 4, e128722. [Google Scholar] [CrossRef] [PubMed]
- Omari, S.; Makareeva, E.; Gorrell, L.; Jarnik, M.; Lippincott-Schwartz, J.; Leikin, S. Mechanisms of procollagen and HSP47 sorting during ER-to-Golgi transport in living cells. J. Cell Biol. 2016, 215, 629–640. [Google Scholar]
- Widmer, C.; Gebauer, J.M.; Baumann, U. Molecular basis for the action of the collagen-specific chaperone Hsp47/SERPINH1 and its structure-specific client recognition. Proc. Natl. Acad. Sci. USA 2012, 109, 13243–13247. [Google Scholar] [CrossRef]
- Wilson, R.; Lees, J.F.; Bulleid, N.J. Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J. Biol. Chem. 1998, 273, 9637–9643. [Google Scholar] [CrossRef]
- Koivu, J.; Myllylä, R. Protein disulfide isomerase is an essential component of prolyl 4-hydroxylase. EMBO J. 1987, 6, 3497–3503. [Google Scholar]
- Ito, S.; Nagata, K. Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. Semin. Cell Dev. Biol. 2017, 62, 142–151. [Google Scholar] [CrossRef]
- Malhotra, J.D.; Kaufman, R.J. Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword? Antioxid. Redox Signal. 2007, 9, 2277–2293. [Google Scholar] [CrossRef]
- Hetz, C.; Papa, F.R. The Unfolded Protein Response and Cell Fate Control. Mol. Cell 2018, 69, 169–181. [Google Scholar] [CrossRef]
- Koide, T.; Aso, A.; Yorihuzi, T.; Nagata, K. Conformational requirements of collagenous peptides for recognition by the chaperone protein HSP47. J. Biol. Chem. 2000, 275, 8934–8940. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda, D.; Rojas-Rivera, D.; Rodríguez, D.A.; Groenendyk, J.; Köhler, A.; Lebeaupin, C.; Ito, S.; Urra, H.; Carreras-Sureda, A.; Hazari, Y.; et al. Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α. Mol. Cell 2018, 69, 238–252.e5. [Google Scholar] [CrossRef] [PubMed]
- Makareeva, E.; Leikin, S. Collagen chaperones in health and disease. Front. Biosci. (Landmark Ed.) 2014, 19, 1047–1060. [Google Scholar]
- Lamandé, S.R.; Bateman, J.F. Procollagen folding and assembly: The role of endoplasmic reticulum enzymes and molecular chaperones. Semin. Cell Dev. Biol. 1999, 10, 455–464. [Google Scholar] [CrossRef]
- Hendershot, L.M.; Bulleid, N.J. Protein-specific chaperones: The role of hsp47 begins to gel. Curr. Biol. 2000, 10, R912–R915. [Google Scholar] [CrossRef]
- Morello, R.; Bertin, T.K.; Chen, Y.; Hicks, J.; Tonachini, L.; Monticone, M.; Castagnola, P.; Rauch, F.; Glorieux, F.H.; Vranka, J.; et al. CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 2006, 127, 291–304. [Google Scholar] [CrossRef]
- Syx, D.; Ishikawa, Y.; Gebauer, J.; Boudko, S.P.; Guillemyn, B.; Van Damme, T.; D’hondt, S.; Symoens, S.; Nampoothiri, S.; Gould, D.B.; et al. Aberrant binding of mutant HSP47 affects posttranslational modification of type I collagen and leads to osteogenesis imperfecta. PLoS Genet. 2021, 17, e1009339. [Google Scholar] [CrossRef]
- Christiansen, H.E.; Schwarze, U.; Pyott, S.M.; AlSwaid, A.; Al Balwi, M.; Alrasheed, S.; Pepin, M.G.; Weis, M.A.; Eyre, D.R.; Byers, P.H. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am. J. Hum. Genet. 2010, 86, 389–398. [Google Scholar] [CrossRef]
- Sauk, J.J.; Nikitakis, N.; Siavash, H. Hsp47: A novel collagen binding serpin chaperone, autoantigen, and therapeutic target. Front. Biosci. 2005, 10, 107–118. [Google Scholar] [CrossRef]
- Koide, T.; Asada, S.; Takahara, Y.; Nishikawa, Y.; Nagata, K.; Kitagawa, K. Specific recognition of the collagen triple helix by chaperone HSP47: Minimal structural requirement and spatial molecular orientation. J. Biol. Chem. 2006, 281, 3432–3438. [Google Scholar] [CrossRef]
