Anatomy, Biomechanics, and Reconstruction of the Anterolateral Ligament of the Knee Joint
Abstract
:1. Introduction
2. Anatomy of Anterolateral Complex and Anterolateral Ligament
3. Biomechanics of Anterolateral Complex and Anterolateral Ligament
4. Diagnosis of Anterolateral Ligament Injury
5. Lateral Extra-Articular Tenodesis
6. Anterolateral Ligament Reconstruction
7. Clinical Outcomes of Anterolateral Procedures
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chambat, P.; Guier, C.; Sonnery-Cottet, B.; Fayard, J.M.; Thaunat, M. The evolution of ACL reconstruction over the last fifty years. Int. Orthop. 2013, 37, 181–186. [Google Scholar] [CrossRef]
- Ristanis, S.; Stergiou, N.; Patras, K.; Vasiliadis, H.S.; Giakas, G.; Georgoulis, A.D. Excessive tibial rotation during high-demand activities is not restored by anterior cruciate ligament reconstruction. Arthroscopy 2005, 21, 1323–1329. [Google Scholar] [CrossRef]
- Tashman, S.; Collon, D.; Anderson, K.; Kolowich, P.; Anderst, W. Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am. J. Sports Med. 2004, 32, 975–983. [Google Scholar] [CrossRef]
- Lemaire, M. Ruptures anciennes du ligament croise anterieur du genou. J. Chir. 1967, 93, 311–320. [Google Scholar]
- Odensten, M.; Lysholm, J.; Gillquist, J. Long-term follow-up study of a distal iliotibial band transfer (DIT) for anterolateral knee instability. Clin. Orthop. Relat. Res. 1983, 176, 129–135. [Google Scholar] [CrossRef]
- Getgood, A.; Brown, C.; Lording, T.; Amis, A.; Claes, S.; Geeslin, A.; Musahl, V.; ALC Consensus Group. The anterolateral complex of the knee: Results from the International ALC Consensus Group Meeting. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 166–176. [Google Scholar] [CrossRef]
- Claes, S.; Vereecke, E.; Maes, M.; Victor, J.; Verdonk, P.; Bellemans, J. Anatomy of the anterolateral ligament of the knee. J. Anat. 2013, 223, 321–328. [Google Scholar] [CrossRef]
- Parsons, E.M.; Gee, A.O.; Spiekerman, C.; Cavanagh, P.R. The biomechanical function of the anterolateral ligament of the knee. Am. J. Sports Med. 2015, 43, 669–674. [Google Scholar] [CrossRef]
- Kittl, C.; El-Daou, H.; Athwal, K.K.; Gupte, C.M.; Weiler, A.; Williams, A.; Amis, A.A. The Role of the Anterolateral Structures and the ACL in Controlling Laxity of the Intact and ACL-Deficient Knee. Am. J. Sports Med. 2016, 44, 345–354. [Google Scholar] [CrossRef]
- Rasmussen, M.T.; Nitri, M.; Williams, B.T.; Moulton, S.G.; Cruz, R.S.; Dornan, G.J.; Goldsmith, M.T.; LaPrade, R.F. An In Vitro Robotic Assessment of the Anterolateral Ligament, Part 1: Secondary Role of the Anterolateral Ligament in the Setting of an Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2016, 44, 585–592. [Google Scholar] [CrossRef]
- Geeslin, A.G.; Chahla, J.; Moatshe, G.; Muckenhirn, K.J.; Kruckeberg, B.M.; Brady, A.W.; Coggins, A.; Dornan, G.J.; Getgood, A.M.; Godin, J.A.; et al. Anterolateral Knee Extra-articular Stabilizers: A Robotic Sectioning Study of the Anterolateral Ligament and Distal Iliotibial Band Kaplan Fibers. Am. J. Sports Med. 2018, 46, 1352–1361. [Google Scholar] [CrossRef]
- Lee, J.K.; Seo, Y.J.; Jeong, S.Y.; Yang, J.H. Biomechanical function of the anterolateral ligament of the knee: A systematic review. Knee Surg. Relat. Res. 2020, 32, 6. [Google Scholar] [CrossRef]
- Geeslin, A.G.; Moatshe, G.; Chahla, J.; Kruckeberg, B.M.; Muckenhirn, K.J.; Dornan, G.J.; Coggins, A.; Brady, A.W.; Getgood, A.M.; Godin, J.A.; et al. Anterolateral Knee Extra-articular Stabilizers: A Robotic Study Comparing Anterolateral Ligament Reconstruction and Modified Lemaire Lateral Extra-articular Tenodesis. Am. J. Sports Med. 2018, 46, 607–616. [Google Scholar] [CrossRef]
