Effects of Positive End-Expiratory Pressure on Intraocular Pressure during One-Lung Ventilation in the Lateral Decubitus Position—A Prospective Randomized Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Randomization
2.3. Anesthesia Protocol
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, D.J.; Farrell, S.M. Physiology and Role of Intraocular Pressure in Contemporary Anesthesia. Anesth. Analg. 2018, 126, 1551–1562. [Google Scholar] [CrossRef]
- Lee, L.A. Perioperative visual loss and anesthetic management. Curr. Opin. Anaesthesiol. 2013, 26, 375–381. [Google Scholar] [CrossRef]
- Hwang, J.W.; Oh, A.Y.; Hwang, D.W.; Jeon, Y.T.; Kim, Y.B.; Park, S.H. Does intraocular pressure increase during laparoscopic surgeries? It depends on anesthetic drugs and the surgical position. Surg. Laparosc. Endosc. Percutan. Tech. 2013, 23, 229–232. [Google Scholar] [CrossRef]
- Hwang, J.W.; Jeon, Y.T.; Kim, J.H.; Oh, Y.S.; Park, H.P. The effect of the lateral decubitus position on the intraocular pressure in anesthetized patients undergoing lung surgery. Acta Anaesthesiol. Scand. 2006, 50, 988–992. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yoo, C.; Jung, J.H.; Hwang, Y.H.; Kim, Y.Y. The effect of lateral decubitus position on intraocular pressure in healthy young subjects. Acta Ophthalmol. 2012, 90, e68–e72. [Google Scholar] [CrossRef]
- Yamada, M.H.; Takazawa, T.; Iriuchijima, N.; Horiuchi, T.; Saito, S. Changes in intraocular pressure during surgery in the lateral decubitus position under sevoflurane and propofol anesthesia. J. Clin. Monit. Comput. 2016, 30, 869–874. [Google Scholar] [CrossRef] [Green Version]
- Heitz, J.W.; Audu, P.B. Asymmetric postoperative visual loss after spine surgery in the lateral decubitus position. Br. J. Anaesth. 2008, 101, 380–382. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.A.; Roth, S.; Posner, K.L.; Cheney, F.W.; Caplan, R.A.; Newman, N.J.; Domino, K.B. The American Society of Anesthesiologists Postoperative Visual Loss Registry: Analysis of 93 spine surgery cases with postoperative visual loss. Anesthesiology 2006, 105, 652–659. [Google Scholar] [CrossRef]
- Campos, J.H.; Feider, A. Hypoxia During One-Lung Ventilation—A Review and Update. J. Cardiothorac. Vasc. Anesth. 2018, 32, 2330–2338. [Google Scholar] [CrossRef]
- Senturk, M.; Slinger, P.; Cohen, E. Intraoperative mechanical ventilation strategies for one-lung ventilation. Best Pract. Res. Clin. Anaesthesiol. 2015, 29, 357–369. [Google Scholar] [CrossRef]