- Köhler, A.; Mörgelin, M.; Gebauer, J.M.; Öcal, S.; Imhof, T.; Koch, M.; Nagata, K.; Paulsson, M.; Aumailley, M.; Baumann, U.; et al. New specific HSP47 functions in collagen subfamily chaperoning. FASEB J. 2020, 34, 12519–12531. [Google Scholar] [CrossRef] [PubMed]
- Satoh, M.; Hirayoshi, K.; Yokota, S.I.; Hosokawa, N.; Nagata, K. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J. Cell Biol. 1996, 133, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Nagai, N.; Hosokawa, M.; Itohara, S.; Adachi, E.; Matsushita, T.; Hosokawa, N.; Nagata, K. Embryonic lethality of molecular chaperone Hsp47 knockout mice is associated with defects in collagen biosynthesis. J. Cell Biol. 2000, 150, 1499–1506. [Google Scholar] [CrossRef]
- Ishida, Y.; Nagata, K. Hsp47 as a collagen-specific molecular chaperone. Methods Enzymol. 2011, 499, 167–182. [Google Scholar]
- Nagata, K. Hsp47: A collagen-specific molecular chaperone. Trends Biochem. Sci. 1996, 21, 22–26. [Google Scholar] [CrossRef]
- Besio, R.; Garibaldi, N.; Sala, A.; Tonelli, F.; Aresi, C.; Maffioli, E.; Casali, C.; Torriani, C.; Biggiogera, M.; Villani, S.; et al. The administration of exogenous HSP47 as a collagen-specific chaperone improves cellular homeostasis in osteogenesis imperfecta. J. Clin. Investig. Insight 2025, 10, e181570. [Google Scholar]
- Rocnik, E.F.; van der Veer, E.; Cao, H.; Hegele, R.A.; Pickering, J.G. Functional linkage between the endoplasmic reticulum protein Hsp47 and procollagen expression in human vascular smooth muscle cells. J. Biol. Chem. 2002, 277, 38571–38578. [Google Scholar] [CrossRef]
- Xu, Q.; Metzler, B.; Jahangiri, M.; Mandal, K. Molecular chaperones and heat shock proteins in atherosclerosis. Cell Stress Chaperones 2012, 17, 123–131. [Google Scholar] [CrossRef]
- Hansson, G.K.; Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 2011, 12, 204–212. [Google Scholar] [CrossRef]
- Virmani, R.; Burke, A.P.; Kolodgie, F.D.; Farb, A. Vulnerable plaque: The pathology of unstable coronary lesions. J. Interv. Cardiol. 2002, 15, 439–446. [Google Scholar] [CrossRef]
- Finn, A.V.; Nakano, M.; Narula, J.; Kolodgie, F.D.; Virmani, R. Concept of vulnerable/unstable plaque. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1282–1292. [Google Scholar] [CrossRef] [PubMed]
- Virmani, R.; Kolodgie, F.D.; Burke, A.P.; Farb, A.; Schwartz, S.M. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Burke, A.P.; Kolodgie, F.D.; Farb, A.; Virmani, R. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 2002, 105, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Neumeister, V.; Scheibe, M.; Lattke, P.; Jaross, W. Determination of the cholesterol–collagen ratio of arterial atherosclerotic plaques using near-infrared spectroscopy as a possible measure of plaque stability. Atherosclerosis 2002, 165, 251–257. [Google Scholar] [CrossRef]
- Nadkarni, S.K.; Bouma, B.E.; de Boer, J.; Tearney, G.J. Evaluation of collagen in atherosclerotic plaques: The use of two coherent laser-based imaging methods. Lasers Med. Sci. 2009, 24, 439–445. [Google Scholar] [CrossRef]
- Holm Nielsen, S.; Tengryd, C.; Edsfeldt, A.; Brix, S.; Genovese, F.; Bengtsson, E.; Karsdal, M.; Leeming, D.J.; Nilsson, J.; Goncalves, I. A biomarker of collagen type I degradation is associated with cardiovascular events and mortality in patients with atherosclerosis. J. Intern. Med. 2018, 285, 118–123. [Google Scholar] [CrossRef]