- Nitri, M.; Rasmussen, M.T.; Williams, B.T.; Moulton, S.G.; Cruz, R.S.; Dornan, G.J.; Goldsmith, M.T.; LaPrade, R.F. An In Vitro Robotic Assessment of the Anterolateral Ligament, Part 2: Anterolateral Ligament Reconstruction Combined With Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2016, 44, 593–601. [Google Scholar] [CrossRef]
- Delaloye, J.R.; Hartog, C.; Blatter, S.; Schläppi, M.; Müller, D.; Denzler, D.; Murar, J.; Koch, P.P. Anterolateral Ligament Reconstruction and Modified Lemaire Lateral Extra-Articular Tenodesis Similarly Improve Knee Stability After Anterior Cruciate Ligament Reconstruction: A Biomechanical Study. Arthroscopy 2020, 36, 1942–1950. [Google Scholar] [CrossRef]
- Inderhaug, E.; Stephen, J.M.; Williams, A.; Amis, A.A. Biomechanical Comparison of Anterolateral Procedures Combined With Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2017, 45, 347–354. [Google Scholar] [CrossRef]
- Patel, R.M.; Brophy, R.H. Anterolateral Ligament of the Knee: Anatomy, Function, Imaging, and Treatment. Am. J. Sports Med. 2018, 46, 217–223. [Google Scholar] [CrossRef]
- Kraeutler, M.J.; Welton, K.L.; Chahla, J.; LaPrade, R.F.; McCarty, E.C. Current Concepts of the Anterolateral Ligament of the Knee: Anatomy, Biomechanics, and Reconstruction. Am. J. Sports Med. 2018, 46, 1235–1242. [Google Scholar] [CrossRef]
- Williams, A.; Ball, S.; Stephen, J.; White, N.; Jones, M.; Amis, A. The scientific rationale for lateral tenodesis augmentation of intra-articular ACL reconstruction using a modified ‘Lemaire’ procedure. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 1339–1344. [Google Scholar] [CrossRef]
- Ahn, J.H.; Patel, N.A.; Lin, C.C.; Lee, T.Q. The anterolateral ligament of the knee joint: A review of the anatomy, biomechanics, and anterolateral ligament surgery. Knee Surg. Relat. Res. 2019, 31, 12. [Google Scholar] [CrossRef]
- Kunze, K.N.; Manzi, J.; Richardson, M.; White, A.E.; Coladonato, C.; DePhillipo, N.N.; LaPrade, R.F.; Chahla, J. Combined Anterolateral and Anterior Cruciate Ligament Reconstruction Improves Pivot Shift Compared With Isolated Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arthroscopy 2021, 37, 2677–2703. [Google Scholar] [CrossRef]
- Laboudie, P.; Douiri, A.; Bouguennec, N.; Biset, A.; Graveleau, N. Combined ACL and ALL reconstruction reduces the rate of reoperation for graft failure or secondary meniscal lesions in young athletes. Knee Surg. Sports Traumatol. Arthrosc. 2022. epub ahead of print. [Google Scholar] [CrossRef]
- Littlefield, C.P.; Belk, J.W.; Houck, D.A.; Kraeutler, M.J.; LaPrade, R.F.; Chahla, J.; McCarty, E.C. The Anterolateral Ligament of the Knee: An Updated Systematic Review of Anatomy, Biomechanics, and Clinical Outcomes. Arthroscopy 2021, 37, 1654–1666. [Google Scholar] [CrossRef]
- Ariel de Lima, D.; Helito, C.P.; Lacerda de Lima, L.; de Castro Silva, D.; Costa Cavalcante, M.L.; Dias Leite, J.A. Anatomy of the Anterolateral Ligament of the Knee: A Systematic Review. Arthroscopy 2019, 35, 670–681. [Google Scholar] [CrossRef]
- Dodds, A.L.; Halewood, C.; Gupte, C.M.; Williams, A.; Amis, A.A. The anterolateral ligament: Anatomy, length changes and association with the Segond fracture. Bone Jt. J. 2014, 96, 325–331. [Google Scholar] [CrossRef]
- Helito, C.P.; Demange, M.K.; Bonadio, M.B.; Tírico, L.E.; Gobbi, R.G.; Pécora, J.R.; Camanho, G.L. Anatomy and Histology of the Knee Anterolateral Ligament. Orthop. J. Sports Med. 2013, 1, 2325967113513546. [Google Scholar] [CrossRef]
