Synergistic Effects of a Probiotic Culture Extract and Antimicrobial Combinations against Multidrug-Resistant Acinetobacter baumannii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Experimental Strains
2.2. Identification of Lactobacillus spp.
2.3. Antimicrobial Susceptibility Test
2.4. Multi-Locus Sequence Typing
2.5. Checkerboard Test
2.6. Time–Kill Assay Test
2.7. Data Analysis and Statistics
3. Results
3.1. Isolation of Experimental Strains
3.2. Identification of Lactobacillus spp.
3.3. Antimicrobial Susceptibility Test
3.4. Multi-Locus Sequence Typing
3.5. Checkerboard Test
3.6. Time–Kill Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aminov, R. History of antimicrobial drug discovery: Major classes and health impact. Biochem. Pharmacol. 2017, 133, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Yao, P.W.; Qian, Z.; Ji, T.; Wang, K.; Gao, L. Clinical Characteristics of Hydrocephalus Following the Treatment of Pyogenic Ventriculitis Caused by Multi/Extensive Drug-Resistant Gram-Negative Bacilli, Acinetobacter Baumannii, and Klebsiella Pneumoniae. Front. Surg. 2022, 9, 854627. [Google Scholar] [CrossRef] [PubMed]
- MacVane, S.H. Antimicrobial Resistance in the Intensive Care Unit: A Focus on Gram-Negative Bacterial Infections. J. Intensive Care Med. 2017, 32, 25–37. [Google Scholar] [CrossRef]
- Ayobami, O.; Willrich, N.; Harder, T.; Okeke, I.N.; Eckmanns, T.; Markwart, R. The incidence and prevalence of hospital-acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: A systematic review and meta-analysis. Emerg. Microbes Infect. 2019, 8, 1747–1759. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C.; Cheng, C.Y.; Sheng, W.H.; Sun, H.Y.; Wang, J.T.; Chen, Y.C.; Chang, S.C. Effectiveness of tigecycline-based versus colistin- based therapy for treatment of pneumonia caused by multidrug-resistant Acinetobacter baumannii in a critical setting: A matched cohort analysis. BMC Infect. Dis. 2014, 14, 102. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Zhu, M.H.; Li, J.J.; Bi, S.; Sheng, Z.K.; Hu, F.S.; Zhang, J.J.; Chen, W.; Xue, X.W.; Sheng, J.F.; et al. Molecular epidemiology and mechanisms of tigecycline resistance in clinical isolates of Acinetobacter baumannii from a Chinese university hospital. Antimicrob. Agents Chemother. 2014, 58, 297–303. [Google Scholar] [CrossRef]
- Yaghoubi, S.; Zekiy, A.O.; Krutova, M.; Gholami, M.; Kouhsari, E.; Sholeh, M.; Ghafouri, Z.; Maleki, F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: Narrative review. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1003–1022. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, H.M.; Choib, E.J.; Choe, I. Evaluation of Clinical outcomes after Tigecycline and Colistin Treatment against Multidrug-resistant Acinetobacter Baumannii. J. Korean Soc. Health-Syst. Pharm. 2016, 33, 228–238. [Google Scholar] [CrossRef]
- Stein, C.; Makarewicz, O.; Bohnert, J.A.; Pfeifer, Y.; Kesselmeier, M.; Hagel, S.; Pletz, M.W. Three Dimensional Checkerboard Synergy Analysis of Colistin, Meropenem, Tigecycline against Multidrug-Resistant Clinical Klebsiella pneumonia Isolates. PLoS ONE 2015, 10, e0126479. [Google Scholar] [CrossRef]
- Sopirala, M.M.; Mangino, J.E.; Gebreyes, W.A.; Biller, B.; Bannerman, T.; Balada-Llasat, J.M.; Pancholi, P. Synergy testing by Etest, microdilution checkerboard, and time-kill methods for pan-drug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2010, 54, 4678–4683. [Google Scholar] [CrossRef]
