Exposure to Environmental Pesticides and the Risk of Autism Spectrum Disorders: A Population-Based Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Criteria for Selecting Study Areas and Categorizing Pesticide Exposure
2.3. Study Population and ASD
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
4. Discussion
4.1. Limitations
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 2018, 392, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Lobar, S.L. DSM-V Changes for Autism Spectrum Disorder (ASD): Implications for Diagnosis, Management, and Care Coordination for Children with ASDs. J. Pediatr. Health Care 2016, 30, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Anorson, N.; Anorson, N.; Male, I.; Farr, W.; Memon, A. Prevalence of autism in Europe, North America and Oceania, -2000-2020: A systematic review. Eur. J. Public Health 2021, 31, ckab164–ckab786. [Google Scholar] [CrossRef]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2020. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Shaw, K.A.; Bilder, D.A.; McArthur, D.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Early identification of autism spectrum disorder among children aged 4 years—Autism and developmental disabilities monitoring network, 11 Sites, United States, 2020. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2023, 72, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; McGovern, R.A.; Sheth, S.A. Deep brain stimulation for severe autism: From pathophysiology to procedure. Neurosurg. Focus 2015, 38, E3. [Google Scholar] [CrossRef]
- Hashem, S.; Nisar, S.; Bhat, A.A.; Yadav, S.K.; Azeem, M.W.; Bagga, P.; Fakhro, K.; Reddy, R.; Frenneaux, M.P.; Haris, M. Genetics of structural and functional brain changes in autism spectrum disorder. Transl. Psychiatry 2020, 10, 229. [Google Scholar] [CrossRef] [PubMed]
- Hollestein, V.; Poelmans, G.; Forde, N.J.; Beckmann, C.F.; Ecker, C.; Mann, C.; Schäfer, T.; Moessnang, C.; Baumeister, S.; Banaschewski, T.; et al. Excitatory/inhibitory imbalance in autism: The role of glutamate and GABA gene-sets in symptoms and cortical brain structure. Transl. Psychiatry 2023, 13, 18. [Google Scholar] [CrossRef]
- Zhao, H.; Mao, X.; Zhu, C.; Zou, X.; Peng, F.; Yang, W.; Li, B.; Li, G.; Ge, T.; Cui, R. GABAergic system dysfunction in autism spectrum disorders. Front. Cell Dev. Biol. 2022, 9, 781327. [Google Scholar] [CrossRef]
- Lan, A.; Kalimian, M.; Amram, B.; Kofman, O. Prenatal chlorpyrifos leads to autism-like deficits in C57Bl6/J mice. Environ. Health 2017, 16, 43. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Liang, Y.; Yao, P. Rethinking autism: The impact of maternal risk factors on autism development. Am. J. Transl. Res. 2022, 14, 1136–1145. [Google Scholar]
- Wu, S.; Wu, F.; Ding, Y.; Hou, J.; Bi, J.; Zhang, Z. Advanced parental age and autism risk in children: A systematic review and meta-analysis. Acta Psychiatr. Scand. 2017, 135, 29–41. [Google Scholar] [CrossRef]
- Dutheil, F.; Comptour, A.; Morlon, R.; Mermillod, M.; Pereira, B.; Baker, J.S.; Charkhabi, M.; Clinchamps, M.; Bourdel, N. Autism spectrum disorder and air pollution: A systematic review and meta-analysis. Environ. Pollut. 2021, 278, 116856. [Google Scholar] [CrossRef]
- Pagalan, L.; Bickford, C.; Weikum, W.; Lanphear, B.; Brauer, M.; Lanphear, N.; Hanley, G.E.; Oberlander, T.F.; Winters, M. Association of prenatal exposure to air pollution with autism spectrum disorder. JAMA Pediatr. 2019, 173, 86–92. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shu, Y.H.; Chow, T.; Lurmann, F.W.; Yu, X.; Martinez, M.P.; Carter, S.A.; Eckel, S.P.; Chen, J.C.; Chen, Z.; et al. Prenatal exposure to air pollution and autism spectrum disorder: Sensitive windows of exposure and sex differences. Environ. Health Perspect. 2022, 130, 017008. [Google Scholar] [CrossRef] [PubMed]