- Silvera, S.S.; El Aidi, H.; Rudd, J.H.; Mani, V.; Yang, L.; Farkouh, M.; Fuster, V.; Fayad, Z.A. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis 2009, 207, 139–143. [Google Scholar] [CrossRef]
- Barascuk, N.; Skjøt-Arkil, H.; Register, T.C.; Larsen, L.; Byrjalsen, I.; Christiansen, C.; Karsdal, M.A. Human macrophage foam cells degrade atherosclerotic plaques through cathepsin K mediated processes. BMC Cardiovasc. Disord. 2010, 10, 19. [Google Scholar] [CrossRef]
- Si, S.C.; Yang, W.; Luo, H.Y.; Ma, Y.X.; Zhao, H.; Liu, J. Association of bone turnover biomarkers with severe intracranial and extracranial artery stenosis in type 2 diabetes mellitus patients. World J. Diabetes 2023, 14, 857–870. [Google Scholar] [CrossRef]
- Pandit, R.; Yurdagul, A. The Atherosclerotic Plaque Microenvironment as a Therapeutic Target. Curr. Atheroscler. Rep. 2025, 27, 47. [Google Scholar] [CrossRef]
- Newby, A.C. Metalloproteinase Expression in Monocytes and Macrophages and its Relationship to Atherosclerotic Plaque Instability. Arterioscler. Thromb. Vasc. Biol. 2008, 19, 1707–1711. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liang, C.; Xie, X.; Huang, H.; Fu, J.; Wang, C.; Su, Z.; Wang, Y.; Qu, X.; Li, J.; et al. Hsp47 Inhibitor Col003 Attenuates Collagen-Induced Platelet Activation and Cerebral Ischemic–Reperfusion Injury in Rats. Front. Pharmacol. 2021, 12, 792263. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Fattah, E.E.; Zakaria, A.Y. Targeting HSP47 and HSP70: Promising therapeutic approaches in liver fibrosis management. J. Transl. Med. 2022, 20, 544. [Google Scholar] [CrossRef] [PubMed]
- Ham, S.Y.; Pyo, M.J.; Kang, M.; Kim, Y.S.; Lee, D.H.; Chung, J.H.; Lee, S.T. HSP47 Increases the Expression of Type I Collagen in Fibroblasts through IRE1α Activation, XBP1 Splicing, and Nuclear Translocation of β-Catenin. Cells 2024, 13, 527. [Google Scholar] [CrossRef]
- Kim, H.-J.; Park, J.-H.; Shin, J.-M.; Yang, H.-W.; Lee, H.-M. TGF-β1-induced HSP47 regulates extracellular matrix accumulation via Smad2/3 signaling pathways in nasal fibroblasts. Sci. Rep. 2019, 9, 15644. [Google Scholar] [CrossRef]
- Sasaki, H.; Sato, T.; Yamauchi, N.; Okamoto, T.; Kobayashi, D.; Iyama, S.; Kato, J.; Matsunaga, T.; Takimoto, R.; Takayama, T.; et al. Induction of heat shock protein 47 synthesis by TGF-β and IL-1β in murine peritoneal macrophages. J. Immunol. 2002, 168, 5178–5183. [Google Scholar] [CrossRef]
- Agbani, E.O.; Poole, A.W. Procoagulant platelets: Generation, function, and therapeutic targeting in thrombosis. Blood 2017, 130, 2171–2179. [Google Scholar] [CrossRef]
- Aliotta, A.; Alberio, L. Thrombocytopathies: Not Just Aggregation Defects—The Clinical Relevance of Procoagulant Platelets. J. Clin. Med. 2021, 10, 894. [Google Scholar] [CrossRef]
- Zwaal, R.F.A.; Comfurius, P.; Bevers, E.M. Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2004, 1636, 119–128. [Google Scholar] [CrossRef]
- Reddy, E.C.; Rand, M.L. Procoagulant Phosphatidylserine-Exposing Platelets in vitro and in vivo. Front. Cardiovasc. Med. 2020, 7, 15. [Google Scholar] [CrossRef]
- Mann, K.G.; Butenas, S.; Brummel, K. The dynamics of thrombin formation. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.; Monroe, D.M. A cell-based model of hemostasis. Thromb. Haemost. 2001, 85, 958–965. [Google Scholar] [PubMed]
- Monroe, D.M.; Hoffman, M.; Roberts, H.R. Platelets and Thrombin Generation. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1381–1389. [Google Scholar] [CrossRef]
