Mortality Predictors in Severe SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical, Paraclinical and Laboratory Data
3.2. Risk Factors Associated with Higher Mortality
3.3. Regression Model to Evaluate Mortality
3.4. Prognosis Score (COV-Score)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- WHO Coronavirus (COVID-19) Dashboard, WHO Coronavirus (COVID-19) Dashboard|WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int (accessed on 4 April 2022).
- Guo, L.; Wei, D.; Zhang, X.; Wu, Y.; Li, Q.; Zhou, M.; Qu, J. Clinical features predicting mortality risk in patients with viral pneumonia: The MuLBSTA score. Front. Microbiol. 2019, 10, 2752, Erratum in Front. Microbiol. 2020, 11, 1304. [Google Scholar] [CrossRef] [Green Version]
- Charles, P.G.P.; Wolfe, R.; Whitby, M.; Fine, M.J.; Fuller, A.J.; Stirling, R.; Wright, A.A.; Ramirez, J.; Christiansen, K.J.; Waterer, G.W.; et al. SMART-COP: A tool for predicting the need for intensive respiratory or vasopressor support in community-acquired pneumonia. Clin. Infect. Dis. 2008, 47, 375–384. [Google Scholar] [CrossRef]
- National Institutes of Health (NIH). COVID-19 Treatment Guidelines, Clinical Spectrum of SARS-CoV-2 Infection. 2021. Available online: https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/ (accessed on 16 October 2021).
- Charlson, M.E.; Carrozzino, D.; Guidi, J.; Patierno, C. Charlson comorbidity index: A critical review of clinimetric properties. Psychother. Psychosom. 2022, 91, 8–35. [Google Scholar] [CrossRef]
- Anghel, A.-M.; Niculae, C.-M.; Manea, E.-D.; Lazar, M.; Popescu, M.; Damalan, A.-C.; Bel, A.-A.; Nedelcu, I.-M.; Patrascu, R.-E.; Hristea, A. The Impact of tocilizumab on radiological changes assessed by quantitative chest ct in severe COVID-19 patients. J. Clin. Med. 2022, 11, 1247. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Y.; He, Y.; Liu, X.; Liu, M.; Tang, Y.; Li, X.; Yang, G.; Liang, G.; Xu, S.; et al. Age-related risk factors and complications of patients with COVID-19: A population-based retrospective study. Front. Med. 2021, 8, 757459. [Google Scholar] [CrossRef]
- Wagner, J.; DuPont, A.; Larson, S.; Cash, B.; Farooq, A. Absolute lymphocyte count is a prognostic marker in COVID-19: A retrospective cohort review. Int. J. Lab. Hematol. 2020, 42, 761–765. [Google Scholar] [CrossRef]
- Mellado-Artigas, R.; Ferreyro, B.L.; Angriman, F.; Hernández-Sanz, M.; Arruti, E.; Torres, A.; Villar, J.; Brochard, L.; Ferrando, C. High-flow nasal oxygen in patients with COVID-19-associated acute respiratory failure. Crit. Care 2021, 25, 58. [Google Scholar] [CrossRef]
- Martha, J.W.; Wibowo, A.; Pranata, R. Prognostic value of elevated lactate dehydrogenase in patients with COVID-19: A systematic review and meta-analysis. Postgrad. Med. J. 2022, 98, 422–427. [Google Scholar] [CrossRef]