- Bemanalizadeh, M.; Khoshhali, M.; Goli, P.; Abdollahpour, I.; Kelishadi, R. Parental Occupational Exposure and Neurodevelopmental Disorders in Offspring: A Systematic Review and Meta-analysis. Curr. Environ. Health Rep. 2002, 9, 406–422. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.C.; Que, D.E.; Bongo, S.J.; Tayo, L.L.; Lin, Y.H.; Lin, C.W.; Lin, S.L.; Gou, Y.Y.; Hsu, W.L.; Shy, C.G.; et al. Residue levels of organochlorine pesticides in breast milk and its associations with cord blood thyroid hormones and the offspring’s neurodevelopment. Int. J. Environ. Res. Public Health 2019, 16, 1438. [Google Scholar] [CrossRef]
- Torres-Sánchez, L.; Schnaas, L.; Rothenberg, S.J.; Cebrián, M.E.; Osorio-Valencia, E.; Del Carmen Hernánde, M.; García-Hernández, R.M.; López-Carrillo, L. Prenatal p,p’-DDE exposure and neurodevelopment among children 3.5–5 years of age. Environ. Health Perspect. 2013, 121, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Lizé, M.; Monfort, C.; Rouget, F.; Limon, G.; Durand, G.; Tillaut, H.; Chevrier, C. Prenatal exposure to organophosphate pesticides and autism spectrum disorders in 11-year-old children in the French PELAGIE cohort. Environ. Res. 2022, 212, 113348. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, X.; Chen, D.; Xu, Y.; Lan, L.; Zhao, S.; Liu, Q.; Snijders, A.M.; Xia, Y. Maternal exposure to pesticides and autism or attention-deficit/hyperactivity disorders in offspring: A meta-analysis. Chemosphere 2023, 313, 137459. [Google Scholar] [CrossRef]
- Bahena-Medina, L.A.; Torres-Sánchez, L.; Schnaas, L.; Cebrián, M.E.; Chávez, C.H.; Osorio-Valencia, E.; Hernández, R.M.G.; López-Carrillo, L. Neonatal neurodevelopment and prenatal exposure to dichlorodiphenyldichloroethylene (DDE): A cohort study in Mexico. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 609–614. [Google Scholar] [CrossRef]
- Donauer, S.; Altaye, M.; Xu, Y.; Sucharew, H.; Succop, P.; Calafat, A.M.; Khoury, J.C.; Lanphear, B.; Yolton, K. An observational study to evaluate associations between low-level gestational exposure to organophosphate pesticides and cognition during early childhood. Am. J. Epidemiol. 2016, 184, 410–418. [Google Scholar] [CrossRef]
- Watkins, D.J.; Fortenberry, G.Z.; Sánchez, B.N.; Barr, D.B.; Panuwet, P.; Schnaas, L.; Osorio-Valencia, E.; Solano-González, M.; Ettinger, A.S.; Hernández-Ávila, M.; et al. Urinary 3-phenoxybenzoic acid (3-PBA) levels among pregnant women in Mexico City: Distribution and relationships with child neurodevelopment. Environ. Res. 2016, 147, 307–313. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, J.; Wu, C.; Qi, X.; Jiang, S.; Lu, D.; Feng, C.; Liang, W.; Chang, X.; Zhang, Y.; et al. Exposure to carbamate and neurodevelopment in children: Evidence from the SMBCS cohort in China. Environ. Res. 2019, 177, 108590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, S.; Liang, D.; Shi, X.; Wang, F.; Liu, W.; Zhang, L.; Chen, L.; Gu, Y.; Tian, Y. Prenatal exposure to organophosphate pesticides and neurobehavioral development of neonates: A birth cohort study in Shenyang, China. PLoS ONE 2014, 9, e88491. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.R.; Debes, F.; Wohlfahrt-Veje, C.; Murata, K.; Grandjean, P. Occupational pesticide exposure in early pregnancy associated with sex-specific neurobehavioral deficits in the children at school age. Neurotoxicol. Teratol. 2015, 47, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Von Ehrenstein, O.S.; Ling, C.; Cui, X.; Cockburn, M.; Park, A.S.; Yu, F.; Wu, J.; Ritz, B. Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: Population based case-control study. BMJ 2019, 364, l962. [Google Scholar] [CrossRef]
- Gunier, R.B.; Bradman, A.; Harley, K.G.; Kogut, K.; Eskenazi, B. Prenatal residential proximity to agricultural pesticide use and IQ in 7-year-old children. Environ. Health Perspect. 2017, 125, 057002. [Google Scholar] [CrossRef] [PubMed]