- Alisa, S. Wolberg, et. al. Human Factor IX Binds to Specific Sites on the Collagenous Domain of Collagen IV. J. Biol. Chem. 1997, 271, 26136–26141. [Google Scholar]
- Gui, T.; Reheman, A.; Ni, H.; Gross, P.L.; Yin, F.; Monroe, D.; Monahan, P.E.; Stafford, D.W. Abnormal hemostasis in a knock-in mouse carrying a variant of factor IX with impaired binding to collagen type IV. J. Thromb. Haemost. 2009, 7, 1843–1851. [Google Scholar] [CrossRef]
- Savage, B.; Saldivar, E.; Ruggeri, Z.M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996, 84, 289–297. [Google Scholar] [CrossRef]
- Jackson, S.P. The growing complexity of platelet aggregation. Blood 2007, 109, 5087–5095. [Google Scholar] [CrossRef]
- Nesbitt, W.S.; Westein, E.; Tovar-Lopez, F.J.; Tolouei, E.; Mitchell, A.; Fu, J.; Carberry, J.; Fouras, A.; Jackson, S.P. A shear gradient–dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 2009, 15, 665–673. [Google Scholar] [CrossRef]
- Ruggeri, Z.M.; Mendolicchio, G.L. Adhesion mechanisms in platelet function. Circ. Res. 2007, 100, 1673–1685. [Google Scholar] [CrossRef]
- Siljander, P.R.M.; Munnix, I.C.; Smethurst, P.A.; Deckmyn, H.; Lindhout, T.; Ouwehand, W.H.; Farndale, R.W.; Heemskerk, J.W. Platelet receptor interplay regulates collagen-induced thrombus formation in flowing human blood. Blood 2004, 103, 1333–1341. [Google Scholar] [CrossRef]
- Farndale, R.W.; Sixma, J.J.; Barnes, M.J.; De Groot, P.G. The role of collagen in thrombosis and hemostasis. J. Thromb. Haemost. 2004, 2, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Huang, Y.; Burwell, T.J.; Peterson, N.C.; Connor, J.; Weiss, S.J.; Yu, S.M.; Li, Y. In situ imaging of tissue remodeling with collagen hybridizing peptides. ACS Nano 2017, 11, 9825–9835. [Google Scholar] [CrossRef] [PubMed]
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Foss, C.A.; Summerfield, D.D.; Doyle, J.J.; Torok, C.M.; Dietz, H.C.; Pomper, M.G.; Yu, S.M. Targeting collagen strands by photo-triggered triple-helix hybridization. Proc. Natl. Acad. Sci. USA 2012, 109, 14767–14772. [Google Scholar] [CrossRef]
- Ni, H.; Freedman, J. Platelets in hemostasis and thrombosis: Role of integrins and their ligands. Transfus. Apher. Sci. 2003, 28, 257–264. [Google Scholar] [CrossRef]
- Andrews, R.K.; Shen, Y.; Gardiner, E.E.; Berndt, M.C. Platelet adhesion receptors and (patho)physiological thrombus formation. Histol. Histopathol. 2001, 16, 969–980. [Google Scholar] [CrossRef]
- Estevez, B.; Du, X. New concepts and mechanisms of platelet activation signaling. Physiology 2017, 32, 162–177. [Google Scholar] [CrossRef]
- Nieswandt, B.; Watson, S.P. Platelet-collagen interaction: Is GPVI the central receptor? Blood 2003, 102, 449–461. [Google Scholar] [CrossRef]
- Jandrot-Perrus, M.; Busfield, S.; Lagrue, A.H.; Xiong, X.; Debili, N.; Chickering, T.; Couedic, J.P.L.; Goodearl, A.; Dussault, B.; Fraser, C.; et al. Cloning, characterization, and functional studies of human and mouse glycoprotein VI: A platelet-specific collagen receptor from the immunoglobulin superfamily. Blood 2000, 96, 1798–1807. [Google Scholar] [CrossRef]
- Joutsi-Korhonen, L.; Smethurst, P.A.; Rankin, A.; Gray, E.; IJsseldijk, M.; Onley, C.M.; Watkins, N.A.; Williamson, L.M.; Goodall, A.H.; de Groot, P.G.; et al. The low-frequency allele of the platelet collagen signaling receptor glycoprotein VI is associated with reduced functional responses and expression. Blood 2003, 101, 4372–4379. [Google Scholar] [CrossRef]