- Zekri-Nechar, K.; Zamorano-León, J.J.; SeguraFragoso, A.; Alcaide, J.R.; Reche, C.; Andrés-Castillo, A.; Martínez-Martínez, C.H.; Giner, M.; Jiménez-García, R.; López-De-Andrés, A.; et al. Albumin binds COVID-19 spike 1 subunit and predicts in-hospital survival of infected patients—Possible alteration by glucose. J. Clin. Med. 2022, 11, 587. [Google Scholar] [CrossRef]
- Chaoqun, M.; Dingyuan, T.; Jiawei, G. The predictive value of myoglobin for COVID-19-related adverse outcomes: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2021, 8, 757799. [Google Scholar]
- Zhang, L.; Yan, X.; Fan, Q.; Liu, H.; Liu, X.; Liu, Z.; Zhang, Z. D-dimer levels on admission to predict in-hospital mortality in patients with COVID-19. J. Thromb. Haemost. 2020, 18, 1324–1329. [Google Scholar] [CrossRef]
- Awortwe, C.; Cascorbi, I. Meta-analysis on outcome-worsening comorbidities of COVID-19 and related potential drug-drug interactions. Pharm. Res. 2020, 161, 105250. [Google Scholar] [CrossRef]
- Mohammad, S.; Aziz, R.; Al Mahri, S.; Malik, S.S.; Haji, E.; Khan, A.H.; Khatlani, T.S.; Bouchama, A. Obesity and COVID-19: What makes obese host so vulnerable? Immun. Ageing 2021, 18, 1. [Google Scholar] [CrossRef]
- Nassar, M.; Daoud, A.; Nso, N.; Medina, L.; Ghernautan, V.; Bhangoo, H.; Nyein, A.; Mohamed, M.; Alqassieh, A.; Soliman, K.; et al. Diabetes Mellitus and COVID-19: Review Article. Diabetes MetabSyndr. 2021, 15, 102268. [Google Scholar] [CrossRef]
- Nishiga, M.; Wang, D.W.; Han, Y.; Medina, L.; Ghernautan, V.; Bhangoo, H.; Nyein, A.; Mohamed, M.; Alqassieh, A.; Soliman, K.; et al. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [Google Scholar] [CrossRef]
- ERA-EDTA Council; ERACODA Working Group. Chronic kidney disease is a key risk factor for severe COVID-19: A call to action by the ERA-EDTA. Nephrol. Dial. Transplant. 2021, 36, 87–94. [Google Scholar] [CrossRef]
- ÇakırEdis, E. Chronic pulmonary diseases and COVID-19. Turk. Thorac. J. 2020, 21, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Ronderos, D.; Omar, A.M.S.; Abbas, H.; Makker, J.; Baiomi, A.; Sun, H.; Mantri, N.; Choi, Y.; Fortuzi, K.; Shin, D.; et al. Chronic hepatitis-C infection in COVID-19 patients is associated with in-hospital mortality. World J. Clin. Cases 2021, 9, 8749–8762. [Google Scholar] [CrossRef]
- Derosa, L.; Melenotte, C.; Griscelli, F.; Gachot, B.; Marabelle, A.; Kroemer, G.; Zitvogel, L. The immuno-oncological challenge of COVID-19. Nat. Cancer 2020, 1, 946–964. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Z.; Ding, S.; Liu, S.; Tang, Z.; Jia, L.; Liu, J.; Liu, Y. HIV infection and risk of COVID-19 mortality. Medicine 2021, 100, e26573. [Google Scholar] [CrossRef] [PubMed]