- Ostrea, E.M.; Reyes, A.; Villanueva-Uy, E.; Pacifico, R.; Benitez, B.; Ramos, E.; Bernardo, R.C.; Bielawski, D.M.; Delaney-Black, V.; Chiodo, L.; et al. Fetal exposure to propoxur and abnormal child neurodevelopment at 2 years of age. Neurotoxicology 2012, 33, 669–675. [Google Scholar] [CrossRef] [PubMed]
- De Felice, A.; Scattoni, M.L.; Ricceri, L.; Calamandrei, G. Prenatal Exposure to a Common Organophosphate Insecticide Delays Motor Development in a Mouse Model of Idiopathic Autism. PLoS ONE 2015, 10, e0121663. [Google Scholar] [CrossRef]
- Perez-Fernandez, C.; Matamala Montoya, M.; Morales-Navas, M.; Guardia-Escote, L.; Cabré, M.; Colomina, M.T.; Giménez, E.; Sánchez-Santed, F. Influence of Gestational Chlorpyrifos Exposure on ASD-like Behaviors in an fmr1-KO Rat Model. Mol. Neurobiol. 2022, 59, 5835–5855. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Yang, J.; Chang, L.; Qu, Y.; Wang, S.; Zhang, K.; Xiong, Z.; Zhang, J.; Tan, Y.; Wang, X.; et al. Maternal glyphosate exposure causes autism-like behaviors in offspring through increased expression of soluble epoxide hydrolase. Proc. Natl. Acad. Sci. USA 2020, 117, 11753–11759. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.A.L.; Rojas, V.C.T.; de Sá, J.C.; de Novais, C.O.; Silva, M.S.; de Almeida Paula, H.A.; Kirsten, T.B.; Bernardi, M.M.; Pinheiro, L.C.; Giusti-Paiva, A.; et al. Perinatal exposure to glyphosate-based herbicides induced neurodevelopmental behaviors impairments and increased oxidative stress in the prefrontal cortex and hippocampus in offspring. Int. J. Dev. Neurosci. 2022, 82, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.; Mostafalou, S.; Pournourmohammadi, S.; Shadnia, S. Oxidative stress and cholinesterase inhibition in saliva and plasma of rats following subchronic exposure to malathion. Comp. Biochem. Physiol. Part C 2004, 137, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Dargenio, V.N.; Dargenio, C.; Castellaneta, S.; De Giacomo, A.; Laguardia, M.; Schettini, F.; Francavilla, R.; Cristofori, F. Intestinal barrier dysfunction and microbiota–gut–brain axis: Possible implications in the pathogenesis and treatment of autism spectrum disorder. Nutrients 2023, 15, 1620. [Google Scholar] [CrossRef] [PubMed]
- Restrepo, B.; Angkustsiri, K.; Taylor, S.L.; Rogers, S.J.; Cabral, J.; Heath, B.; Hechtman, A.; Solomon, M.; Ashwood, P.; Amaral, D.G. Developmental–behavioral profiles in children with autism spectrum disorder and co-occurring gastrointestinal symptoms. Autism Res. 2020, 13, 1778–1789. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Carpenter, K.L.H.; Major, S.; Deaver, M.; Vermeer, S.; Herold, B.; Franz, L.; Howard, J.; Dawson, G. Gastrointestinal problems are associated with increased repetitive behaviors but not social communication difficulties in young children with autism spectrum disorders. Autism 2021, 25, 405–415. [Google Scholar] [CrossRef]
- Aitbali, Y.; Ba-M’hamed, S.; Elhidar, N.; Nafis, A.; Soraa, N.; Bennis, M. Glyphosate based- herbicide exposure affects gut microbiota, anxiety and depression-like behaviors in mice. Neurotoxicol. Teratol. 2018, 67, 44–49. [Google Scholar] [CrossRef]
- Lozano, V.L.; Defarge, N.; Rocque, L.M.; Mesnage, R.; Hennequin, D.; Cassier, R.; de Vendômois, J.S.; Panoff, J.M.; Séralini, G.E.; Amiel, C. Sex-dependent impact of Roundup on the rat gut microbiome. Toxicol. Rep. 2018, 5, 96–107. [Google Scholar] [CrossRef]
- Schonbrunn, E.; Eschenburg, S.; Shuttleworth, W.A.; Schloss, J.; Amrhein, N.; Evans, J.N.; Kabsch, W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA 2001, 98, 1376–1380. [Google Scholar] [CrossRef]
- Leino, L.; Tall, T.; Helander, M.; Saloniemi, I.; Saikkonen, K.; Ruuskanen, S.; Puigbo, P. Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide. J. Hazard. Mater. 2021, 408, 124556. [Google Scholar] [CrossRef]