- Roque-Borda, C.A.; da Silva, P.B.; Rodrigues, M.C.; Azevedo, R.B.; Di Filippo, L.; Duarte, J.L.; Chorilli, M.; Festozo Vicente, E.; Pavan, F.R. Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Pharmaceutics 2021, 13, 773. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.C.; Ayuhan, N.; Woon, J.J.; Teh, C.S.J.; Lee, V.S.; Azman, A.S.; AbuBakar, S.; Lee, H.Y. Profiling of Potential Antibacterial Compounds of Lactic Acid Bacteria against Extremely Drug Resistant (XDR) Acinetobacter baumannii. Molecules 2021, 26, 1727. [Google Scholar] [CrossRef]
- Kathayat, D.; Closs, G., Jr.; Helmy, Y.A.; Deblais, L.; Srivastava, V.; Rajashekara, G. In Vitro and In Vivo Evaluation of Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 Against Avian Pathogenic Escherichia coli and Identification of Novel Probiotic-Derived Bioactive Peptides. Probiotics Antimicrob. Proteins 2022, 14, 1012–1028. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wen, T.; Zhao, Q. Probiotics Used for Postoperative Infections in Patients Undergoing Colorectal Cancer Surgery. Biomed. Res. Int. 2020, 2020, 5734718. [Google Scholar] [CrossRef]
- Weinstein, M.P.; Lewis, J.S., II; Bobenchik, A.M.; Campeau, S.; Galas, M.F.; Gold, H.; Humphries, R.M.; Kirn, T.J.; Limbago, B.; Mathers, A.J.; et al. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Hong, Y.; Yang, H.S.; Chang, H.C.; Kim, H.Y. Comparison of bacterial community changes in fermenting kimchi at two different temperatures using a denaturing gradient gel electrophoresis analysis. J. Microbiol. Biotechnol. 2013, 23, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kwon, Y.I.; Lee, W.G. Comparison of multilocus sequence typing change patterns of vancomycin-resistant Enterococcus faecium from 2015 to 2017. Ann. Clin. Microbiol. 2017, 20, 67–73. [Google Scholar] [CrossRef]
- Xu, L.; Deng, S.; Wen, W.; Tang, Y.; Chen, L.; Li, Y.; Zhong, G.; Li, J.; Ting, W.J.; Fu, B. Molecular typing, and integron and associated gene cassette analyses in Acinetobacter baumannii strains isolated from clinical samples. Exp. Ther. Med. 2020, 20, 1943–1952. [Google Scholar] [CrossRef]
- Petersen, P.J.; Labthavikul, P.; Jones, C.H.; Bradford, P.A. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J. Antimicrob. Chemother. 2006, 57, 573–576. [Google Scholar] [CrossRef]
- Jayaraman, P.; Sakharkar, M.K.; Lim, C.S.; Tang, T.H.; Sakharkar, K.R. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int. J. Biol. Sci. 2010, 6, 556–568. [Google Scholar] [CrossRef]
- El-Mokhtar, M.A.; Hassanein, K.M.; Ahmed, A.S.; Gad, G.F.; Amin, M.M.; Hassanein, O.F. Antagonistic Activities of Cell-Free Supernatants of Lactobacilli Against Extended-Spectrum β-Lactamase Producing Klebsiella pneumoniae and Pseudomonas aeruginosa. Infect. Drug Resist. 2020, 13, 543–552. [Google Scholar] [CrossRef]
- Garcia, L.S. Clinical Microbiology Procedures Handbook; American Society for Microbiology Press: Washington, DC, USA, 2010. [Google Scholar]
- Koneman, E.W.; Allen, S.D.; Janda, W.; Schreckenberger, P.; Winn, W. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, 6th ed.; Lippincott Williams and Wikins Publishers: Philadelphia, PA, USA, 2006; pp. 29–33. [Google Scholar]
- Talebi Bezmin Abadi, A.; Rizvanov, A.; Haertlé, T.; Blatt, N. World Health Organization Report: Current Crisis of Antibiotic Resistance. BioNanoScience 2019, 9, 778–788. [Google Scholar] [CrossRef]
- Lee, C.R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell Infect. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Righi, E.; Esposito, S.; Petrosillo, N.; Nicolini, L. Drug treatment for multidrug-resistant Acinetobacter baumannii infections. Future Microbiol. 2008, 3, 649–660. [Google Scholar] [CrossRef]