- Chiţu-Tişu, C.E.; Barbu, E.C.; Lazar, M. An overview of bone disease in HIV-infected patients. Acta Med. Mediterr. 2015, 31, 1139–1151. [Google Scholar]
Parameter | Group A n (%) | Group B n (%) | p-Value |
---|---|---|---|
Obesity | 35 (46.1) | 11 (45.8) | >0.05 |
Diabetes mellitus | 13 (17.1) | 8 (33.1) | 0.03 |
Arterial hypertension | 32 (41.9) | 14 (58.3) | >0.05 |
Congestive heart failure | 3 (3.9) | 3 (12.5) | >0.05 |
Chronic kidney disease | 3 (3.9) | 5 (20.8) | 0.03 |
Chronic obstructive pulmonary disorder | 8 (10.5) | 4 (16.6) | >0.05 |
Chronic hepatitis | 3 (3.9) | 2 (8.3) | >0.05 |
History of neoplasia | 0 (0) | 6 (25) | <0.001 |
Ischemic stroke | 2 (2.6) | 5 (20.8) | 0.01 |
Dementia | 1 (1.3) | 1 (4.1) | >0.05 |
Peptic ulcer | 1 (1.3) | 0 (0) | >0.05 |
Other pathologies | 25 (32.9) | 13 (54.1) | >0.05 |
Parameter | Group A n (%)/Median [Q1; Q3] | Group B n (%)/Median [Q1; Q3] | p-Value |
---|---|---|---|
O2 by nasal cannula/Venturi mask | 17 (22.3) | 9 (37.5) | >0.05 |
O2 by non-rebreathing masks | 57 (77) | 12 (50) | 0.02 |
O2 by mechanical ventilation | 0 (0) | 3 (12.5) | 0.003 |
Oxygen flow L/min | 12 [10; 20] | 25 [12.5; 30] | 0.003 |
FiO2 (%) | 60% [50; 60] | 60% [48.7; 78.7] | 0.01 |
PaO2 (mmHg) | 84 [71; 104] | 81.5 [61.5; 93.7] | >0.05 |
PaO2/FiO2 ratio | 163.3 [126.6; 217.9] | 110.5 [96.5; 156.9] | 0.02 |
pCO2 (mmHg) | 37 [34.9; 40] | 36 [32; 39.2] | >0.05 |
RR (breaths/minute) | 35 [20.7; 30] | 26.5 [20; 28.5] | >0.05 |
Parameter | Group A Median [Q1; Q3] | Group B Median [Q1; Q3] | p-Value |
---|---|---|---|
PaO2/FiO2 ratio | 163.3 [126.6; 217.9] | 110.5 [96.5; 156.8] | 0.008 |
Neutrophils (×103/µL) | 6200 [4650; 8350] | 8750 [5400; 13,675] | 0.016 |
Lymphocytes (×103/µL) | 950 [700; 1200] | 525 [400; 800] | <0.001 |
Neutrophils/lymphocytes ratio | 6.8 [4.1; 11.4] | 14.6 [8.7; 30.8] | <0.001 |
Platelets (×103/µL) | 229.5 [191.7; 318.5] | 160 [1110.2; 275.7] | 0.004 |
Hemoglobin (g/dL) | 14 [12.8; 14.5] | 12.5 [11.3; 13.7] | 0.001 |
BNP (ng/L) | 86 [17; 301] | 754 [144.7; 2428.7] | 0.003 |
D-dimers (ng/mL) | 246 [156; 354] | 555 [213; 1141] | 0.001 |
Creatine kinase (U/L) | 61.5 [34.2; 127] | 191.5 [76; 307.5] | 0.004 |
Myoglobin (µg/L) | 120 [83.5; 225.2] | 236 [128.3; 332.4] | 0.007 |
Lactate dehydrogenase (U/L) | 354.5 [287; 454.2] | 570 [457; 680] | 0.001 |
Serum creatinine (mg/dL) | 0.9 [0.7; 1.1] | 1.4 [1.1; 1.5] | <0.001 |
Serum albumin (g/L) | 3.8 [3.4; 4] | 3.35 [3.1; 3.6] | <0.001 |
IL-6 (pg/mL) | 12.6 [2.8; 89.4] | 48.6 [5.5; 193.4] | >0.05 |
Ferritin (ng/mL) | 795.2 [289; 1635] | 1265.5 [785; 1650] | >0.05 |
Troponin I (ng/mL) | 0.3 [0.3; 0.3] | 0.03 [0.03; 0.035] | >0.05 |
Plasminogen activator inhibitor-1 (ng/mL) | 469.2 [289.5; 674.5] | 501.5 [211.5; 775.2] | >0.05 |