- Marshall, T.; Oak, S.R.; Subhas, N.; Polster, J.; Winalski, C.; Spindler, K.P. Can the Anterolateral Ligament Be Reliably Identified in Anterior Cruciate Ligament-Intact and Anterior Cruciate Ligament-Injured Knees on 3-T Magnetic Resonance Imaging? Orthop. J. Sports Med. 2018, 6, 2325967118796452. [Google Scholar] [CrossRef]
- Sonnery-Cottet, B.; Lutz, C.; Daggett, M.; Dalmay, F.; Freychet, B.; Niglis, L.; Imbert, P. The Involvement of the Anterolateral Ligament in Rotational Control of the Knee. Am. J. Sports Med. 2016, 44, 1209–1214. [Google Scholar] [CrossRef]
- Kang, K.T.; Koh, Y.G.; Park, K.M.; Choi, C.H.; Jung, M.; Shin, J.; Kim, S.H. The anterolateral ligament is a secondary stabilizer in the knee joint: A validated computational model of the biomechanical effects of a deficient anterior cruciate ligament and anterolateral ligament on knee joint kinematics. Bone Jt. Res. 2019, 8, 509–517. [Google Scholar] [CrossRef]
- Thein, R.; Boorman-Padgett, J.; Stone, K.; Wickiewicz, T.L.; Imhauser, C.W.; Pearle, A.D. Biomechanical Assessment of the Anterolateral Ligament of the Knee: A Secondary Restraint in Simulated Tests of the Pivot Shift and of Anterior Stability. J. Bone Jt. Surg. Am. 2016, 98, 937–943. [Google Scholar] [CrossRef]
- Gabriel, M.T.; Wong, E.K.; Woo, S.L.; Yagi, M.; Debski, R.E. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J. Orthop. Res. 2004, 22, 85–89. [Google Scholar] [CrossRef]
- Goldsmith, M.T.; Jansson, K.S.; Smith, S.D.; Engebretsen, L.; LaPrade, R.F.; Wijdicks, C.A. Biomechanical comparison of anatomic single- and double-bundle anterior cruciate ligament reconstructions: An in vitro study. Am. J. Sports Med. 2013, 41, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Koh, I.J.; McGarry, M.H.; Patel, N.A.; Lin, C.C.; Lee, T.Q. Synergistic effect of the anterolateral ligament and capsule injuries on the knee laxity in anterior cruciate ligament injured knees: A cadaveric study. Orthop. Traumatol. Surg. Res. 2022, 31, 103224. [Google Scholar] [CrossRef] [PubMed]
- Bull, A.M.J.; Amis, A.A. The pivot-shift phenomenon: A clinical and biomechanical perspective. Knee 1998, 5, 141–158. [Google Scholar] [CrossRef]
- Lagae, K.C.; Robberecht, J.; Athwal, K.K.; Verdonk, P.C.M.; Amis, A.A. ACL reconstruction combined with lateral monoloop tenodesis can restore intact knee laxity. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 1159–1168. [Google Scholar] [CrossRef]
- Imbert, P.; Lutz, C.; Daggett, M.; Niglis, L.; Freychet, B.; Dalmay, F.; Sonnery-Cottet, B. Isometric Characteristics of the Anterolateral Ligament of the Knee: A Cadaveric Navigation Study. Arthroscopy 2016, 32, 2017–2024. [Google Scholar] [CrossRef]
- Naendrup, J.H.; Zlotnicki, J.P.; Murphy, C.I.; Patel, N.K.; Debski, R.E.; Musahl, V. Influence of knee position and examiner-induced motion on the kinematics of the pivot shift. J. Exp. Orthop. 2019, 6, 11. [Google Scholar] [CrossRef]
- Helito, C.P.; Helito, P.V.; Costa, H.P.; Bordalo-Rodrigues, M.; Pecora, J.R.; Camanho, G.L.; Demange, M.K. MRI evaluation of the anterolateral ligament of the knee: Assessment in routine 1.5-T scans. Skelet. Radiol. 2014, 43, 1421–1427. [Google Scholar] [CrossRef]
- Lee, D.W.; Lee, J.H.; Kim, J.N.; Moon, S.G.; Kim, N.R.; Kim, D.H.; Kim, J.G. Evaluation of Anterolateral Ligament Injuries and Concomitant Lesions on Magnetic Resonance Imaging After Acute Anterior Cruciate Ligament Rupture. Arthroscopy 2018, 34, 2398–2406. [Google Scholar] [CrossRef]