- Munnix, I.; Gilio, K.; Siljander, P.; Raynal, N.; Feijge, M.; Hackeng, T.; Deckmyn, H.; Smethurst, P.; Farndale, R.; Heemskerk, J. Collagen-mimetic peptides mediate flow-dependent thrombus formation by high- or low-affinity binding of integrin α2β1 and glycoprotein VI. J. Thromb. Haemost. 2008, 6, 2132–2142. [Google Scholar] [CrossRef] [PubMed]
- Auger, J.M.; Kuijpers, M.J.E.; Senis, Y.A.; Watson, S.P.; Heemskerk, J.W.M. Adhesion of human and mouse platelets to collagen under shear: A unifying model. Blood 2005, 104, 1801–1809. [Google Scholar] [CrossRef]
- Jackson, S.P.; Nesbitt, W.S.; Westein, E. Dynamics of platelet thrombus formation. J. Thromb. Haemost. 2009, 7 (Suppl. S1), 17–20. [Google Scholar] [CrossRef] [PubMed]
- Reininger, A.J. Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood 2006, 107, 3537–3545. [Google Scholar] [CrossRef] [PubMed]
- Wohner, N.; Kovács, A.; Machovich, R.; Kolev, K. Modulation of the von Willebrand factor-dependent platelet adhesion through alternative proteolytic pathways. Thromb. Res. 2012, 129, 274–281. [Google Scholar] [CrossRef]
- Houdijk, W.P.; Sakariassen, K.S.; Nievelstein, P.F.; Sixma, J.J. Role of factor VIII-von Willebrand factor and fibronectin in the interaction of platelets in flowing blood with monomeric and fibrillar human collagen types I and III. J. Clin. Investig. 1985, 75, 531–540. [Google Scholar] [CrossRef]
- Sakariassen, K.S.; Orvim, U.; Turitto, V.T. The impact of blood shear rate on arterial thrombus formation. Future Sci. OA 1993, 2, FSO100. [Google Scholar] [CrossRef]
- Alouda, S.; Sasikumar, P.; AlThunayan, T.; Gibbins, J.M. Role of heat shock protein 47 in platelet glycoprotein VI dimerization and signaling. Res. Pract. Thromb. Haemost. 2023, 7, 100229. [Google Scholar] [CrossRef]
- Inoue, O.; Suzuki-Inoue, K.; Dean, W.L.; Frampton, J.; Watson, S.P.; Murakami, M. Integrin α2β1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCγ2. J. Cell Biol. 2003, 160, 769–780. [Google Scholar] [CrossRef]
- Kaiser, W.J.; Holbrook, L.M.; Tucker, K.L.; Stanley, R.G.; Gibbins, J.M. A functional proteomic method for the enrichment of peripheral membrane proteins reveals the collagen binding protein Hsp47 is exposed on the surface of activated human platelets. J. Proteome Res. 2009, 8, 2903–2914. [Google Scholar] [CrossRef]
- Ito, S.; Ogawa, K.; Takeuchi, K.; Takagi, M.; Yoshida, M.; Hirokawa, T.; Hirayama, S.; Shin-Ya, K.; Shimada, I.; Doi, T.; et al. A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis. J. Biol. Chem. 2017, 292, 20076–20085. [Google Scholar] [CrossRef] [PubMed]
- Schattner, M. Sleep like a bear. Science 2023, 380, 133–134. [Google Scholar] [CrossRef] [PubMed]
- Hisada, Y.; Grover, S.P.; Maqsood, A.; Houston, R.; Ay, C.; Noubouossie, D.F.; Cooley, B.C.; Wallén, H.; Key, N.S.; Thålin, C.; et al. Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors. Haematologica 2019, 105, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Miyamura, T.; Sakamoto, N.; Kakugawa, T.; Taniguchi, H.; Akiyama, Y.; Okuno, D.; Moriyama, S.; Hara, A.; Kido, T.; Ishimoto, H.; et al. Small molecule inhibitor of HSP47 prevents pro-fibrotic mechanisms of fibroblasts in vitro. Biochem. Biophys. Res. Commun. 2020, 530, 561–565. [Google Scholar] [CrossRef]
- Patsnap Synapse. What Are HSP47 Inhibitors and How Do They Work? 2023. Available online: https://synapse.patsnap.com/article/what-are-hsp47-inhibitors-and-how-do-they-work?utm_source=chatgpt.com (accessed on 6 April 2025).