- Karabayirli, S.; Çimen, N.K.; Muslu, B.; Tenlik, A.; Gözdemir, M.; Sert, H.; Hepşen, İ.F. Effect of positive end-expiratory pressure administration on intraocular pressure in laparoscopic cholecystectomy: Randomised controlled trial. Eur. J. Anaesthesiol. 2016, 33, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Teba, L.; Viti, A.; Banks, D.E.; Fons, A.; Barbera, M.; Hshieh, P.B. Intraocular pressure during mechanical ventilation with different levels of positive end-expiratory pressure. Crit. Care Med. 1993, 21, 867–870. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Han, N.R.; Seo, K.H. Changes of intraocular pressure and ocular perfusion pressure during controlled hypotension in patients undergoing arthroscopic shoulder surgery: A prospective, randomized, controlled study comparing propofol, and desflurane anesthesia. Medicine 2019, 98, e15461. [Google Scholar] [CrossRef]
- Cinnella, G.; Grasso, S.; Natale, C.; Sollitto, F.; Cacciapaglia, M.; Angiolillo, M.; Pavone, G.; Mirabella, L.; Dambrosio, M. Physiological effects of a lung-recruiting strategy applied during one-lung ventilation. Acta Anaesthesiol. Scand. 2008, 52, 766–775. [Google Scholar] [CrossRef]
- Licker, M.; Fauconnet, P.; Villiger, Y.; Tschopp, J.M. Acute lung injury and outcomes after thoracic surgery. Curr. Opin. Anaesthesiol. 2009, 22, 61–67. [Google Scholar] [CrossRef]
- Duggan, M.; Kavanagh, B.P. Pulmonary atelectasis: A pathogenic perioperative entity. Anesthesiology 2005, 102, 838–854. [Google Scholar] [CrossRef]
- Parker, J.C.; Hernandez, L.A.; Peevy, K.J. Mechanisms of ventilator-induced lung injury. Crit. Care Med. 1993, 21, 131–143. [Google Scholar] [CrossRef]
- Tsuno, K.; Miura, K.; Takeya, M.; Kolobow, T.; Morioka, T. Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am. Rev. Respir. Dis. 1991, 143, 1115–1120. [Google Scholar] [CrossRef]
- Kim, S.H.; Jung, K.T.; An, T.H. Effects of tidal volume and PEEP on arterial blood gases and pulmonary mechanics during one-lung ventilation. J. Anesth. 2012, 26, 568–573. [Google Scholar] [CrossRef]
- Liu, K.; Huang, C.; Xu, M.; Wu, J.; Frerichs, I.; Moeller, K.; Zhao, Z. PEEP guided by electrical impedance tomography during one-lung ventilation in elderly patients undergoing thoracoscopic surgery. Ann. Transl. Med. 2019, 7, 757. [Google Scholar] [CrossRef]
- Spadaro, S.; Grasso, S.; Karbing, D.S.; Fogagnolo, A.; Contoli, M.; Bollini, G.; Ragazzi, R.; Cinnella, G.; Verri, M.; Cavallesco, N.G.; et al. Physiologic Evaluation of Ventilation Perfusion Mismatch and Respiratory Mechanics at Different Positive End-expiratory Pressure in Patients Undergoing Protective One-lung Ventilation. Anesthesiology 2018, 128, 531–538. [Google Scholar] [CrossRef]
- You, A.H.; Song, Y.; Kim, D.H.; Suh, J.; Baek, J.W.; Han, D.W. Effects of positive end-expiratory pressure on intraocular pressure and optic nerve sheath diameter in robot-assisted laparoscopic radical prostatectomy: A randomized, clinical trial. Medicine 2019, 98, e15051. [Google Scholar] [CrossRef]