Alanine transaminase (U/L) | 44.5 [29.2; 86.7] | 68 [37; 108] | >0.05 |
C-reactive protein (mg/L) | 63.9 [17.1; 106] | 85 [38.2; 146] | >0.05 |
Parameter | Group A Median [Q1, Q3] | Group B Median [Q1, Q3] | p-Value |
---|---|---|---|
alveolar lesions (%) | 1.8 [1; 3.2] | 3.1 [1.5; 5.1] | 0.062 |
mixt lesions (%) | 4.6 [2.5; 7.3] | 6.9 [4.1; 12] | 0.036 |
interstitial lesions (%) | 39.4 [31.7; 47.8] | 49.2 [44.3; 60.1] | 0.001 |
total lung involvement (%) | 47.2 [35.9; 63] | 64.9 [48.1; 74.1] | 0.003 |
normal lung densities (%) | 52.7 [37; 64.1] | 35.1 [25.9;51.9] | 0.003 |
Cluster 1 (2–10 mmc) (%) | 0.4 [0.2; 0.9] | 1.1 [0.3; 1.5] | 0.029 |
Cluster 2 (10–60 mmc) (%) | 0.45 [0.2; 0.9] | 0.9 [0.3; 1.7] | 0.011 |
Cluster 3 (60–200 mmc) (%) | 0.1 [0; 0.3] | 0.4 [0.2; 0.6] | 0.001 |
Cluster 4 (over 200 mmc) (%) | 51.6 [35.5; 63.7] | 33 [20.7; 51.7] | 0.002 |
lobes with interstitial lesions (n) | 5 [5; 5] | 5 [5; 5] | 0.931 |
lobes with alveolar lesions (n) | 0 [1; 2] | 0 [0; 2] | 0.306 |
lobes with atelectatic changes (n) | 3.5 [2; 5] | 2 [2; 4] | 0.253 |
Parameter | Pearson Correlation | p-Value | OR (95% CI) | Change in Mortality (%) |
---|---|---|---|---|
Age (years) | 0.260 | 0.009 | 1.052 (1.011; 1.094) | 5.2 * |
O2 flow (L/min) | 0.306 | 0.002 | 1.092 (1.029; 1.159) | 9.2 * |
FiO2 (%) | 0.260 | 0.009 | 1.045 (1.009; 1.083) | 4.5 * |
PaO2/FiO2 ratio | −0.235 | 0.02 | 0.99 (0.982; 0.999) | 1 # |
Lymphocytes (×103/µL) | −0.360 | <0.001 | 0.997 (0.995; 0.999) | 0.3 # |
Neutrophils/lymphocytes ratio | 0.341 | 0.001 | 1.067 (1.023; 1.113) | 6.7 * |
Platelets (×103/µL) | −0.302 | 0.002 | 0.99 (0.984; 0.997) | 1 # |
Hemoglobin (g/dL) | −0.362 | <0.001 | 0.623 (0.47; 0.83) | 38 # |
CKMB (U/L) | 0.258 | 0.01 | 1.047 (1.004; 1.091) | 4.7 * |
LDH (U/L) | 0.371 | <0.001 | 1.005 (1.002; 1.008) | 0.5 * |
Serum albumin (g/L) | −0.450 | <0.001 | 0.062 (0.012; 0.32) | 93.8 # |
Myoglobin (µg/L) | 0.282 | 0.013 | 1.006 (1.001; 1.011) | 0.6 * |
Interstitial lesions (%) | 0.320 | 0.001 | 1.065 (1.022; 1.109) | 6.5 * |
Total lung involvement (%) | 0.335 | 0.001 | 1.049 (1.018; 12.08) | 4.9 * |
Normal lung densities (%) | −0.335 | 0.001 | 0.953 (0.926; 0.982) | 4.7 # |
Cluster1 (2–10 mmc) (%) | 0.209 | 0.047 | 1.798 (1.015; 3.183) | 79.8 * |
Cluster2 (10–60 mmc) (%) | 0.233 | 0.019 | 1.936 (1.081; 3.467) | 93.6 * |
Cluster 3 (60–200 mmc) (%) | 0.241 | 0.016 | 4.92 (1.262; 19.181) | 392 * |
Cluster 4 (over 200 mmc) (%) | −0.341 | 0.001 | 0.956 (0.93; 0.98) | 4.4 # |
Omnibus Test of Model Coefficients | Nagelkerke R Square | Hosmer Lemeshow Test | Corrected Survival Rate (%) | Corrected Mortality Rate (%) | Overall Accuracy Prediction (%) | |
---|---|---|---|---|---|---|
Regression model | <0.001 | 0.699 | 0.877 | 94.3 (97.1 *) | 78.6 (85.7 *) | 89.8 (93.9 *) |