- Xiong, G.; Chen, J.; Zhang, G.; Wang, S.; Kawasaki, K.; Zhu, J.; Zhang, Y.; Nagata, K.; Li, Z.; Zhou, B.P.; et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc. Natl. Acad. Sci. USA 2020, 117, 3748–3758. [Google Scholar] [CrossRef]
Category | Key Points |
---|---|
HSP47 in Collagen Dynamics | - Acts as a chaperone for procollagen, ensuring proper folding and stability in the ER. - Prevents misfolding and aggregation of collagen molecules. |
Role in Platelet Function | - Facilitates platelet adhesion and aggregation by stabilizing platelet-collagen interactions. - Key player in thrombus formation and stability. |
Therapeutic Potential | - Targeting HSP47 offers potential for managing DVT, thrombosis, and connective tissue disorders. - Promising applications in wound healing and fibrosis. |
Hibernation and Clot Resistance | - Decreased HSP47 levels in hibernating bears reduce clot formation. - Provides a model for developing antithrombotic drugs for immobilized patients. |
Research Techniques | - Proteomics, RNA sequencing, and in vitro/in vivo models elucidate HSP47’s role. - Functional assays confirm its influence on platelet binding to collagen. |
Adipose Tissue Function | - Influences collagen turnover and ECM integrity in adipose tissue. - Variability in HSP47 levels linked to obesity and fat distribution. |
Atherosclerosis and Plaque Stability | - Modulates collagen stability in plaques. - Targeting HSP47 could enhance plaque stability and reduce cardiovascular risks. |
Applications in Vascular Health | - Potential for novel therapies targeting HSP47 in clotting disorders, obesity, and inflammation. - Supports tissue repair and vascular remodeling. |
Future Research Directions | - Explore HSP47’s role in ECM interactions, immune response, and inflammation. - Develop specific drugs targeting HSP47 pathways for disease treatment. |
Stage | Location | Key Events | Key Components |
---|---|---|---|
1. Transcription | Nucleus | Collagen genes (e.g., COL1A1) are transcribed into mRNA. | Collagen genes, RNA polymerase |
2. Translation | Rough ER ribosomes | mRNA is translated into alpha chains, which enter the ER lumen. | Ribosomes, mRNA, translocon |
3. ER Processing | Endoplasmic Reticulum | Hydroxylation of proline and lysine (post-translational modification). Glycosylation of hydroxylysine. Three alpha chains form a triple helix (procollagen), stabilized by HSP47 to prevent misfolding. | Prolyl 4-hydroxylase, lysyl hydroxylase, vitamin C, HSP47 |
4. ER-to-Golgi Transport | ER to cis-Golgi | Folded procollagen is packaged into elongated COPII vesicles and transported along microtubules to the cis-Golgi; HSP47 remains bound. | COPII vesicles, TANGO1, microtubules, kinesin |
5. Golgi Processing | Golgi Apparatus | HSP47 dissociates due to pH shift and recycles to ER via COPI vesicles. Minor glycosylation may occur. Procollagen is sorted into secretory vesicles. | COPI vesicles, secretory vesicles |
6. Secretion | Plasma Membrane to ECM | Secretory vesicles fuse with the plasma membrane, releasing procollagen into the ECM. | SNARE proteins, calcium |
7. ECM Maturation | Extracellular Matrix | Propeptides are cleaved by peptidases, forming tropocollagen. Tropocollagen self-assembles into fibrils. Lysyl oxidase cross-links fibrils into stable collagen fibers. | ADAMTS-2, BMP-1, lysyl oxidase |
Species/Model | Physiological State | HSP47 Expression Profile | Functional Consequence | Relevance to Human Disease |
---|---|---|---|---|
Hibernating bears | Prolonged immobility | Downregulated | Decreased clot formation; lower platelet-collagen reactivity | Model for thrombo-protection during inactivity |
Healthy humans | Normal activity | Homeostatic expression | Maintains collagen turnover and vascular integrity | Baseline for therapeutic modulation |
Immobilized patients | Post-surgery, ICU, etc. | Variable; often dysregulated | Increased clotting risk due to inflammation and stasis | Target for clot-prevention therapies |
Obese humans | Chronic inflammation | Upregulated in adipose tissue | Promotes fibrosis, collagen accumulation | Linked to metabolic syndrome and cardiovascular risk |