- Castelli, A.; Zanon, G.; Jannelli, E.; Ivone, A.; Ferranti Calderoni, E.; Combi, A.; Mosconi, M.; Benazzo, F. The role of the anterolateral ligament in knee’s biomechanics: A case-control retrospective study. Eur. J. Orthop. Surg. Traumatol. 2020, 30, 653–658. [Google Scholar] [CrossRef]
- Ferretti, A.; Monaco, E.; Redler, A.; Argento, G.; De Carli, A.; Saithna, A.; Helito, P.V.P.; Helito, C.P. High Prevalence of Anterolateral Ligament Abnormalities on MRI in Knees With Acute Anterior Cruciate Ligament Injuries: A Case-Control Series From the SANTI Study Group. Orthop. J. Sports Med. 2019, 7, 2325967119852916. [Google Scholar] [CrossRef] [PubMed]
- Hartigan, D.E.; Carroll, K.W.; Kosarek, F.J.; Piasecki, D.P.; Fleischli, J.F.; D’Alessandro, D.F. Visibility of Anterolateral Ligament Tears in Anterior Cruciate Ligament-Deficient Knees With Standard 1.5-Tesla Magnetic Resonance Imaging. Arthroscopy 2016, 32, 2061–2065. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.A.; Chhabra, A.; Goodwin, J.A.; Hartigan, D.E. Identification of the Anterolateral Ligament on Magnetic Resonance Imaging. Arthrosc. Tech. 2017, 6, e137–e141. [Google Scholar] [CrossRef] [PubMed]
- Neri, T.; Dabirrahmani, D.; Beach, A.; Grasso, S.; Putnis, S.; Oshima, T.; Cadman, J.; Devitt, B.; Coolican, M.; Fritsch, B.; et al. Different anterolateral procedures have variable impact on knee kinematics and stability when performed in combination with anterior cruciate ligament reconstruction. J. ISAKOS 2021, 6, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Jesani, S.; Getgood, A. Modified Lemaire Lateral Extra-Articular Tenodesis Augmentation of Anterior Cruciate Ligament Reconstruction. JBJS Essent. Surg. Tech. 2019, 9, e41.1-7. [Google Scholar] [CrossRef]
- Marom, N.; Jahandar, H.; Fraychineaud, T.J.; Zayyad, Z.A.; Ouanezar, H.; Hurwit, D.; Zhu, A.; Wickiewicz, T.L.; Pearle, A.D.; Imhauser, C.W.; et al. Lateral Extra-articular Tenodesis Alters Lateral Compartment Contact Mechanics under Simulated Pivoting Maneuvers: An In Vitro Study. Am. J. Sports Med. 2021, 49, 2898–2907. [Google Scholar] [CrossRef]
- Kittl, C.; Halewood, C.; Stephen, J.M.; Gupte, C.M.; Weiler, A.; Williams, A.; Amis, A.A. Length change patterns in the lateral extra-articular structures of the knee and related reconstructions. Am. J. Sports Med. 2015, 43, 354–362. [Google Scholar] [CrossRef]
- Devitt, B.M.; Bouguennec, N.; Barfod, K.W.; Porter, T.; Webster, K.E.; Feller, J.A. Combined anterior cruciate ligament reconstruction and lateral extra-articular tenodesis does not result in an increased rate of osteoarthritis: A systematic review and best evidence synthesis. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 1149–1160. [Google Scholar] [CrossRef]
- Inderhaug, E.; Stephen, J.M.; Williams, A.; Amis, A.A. Anterolateral Tenodesis or Anterolateral Ligament Complex Reconstruction: Effect of Flexion Angle at Graft Fixation When Combined With ACL Reconstruction. Am. J. Sports Med. 2017, 45, 3089–3097. [Google Scholar] [CrossRef]
- Saithna, A.; Thaunat, M.; Delaloye, J.R.; Ouanezar, H.; Fayard, J.M.; Sonnery-Cottet, B. Combined ACL and Anterolateral Ligament Reconstruction. JBJS Essent. Surg. Tech. 2018, 8, e2. [Google Scholar] [CrossRef]
- Zens, M.; Feucht, M.J.; Ruhhammer, J.; Bernstein, A.; Mayr, H.O.; Südkamp, N.P.; Woias, P.; Niemeyer, P. Mechanical tensile properties of the anterolateral ligament. J. Exp. Orthop. 2015, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Noyes, F.R.; Butler, D.L.; Grood, E.S.; Zernicke, R.F.; Hefzy, M.S. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J. Bone Jt. Surg. Am. 1984, 66, 344–352. [Google Scholar] [CrossRef]