- Choi, Y.S.; Bae, M.K.; Kim, S.H.; Park, J.E.; Kim, S.Y.; Oh, Y.J. Effects of Alveolar Recruitment and Positive End-Expiratory Pressure on Oxygenation during One-Lung Ventilation in the Supine Position. Yonsei Med. J. 2015, 56, 1421–1427. [Google Scholar] [CrossRef] [Green Version]
- Hayreh, S.S. Blood flow in the optic nerve head and factors that may influence it. Prog. Retin. Eye Res. 2001, 20, 595–624. [Google Scholar] [CrossRef]
- Awad, H.; Santilli, S.; Ohr, M.; Roth, A.; Yan, W.; Fernandez, S.; Roth, S.; Patel, V. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth. Analg. 2009, 109, 473–478. [Google Scholar] [CrossRef]
Group ZEEP (n = 24) | Group PEEP (n = 24) | p Value | |
---|---|---|---|
Age (year) | 62.38 (10.25) | 63.46 (7.67) | 0.680 |
Sex (male/female) | 12/12 | 15/9 | 0.383 |
Height (cm) | 165.25 (7.33) | 161.92(7.09) | 0.116 |
Weight (kg) | 66.17 (10.85) | 61.46 (9.72) | 0.12 |
ASA classification (1/2, n) | 0/24 | 0/24 | N/A |
Smoker (n) | 4 | 3 | 0.5 |
Hypertension (n) | 10 | 11 | 0.771 |
Diabetes Mellitus (n) | 7 | 9 | 0.540 |
Preoperative FEV1/FVC% | 73.29 (4.37) | 74.75 (4.30) | 0.264 |
Type of surgery (n (%)) | 0.736 | ||
Lobectomy | 13 (54.2) | 14 (58.3) | |
Segmentectomy | 5 (20.8) | 3 (12.5) | |
Wedge resection | 6 (25) | 7 (29.2) | |
Duration of anesthesia (min) | 193.17 (83.64) | 190.50 (48.99) | 0.893 |
Duration of surgery (min) | 138.29 (71.11) | 128.83 (48.11) | 0.592 |
Duration of OLV (min) | 140.0 (75.37) | 132.08 (41.73) | 0.655 |
Fluid intake (mL) | 1019.58 (531.68) | 1054.17 (426.80) | 0.805 |
Estimated blood loss (mL) | 150.0 (165.68) | 121.25 (64.63) | 0.432 |
Number of patients receiving hemodynamic drugs during anesthesia (n (%)) | |||
Nicardipine | 8 (33.30) | 10 (41.70) | 0.551 |
Esmolol | 11 (45.80) | 14 (58.30) | 0.386 |
Ephedrine | 7 (29.20) | 10 (41.70) | 0.365 |
Glycopyrrolate | 5 (20.80) | 5 (20.80) | N/A |
Group ZEEP (n = 24) | Group PEEP (n = 24) | p Value | |
---|---|---|---|
PaO2 (mmHg) | |||
T2 | 215.04 (47.96) | 228.75 (45.77) | 0.316 |
T4 | 130.88 (48.10) | 160.17 (53.77) | 0.053 |
PaCO2 (mmHg) | |||
T2 | 35.00 (2.81) | 36.00 (3.80) | 0.305 |
T4 | 37.92 (3.16) | 36.58 (3.90) | 0.200 |
PaO2/FiO2 | |||
T2 | 430.16 (95.91) | 457.50 (91.55) | 0.317 |
T4 | 147.71 (54.91) | 189.91 (69.06) | 0.023 |
Peak inspiratory pressure (cmH2O) | |||
T2 | 16.46 (3.08) | 18.29 (1.85) | 0.016 |
T3 | 19.04 (2.39) | 21.29 (1.57) | <0.001 |
T4 | 19.54 (2.25) | 21.58 (1.79) | 0.001 |
T5 | 15.21 (2.64) | 18.67 (1.99) | <0.001 |
Dynamic compliance (mL/cmH2O) | |||
T2 | 30.46 (7.39) | 38.29 (7.27) | 0.001 |
T3 | 19.46 (3.69) | 22.88 (3.49) | 0.002 |
T4 | 18.88 (3.49) | 22.79 (3.81) | 0.001 |
T5 | 32.29 (6.67) | 38.33 (7.41) | 0.005 |
Mean arterial pressure (mmHg) | |||
T1 | 119.00 (11.85) | 119.50 (13.47) | 0.892 |
T2 | 118.92 (17.71) | 119.88 (17.47) | 0.851 |
T3 | 94.42 (12.79) | 94.08 (11.28) | 0.924 |
T4 | 88.50 (8.52) | 87.54 (7.51) | 0.681 |
T5 | 85.5 (8.49) | 85.71 (7.14) | 0.927 |