- Jun, S.H.; Lee, D.E.; Hwang, H.R.; Kim, N.; Kim, H.J.; Lee, Y.C.; Kim, Y.K.; Lee, J.C. Clonal change of carbapenem-resistant Acinetobacter baumannii isolates in a Korean hospital. Infect. Genet. Evol. 2021, 93, 104935. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.G.; Lee, H.J.; Yim, H.S.; Lee, M.G.; Sohn, J.W.; Yoon, Y.K. In vitro synergistic antimicrobial activity of a combination of meropenem, colistin, tigecycline, rifampin, and ceftolozane/tazobactam against carbapenem-resistant Acinetobacter baumannii. Sci. Rep. 2022, 12, 7541. [Google Scholar] [CrossRef]
- Choi, A.R.; Patra, J.K.; Kim, W.J.; Kang, S.S. Antagonistic Activities and Probiotic Potential of Lactic Acid Bacteria Derived from a Plant-Based Fermented Food. Front. Microbiol. 2018, 9, 1963. [Google Scholar] [CrossRef] [PubMed]
Strain Number | Species Identification | Identity (%) | GenBank Accession No. |
---|---|---|---|
1 | Lactobacillus plantarum | 99 | NR_115605.1 |
2 | Lactobacillus acidophilus | 99 | NR_113638.1 |
3 | Lactobacillus crispatus | 99 | NR_041800.1 |
4 | Lactobacillus paracasei | 99 | AP012541.1 |
Sequence Type | Allelic Profile | No. of Isolates (%) | ||||||
---|---|---|---|---|---|---|---|---|
gltA | gyrB | gdhB | recA | cpn60 | gpi | rpoD | ||
ST191 | 1 | 3 | 3 | 2 | 2 | 94 | 3 | 15 (45%) |
ST451 | 1 | 3 | 3 | 2 | 2 | 142 | 3 | 5 (15%) |
ST784 | 1 | 3 | 3 | 2 | 2 | 107 | 3 | 5 (15%) |
ST229 | 1 | 15 | 2 | 28 | 1 | 107 | 32 | 5 (15%) |
ST369 | 1 | 3 | 3 | 2 | 2 | 106 | 3 | 3 (9%) |
Sequence Type (n = 22) | Antibacterial Combination | Single Antibacterial MIC (µg/mL) | Combination Antibacterial MIC (µg/mL) | FIC Index | |||
---|---|---|---|---|---|---|---|
A | B | A | B | A | B | ||
ST191 (n = 13) | MEM | COL | 256 | 0.5 | 64 | 0.125 | 0.5 |
CAZ | COL | 128 | 1 | 32 | 0.5 | 0.75 | |
TIG | COL | 4 | 1 | 0.5 | 0.5 | 0.63 | |
CIP | COL | 512 | 0.5 | 64 | 0.5 | 1.13 | |
ST451 (n = 4) | MEM | COL | 128 | 0.5 | 32 | 0.125 | 0.5 |
CAZ | COL | 128 | 1 | 64 | 0.0625 | 0.56 | |
TIG | COL | 2 | 1 | 0.5 | 0.5 | 0.75 | |
CIP | COL | 256 | 0.5 | 128 | 0.25 | 1.00 | |
ST784 (n = 5) | MEM | COL | 128 | 0.5 | 32 | 0.125 | 0.5 |
CAZ | COL | 128 | 1 | 64 | 0.0625 | 0.56 | |
TIG | COL | 2 | 1 | 0.5 | 0.5 | 0.75 | |
CIP | COL | 512 | 0.5 | 512 | 0.25 | 1.50 |
Species Identification | Number of Bacterial Cells (Log10 CFU/mL) | ||||||
---|---|---|---|---|---|---|---|
Incubation Time (h) | |||||||
0 | 1 | 2 | 3 | 4 | 12 | 24 | |
Without Lactobacillus sp. | 4.7 | 4.6 | 4.6 | 4.5 | 4.5 | 4.8 | 5.0 |
Lactobacillus crispatus | 4.7 | 4.7 | 4.6 | 4.1 | 3.8 | 4.1 | 5.0 |
Lactobacillus paracasei | 4.7 | 4.7 | 4.7 | 4.3 | 4.1 | 3.9 | 0.0 |
Lactobacillus acidophilus | 4.7 | 4.6 | 4.6 | 4.1 | 4.0 | 4.5 | 5.0 |
Lactobacillus plantarum | 4.7 | 4.7 | 4.6 | 4.2 | 4.1 | 3.3 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.H.; Kim, J.; Kim, G.-Y. Synergistic Effects of a Probiotic Culture Extract and Antimicrobial Combinations against Multidrug-Resistant Acinetobacter baumannii. Medicina 2023, 59, 947. https://doi.org/10.3390/medicina59050947
Lee JH, Kim J, Kim G-Y. Synergistic Effects of a Probiotic Culture Extract and Antimicrobial Combinations against Multidrug-Resistant Acinetobacter baumannii. Medicina. 2023; 59(5):947. https://doi.org/10.3390/medicina59050947
Chicago/Turabian StyleLee, Ji Hyeon, Joon Kim, and Ga-Yeon Kim. 2023. "Synergistic Effects of a Probiotic Culture Extract and Antimicrobial Combinations against Multidrug-Resistant Acinetobacter baumannii" Medicina 59, no. 5: 947. https://doi.org/10.3390/medicina59050947
APA StyleLee, J. H., Kim, J., & Kim, G.-Y. (2023). Synergistic Effects of a Probiotic Culture Extract and Antimicrobial Combinations against Multidrug-Resistant Acinetobacter baumannii. Medicina, 59(5), 947. https://doi.org/10.3390/medicina59050947