- Schon, J.M.; Moatshe, G.; Brady, A.W.; Serra Cruz, R.; Chahla, J.; Dornan, G.J.; Turnbull, T.L.; Engebretsen, L.; LaPrade, R.F. Anatomic Anterolateral Ligament Reconstruction of the Knee Leads to Overconstraint at Any Fixation Angle. Am. J. Sports Med. 2016, 44, 2546–2556. [Google Scholar] [CrossRef]
- Stordeur, A.; Grange, S.; Servien, E.; Blache, Y.; Klasan, A.; Putnis, S.E.; Boyer, B.; Farizon, F.; Philippot, R.; Neri, T. Optimal Combination of Femoral Tunnel Orientation in Anterior Cruciate Ligament Reconstruction Using an Inside-out Femoral Technique Combined With an Anterolateral Extra-articular Reconstruction. Am. J. Sports Med. 2022, 50, 1205–1214. [Google Scholar] [CrossRef]
- Getgood, A.M.J.; Bryant, D.M.; Litchfield, R.; Heard, M.; McCormack, R.G.; Rezansoff, A.; Peterson, D.; Bardana, D.; MacDonald, P.B.; Verdonk, P.C.M.; et al. Lateral Extra-articular Tenodesis Reduces Failure of Hamstring Tendon Autograft Anterior Cruciate Ligament Reconstruction: 2-Year Outcomes From the STABILITY Study Randomized Clinical Trial. Am. J. Sports Med. 2020, 48, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Hamido, F.; Habiba, A.A.; Marwan, Y.; Soliman, A.S.I.; Elkhadrawe, T.A.; Morsi, M.G.; Shoaeb, W.; Nagi, A. Anterolateral ligament reconstruction improves the clinical and functional outcomes of anterior cruciate ligament reconstruction in athletes. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 1173–1180. [Google Scholar] [CrossRef]
- Onggo, J.R.; Rasaratnam, H.K.; Nambiar, M.; Onggo, J.D.; Pai, V.; Damasena, I.; Riazi, A.; Babazadeh, S. Anterior Cruciate Ligament Reconstruction Alone Versus With Lateral Extra-articular Tenodesis With Minimum 2-Year Follow-up: A Meta-analysis and Systematic Review of Randomized Controlled Trials. Am. J. Sports Med. 2022, 50, 1137–1145. [Google Scholar] [CrossRef]
- Sonnery-Cottet, B.; Saithna, A.; Cavalier, M.; Kajetanek, C.; Temponi, E.F.; Daggett, M.; Helito, C.P.; Thaunat, M. Anterolateral Ligament Reconstruction Is Associated With Significantly Reduced ACL Graft Rupture Rates at a Minimum Follow-up of 2 Years: A Prospective Comparative Study of 502 Patients From the SANTI Study Group. Am. J. Sports Med. 2017, 45, 1547–1557. [Google Scholar] [CrossRef]
- Helito, C.P.; Sobrado, M.F.; Giglio, P.N.; Bonadio, M.B.; Pécora, J.R.; Camanho, G.L.; Demange, M.K. Combined Reconstruction of the Anterolateral Ligament in Patients With Anterior Cruciate Ligament Injury and Ligamentous Hyperlaxity Leads to Better Clinical Stability and a Lower Failure Rate Than Isolated Anterior Cruciate Ligament Reconstruction. Arthroscopy 2019, 35, 2648–2654. [Google Scholar] [CrossRef]
Studies | Years | Specimens | Testing Conditions | Main Findings |
---|---|---|---|---|
Parsons et al. [8] | 2015 | Sectioned cadaveric knees | Evaluation of load on the ALL in tibial internal rotation according to flexion angle. | Contribution of the ALL to stability in internal rotation significantly increased between 0° and 90° of knee flexion |
Thein et al. [30] | 2016 | Sectioned cadaveric knees | Comparison of load on the ligament in ACL and ALL deficiency. | In the ACL-intact knee, the load on ALL was minimal. In the ACL-deficiency knee, the load on ALL increased three-folds in the pivot shift-test. |
Nitri et al. [14] | 2016 | Sectioned cadaveric knees | Comparison of amount of internal rotation between ALL deficiency and ALLR in ACLR | Increased tibial internal rotation in ALL deficiency |