Omnibus Test of Model Coefficients | Nagelkerke R Square | Hosmer Lemeshow Test | Corrected Survival Rate (%) | Corrected Mortality Rate (%) | Overall Accuracy Prediction (%) | |
---|---|---|---|---|---|---|
COV-Score | <0.001 | 0.5 | 0.73 | 97.4 | 47.8 | 85.9 |
MuLBSTA | <0.001 | 0.18 | 0.24 | 97.4 | 17.4 | 78.8 |
Smart COP | <0.01 | 0.09 | 0.06 | 100 | 13 | 79.8 |
Regression Model Type | B | S.E. | Wald | p | OR | 95% CI for OR | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
COV-Score Constant | 0.808 | 0.182 | 19.749 | <0.001 | 2.243 | 1.571 | 3.203 |
−4.963 | 0.983 | 25.490 | <0.001 | 0.007 | |||
MuLBSTA Constant | 0.370 | 0.116 | 10.265 | 0.001 | 1.448 | 1.155 | 1.817 |
−4.244 | 1.037 | 16.748 | <0.001 | 0.014 | |||
Smart COP Constant | 0.430 | 1.171 | 6.320 | 0.012 | 1.537 | 1.099 | 2.150 |
−3.498 | 0.978 | 12.791 | <0.001 | 0.03 |
COV-Score Value | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Probability of death (%) | 0 | 1.5 | 3.3 | 7.3 | 15 | 28.4 | 47 | 66.6 | 81.7 | 90.1 | 95.7 |
Observed frequency of death (%) | 0 | 0 | 0 | 9.1 | 11.1 | 30 | 40 | 80 | 100 | 100 | 100 |
Regression Model Type | AUC | Std Error | p-Value | Cut Off Value 1 | Se | Sp | Cut Off Value 2 | Se | Sp |
---|---|---|---|---|---|---|---|---|---|
COV-Score | 0.884 | 0.036 | <0.001 | 4.5 | 0.87 | 0.77 | 4.5 | 0.87 | 0.77 |
MuLBSTA | 0.731 | 0.061 | 0.001 | 8.5 | 0.7 | 0.75 | 6 | 0,9 | 0.28 |
Smart COP | 0.639 | 0.077 | 0.045 | 5.5 | 0.52 | 0.78 | 3.5 | 0.87 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazar, M.; Barbu, E.C.; Chitu, C.E.; Anghel, A.-M.-J.; Niculae, C.-M.; Manea, E.-D.; Damalan, A.-C.; Bel, A.-A.; Patrascu, R.-E.; Hristea, A.; et al. Mortality Predictors in Severe SARS-CoV-2 Infection. Medicina 2022, 58, 945. https://doi.org/10.3390/medicina58070945
Lazar M, Barbu EC, Chitu CE, Anghel A-M-J, Niculae C-M, Manea E-D, Damalan A-C, Bel A-A, Patrascu R-E, Hristea A, et al. Mortality Predictors in Severe SARS-CoV-2 Infection. Medicina. 2022; 58(7):945. https://doi.org/10.3390/medicina58070945
Chicago/Turabian StyleLazar, Mihai, Ecaterina Constanta Barbu, Cristina Emilia Chitu, Ana-Maria-Jennifer Anghel, Cristian-Mihail Niculae, Eliza-Daniela Manea, Anca-Cristina Damalan, Adela-Abigaela Bel, Raluca-Elena Patrascu, Adriana Hristea, and et al. 2022. "Mortality Predictors in Severe SARS-CoV-2 Infection" Medicina 58, no. 7: 945. https://doi.org/10.3390/medicina58070945
APA StyleLazar, M., Barbu, E. C., Chitu, C. E., Anghel, A. -M. -J., Niculae, C. -M., Manea, E. -D., Damalan, A. -C., Bel, A. -A., Patrascu, R. -E., Hristea, A., & Ion, D. A. (2022). Mortality Predictors in Severe SARS-CoV-2 Infection. Medicina, 58(7), 945. https://doi.org/10.3390/medicina58070945