T1 | T2 | T3 | T4 | T5 | |
---|---|---|---|---|---|
Non-dependent eye IOP (mmHg) | |||||
ZEEP | 19.17 (1.81) | 18.29 (3.63) | 16.29 (2.44) | 16.50 (2.43) | 16.83 (2.35) |
PEEP | 19.04 (2.63) | 18.25 (2.66) | 16.54 (2.57) | 16.63 (2.31) | 16.96 (2.29) |
p value | 0.849 | 0.964 | 0.731 | 0.856 | 0.853 |
Change from baseline | |||||
ZEEP | −0.88 (2.99) | −2.88 (2.17) | −2.67 (2.14) | −2.33 (2.03) | |
PEEP | −0.79 (2.64) | −2.5 (2.90) | −2.42 (2.78) | −2.08 (2.67) | |
Dependent eye IOP (mmHg) | |||||
ZEEP | 19.29 (1.83) | 18.42 (3.60) | 18.21 (2.34) | 19.63 (2.48) | 20.17 (2.31) |
PEEP | 19.21 (2.83) | 18.33 (2.62) | 18.42 (2.48) | 19.75 (2.47) | 20.38 (2.37) |
p value | 0.904 | 0.927 | 0.766 | 0.862 | 0.905 |
Change from baseline | |||||
ZEEP | −0.88 (2.65) | −1.08 (2.19) | 0.33 (2.01) | 0.87 (1.59) | |
PEEP | −0.88 (2.85) | −0.79 (3.23) | 0.54 (2.78) | 1.17 (2.63) |
T1 | T2 | T3 | T4 | T5 | |
---|---|---|---|---|---|
Non-dependent eye OPP (mmHg) | |||||
ZEEP | 99.83 (11.93) | 100.63 (16.18) | 78.13 (13.13) | 72.00 (8.42) | 68.67 (8.48) |
PEEP | 100.46 (13.08) | 101.62 (17.44) | 77.54 (11.18) | 70.92 (7.33) | 68.75 (7.71) |
p value | 0.863 | 0.838 | 0.869 | 0.637 | 0.972 |
Dependent eye OPP (mmHg) | |||||
ZEEP | 99.71 (11.99) | 100.50 (16.30) | 76.21 (13.05) | 68.88 (8.34) | 65.25 (8.53) |
PEEP | 100.29 (13.03) | 101.54 (17.57) | 75.67 (11.23) | 67.79 (7.37) | 65.58 (7.77) |
p value | 0.873 | 0.832 | 0.878 | 0.636 | 0.888 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.S.; Seo, K.H.; Jeon, Y.S.; In, J.H.; Jung, H.S.; Park, Y.J.; Jun, E.H.; Yu, E. Effects of Positive End-Expiratory Pressure on Intraocular Pressure during One-Lung Ventilation in the Lateral Decubitus Position—A Prospective Randomized Trial. Medicina 2022, 58, 940. https://doi.org/10.3390/medicina58070940
Kim YS, Seo KH, Jeon YS, In JH, Jung HS, Park YJ, Jun EH, Yu E. Effects of Positive End-Expiratory Pressure on Intraocular Pressure during One-Lung Ventilation in the Lateral Decubitus Position—A Prospective Randomized Trial. Medicina. 2022; 58(7):940. https://doi.org/10.3390/medicina58070940
Chicago/Turabian StyleKim, Yong Shin, Kwon Hui Seo, Yeon Soo Jeon, Jang Hyeok In, Hong Soo Jung, Yoo Jung Park, Eun Hwa Jun, and Eunju Yu. 2022. "Effects of Positive End-Expiratory Pressure on Intraocular Pressure during One-Lung Ventilation in the Lateral Decubitus Position—A Prospective Randomized Trial" Medicina 58, no. 7: 940. https://doi.org/10.3390/medicina58070940
APA StyleKim, Y. S., Seo, K. H., Jeon, Y. S., In, J. H., Jung, H. S., Park, Y. J., Jun, E. H., & Yu, E. (2022). Effects of Positive End-Expiratory Pressure on Intraocular Pressure during One-Lung Ventilation in the Lateral Decubitus Position—A Prospective Randomized Trial. Medicina, 58(7), 940. https://doi.org/10.3390/medicina58070940