Atherosclerotic plaques | Chronic vascular damage | Heterogeneous (↑ in fibrous cap, ↓ in necrotic core) | Affects plaque stability; promotes collagen cross-linking | Target for plaque stabilization or regression therapy |
Mouse knockout models | HSP47-deficient | Absent | Impaired collagen synthesis, lethal phenotypes | Confirms essential role in connective tissue integrity |
Biological Context | Therapeutic Approach | Potential Benefits | Challenges/Considerations | References |
---|---|---|---|---|
Collagen Stability (Connective Tissue Disorders) | Enhance HSP47 activity (small molecules, gene therapy) | Improved collagen folding and stability in disorders like osteogenesis imperfecta and Ehlers–Danlos syndrome | Risk of excessive collagen deposition leading to fibrosis; specificity to target collagen types | [4] |
Fibrosis | Inhibit HSP47 (small-molecule inhibitors like SMIH) | Reduce excessive collagen accumulation in fibrotic conditions (e.g., pulmonary fibrosis, liver fibrosis) | Potential disruption of normal collagen synthesis; off-target effects on other tissues | [94] |
Thrombosis (DVT, Atherosclerosis) | Inhibit HSP47 (selective inhibitors, antibodies) | Decrease platelet-collagen interactions, reducing thrombus formation and plaque rupture risk | Balancing hemostasis to avoid bleeding risks; specificity to collagen-mediated pathways | [6] |
Atherosclerotic Plaque Stability | Modulate HSP47 (enhance or inhibit depending on context) | Enhance collagen content in fibrous caps for plaque stability; reduce inflammation | Need for precise control to avoid over- or under-stabilization; long-term safety unclear | |
Wound Healing/Tissue Repair | Enhance HSP47 functionality | Promote proper collagen deposition and ECM remodeling for effective healing | Potential for excessive scarring or fibrosis if overexpressed | [95] |
Venous Thromboembolism (VTE) | Modulate HSP47 levels (inhibition or enhancement) | Prevent thrombus formation in immobile patients; improve inflammation resolution | Variability in patient response; need to address underlying inflammation causes | [2] |
Cardiovascular Risk Biomarker | Monitor HSP47 levels | Use as a biomarker for plaque stability or thrombotic risk stratification | Requires validation across populations; correlation with clinical outcomes needs study | [1] |
Cancer (Tumor Microenvironment) | Target HSP47 for drug delivery or inhibition | Regulate collagen in tumor ECM; enhance drug delivery to tumors | Off-target effects on normal tissues; complexity of tumor-specific collagen dynamics | [96] |
Bleeding Disorders | Enhance HSP47 activity | Strengthen platelet-collagen interactions to improve hemostasis | Risk of promoting unwanted thrombosis; individual variability in response | [6] |
Combination Therapies | Combine HSP47 modulation with existing treatments (statins, anticoagulants) | Synergistic effects on collagen stability, inflammation, and clotting control | Drug interaction risks; need for clinical trials to optimize dosing and efficacy | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teodoru, M.; Stoia, O.-M.; Vladoiu, M.-G.; Tonch-Cerbu, A.-K. The Role of HSP47 in Thrombotic Disorders: Molecular Mechanism and Therapeutic Potential. Curr. Issues Mol. Biol. 2025, 47, 283. https://doi.org/10.3390/cimb47040283
Teodoru M, Stoia O-M, Vladoiu M-G, Tonch-Cerbu A-K. The Role of HSP47 in Thrombotic Disorders: Molecular Mechanism and Therapeutic Potential. Current Issues in Molecular Biology. 2025; 47(4):283. https://doi.org/10.3390/cimb47040283
Chicago/Turabian StyleTeodoru, Minodora, Oana-Maria Stoia, Maria-Gabriela Vladoiu, and Alexandra-Kristine Tonch-Cerbu. 2025. "The Role of HSP47 in Thrombotic Disorders: Molecular Mechanism and Therapeutic Potential" Current Issues in Molecular Biology 47, no. 4: 283. https://doi.org/10.3390/cimb47040283
APA StyleTeodoru, M., Stoia, O.-M., Vladoiu, M.-G., & Tonch-Cerbu, A.-K. (2025). The Role of HSP47 in Thrombotic Disorders: Molecular Mechanism and Therapeutic Potential. Current Issues in Molecular Biology, 47(4), 283. https://doi.org/10.3390/cimb47040283