Kittl et al. [9] | 2016 | Sectioned cadaveric knees | Sequential resection of superficial ITB, deep ITB, ALL and ACL | 1. From 0° to 30°, ACL was the primary restraint to internal rotation. 2. Superficial and deep ITB contributes over 50% of resistance to internal rotation above 30′ of flexion. 3. ALL and anterolateral capsule had a minor role in restraining internal rotation |
Sonnery-Cottet et al. [28] | 2016 | Fresh-frozen cadaveric whole lower limbs | Sequential resection of ACL, ALL, ITB | In ACL or ITB deficiency, resection of ALL further increased tibial internal rotation. |
Inderhaug et al. [16] | 2017 | Sectioned cadaveric knees | Sequential resection of ACL and anterolateral complex (ALL and deep ITB) | Additional resection of anterolateral complex increased tibial internal rotation in ACL deficiency. Restoration of native knee kinematics in LET combined with ACLR |
Geeslin et al. [11] | 2018 | Sectioned cadaveric knees | Comparison of amount of internal rotation between resection of ALL and distal Kaplan fiber of ITB in ACL deficiency | Greater increased tibial internal rotation in resection of distal Kaplan fiber of ITB than ALL at higher flexion angle (60°–90°) |
Geeslin et al. [13] | 2018 | Sectioned cadaveric knees | Comparison of residual internal laxity between LET and ALLR combined with ACLR in ACL and ALL deficiency knee | Increased residual internal laxity (up to 4°) in isolated ACLR Reduced residual internal laxity in both ALLR and LET (over-constraint in LET) |
Lagae et al. [35] | 2020 | Sectioned cadaveric knees | Comparison of residual internal laxity with various settings in ACL and ALL deficiency knee | Residual internal laxity in isolated ACLR Reduced residual internal laxity in LET combined with ACLR |
Ahn et al. [33] | 2022 | Sectioned cadaveric knees | Sequential resection of ACL, ALL, and anterolateral capsule | Even in the preservation of ITB, resection of ALL increase the internal rotation in ACL deficiency. |
Studies | Years | Specimens | Femoral Origin | Tibial Origin | Length Changes |
---|---|---|---|---|---|
Claes et al. [7] | 2013 | Embalmed cadaver | Slight Anterior to LCL | Between GT and FH | 38.5 ± 6.1 mm (0°) 41.5 ± 6.7 (90°) |
Helito et al. [26] | 2013 | Unpaired cadaver knees with CT scans | 2.2 mm Anterior and 3.5 mm distal to LCL | Between GT and FH | 37.9 ± 5.3 mm (0°) 39.3 ± 5.4 mm (30°) 40.9 ± 5.4 mm (60°) 44.1 ± 6.4 mm (90°) |
Dodds et al. [25] | 2014 | Fresh-frozen cadaveric knees | 8 mm proximal and 4.3 mm posterior to LFE | Between GT and FH | Close to isometric from 0° to 60° flexion. (1.7 mm shortening) Shortening of 4.1 mm from 60° to 90° flexion |
Imbert et al. [36] | 2016 | Fresh-frozen cadaveric whole lower limbs | Proximal and posterior to LFE | Between GT and FH | 46 ± 6 mm (0°) 39 ± 2 mm (120°) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-G.; Han, S.-B.; Lee, C.-S.; Jeon, O.H.; Jang, K.-M. Anatomy, Biomechanics, and Reconstruction of the Anterolateral Ligament of the Knee Joint. Medicina 2022, 58, 786. https://doi.org/10.3390/medicina58060786
Park J-G, Han S-B, Lee C-S, Jeon OH, Jang K-M. Anatomy, Biomechanics, and Reconstruction of the Anterolateral Ligament of the Knee Joint. Medicina. 2022; 58(6):786. https://doi.org/10.3390/medicina58060786
Chicago/Turabian StylePark, Jun-Gu, Seung-Beom Han, Chul-Soo Lee, Ok Hee Jeon, and Ki-Mo Jang. 2022. "Anatomy, Biomechanics, and Reconstruction of the Anterolateral Ligament of the Knee Joint" Medicina 58, no. 6: 786. https://doi.org/10.3390/medicina58060786
APA StylePark, J.-G., Han, S.-B., Lee, C.-S., Jeon, O. H., & Jang, K.-M. (2022). Anatomy, Biomechanics, and Reconstruction of the Anterolateral Ligament of the Knee Joint. Medicina, 58(6), 786. https://doi.org/10.3390/medicina58060786