- Tall, T.; Puigbò, P. Rethinking the intrinsic sensitivity of fungi to glyphosate. BioTech 2022, 11, 28. [Google Scholar] [CrossRef]
- Cao, S.; Wu, H.; Wang, C.; Zhang, Q.; Jiao, L.; Lin, F.; Hu, C.H. Diquat-induced oxidative stress increases intestinal permeability, impairs mitochondrial function, and triggers mitophagy in piglets. J. Anim. Sci. 2018, 96, 1795–1805. [Google Scholar] [CrossRef]
- Liang, Y.; Zhan, J.; Liu, D.; Luo, M.; Han, J.; Liu, X.; Liu, C.; Cheng, Z.; Zhou, Z.; Wang, P. Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome 2019, 7, 19. [Google Scholar] [CrossRef]
- Zhao, G.P.; Wang, X.Y.; Li, J.W.; Wang, R.; Ren, F.Z.; Pang, G.F.; Li, Y.X. Imidacloprid increases intestinal permeability by disrupting tight junctions. Ecotoxicol. Environ. Saf. 2021, 222, 112476. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Otero, P.; Echave, J.; Chamorro, F.; Soria-Lopez, A.; Cassani, L.; Simal-Gandara, J.; Prieto, M.A.; Fraga-Corral, M. Challenges in the application of circular economy models to agricultural by-products: Pesticides in Spain as a case study. Foods 2023, 12, 3054. [Google Scholar] [CrossRef]
- Subdirección General de Análisis Coordinación y Estadística Encuesta de Utilización de Productos Fitosanitarios Campaña 2019; Ministry of Agriculture, Fisheries and Food: Madrid, Spain. 2021. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/maquetacioninformededatosdelaeupf19_tcm30-577679.pdf (accessed on 13 February 2024).
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef]
- Requena, M.; Parrón, T.; Navarro, A.; García, J.; Ventura, M.I.; Hernández, A.F.; Alarcón, R. Association between environmental exposure to pesticides and epilepsy. Neurotoxicology 2018, 68, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Consejería de Agricultura Pesca y Desarrollo Rural Cartografía de Invernaderos en Almería, Granada y Málaga; Junta de Andalucía: Sevilla, Spain, 2017. Available online: https://www.juntadeandalucia.es/export/drupaljda/Cartografia%20_inv_AL_GR_MA_SEE.pdf (accessed on 13 February 2024).
- García-García, C.R.; Parrón, T.; Requena, M.; Alarcón, R.; Tsatsakis, A.M.; Hernández, A.F. Occupational pesticide exposure and adverse health effects at the clinical, hematological and biochemical level. Life Sci. 2016, 145, 274–283. [Google Scholar] [CrossRef] [PubMed]
- International Labour Organization Encuesta de Población Activa 2019; National Statistics Institute (INE): Madrid, Spain, 2019.
- Linhart, C.; Niedrist, G.H.; Nagler, M.; Nagrani, R.; Temml, V.; Bardelli, T.; Wilhalm, T.; Riedl, A.; Zaller, J.G.; Clausing, P.; et al. Pesticide contamination and associated risk factors at public playgrounds near intensively managed apple and wine orchards. Environ. Sci. Eur. 2019, 31, 28. [Google Scholar] [CrossRef]
- Mesnage, R.; Bowyer, R.C.E.; El Balkhi, S.; Saint-Marcoux, F.; Gardere, A.; Ducarmon, Q.R.; Geelen, A.R.; Zwittink, R.D.; Tsoukalas, D.; Sarandi, E.; et al. Impacts of dietary exposure to pesticides on faecal microbiome metabolism in adult twins. Environ. Health 2022, 21, 46. [Google Scholar] [CrossRef] [PubMed]
- Rubio, F.; Guo, E.; Kamp, L. Survey of glyphosate residues in honey, corn and soy products. J. Environ. Anal. Toxicol. 2014, 5, 2161-0525. [Google Scholar] [CrossRef]
- Morris-Rosendahl, D.J.; Crocq, M.A. Neurodevelopmental disorders—The history and future of a diagnostic concept. Dialogues Clin. Neurosci. 2020, 22, 65. [Google Scholar] [CrossRef]
- Quirós-Alcalá, L.; Mehta, S.; Eskenazi, B. Pyrethroid pesticide exposure and parental report of learning disability and attention deficit/hyperactivity disorder in U.S. children: NHANES 1999–2002. Environ. Health Perspect. 2014, 122, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Rauh, V.; Arunajadai, S.; Horton, M.; Perera, F.; Hoepner, L.; Barr, D.B.; Whyatt, R. Seven-Year Neurodevelopmental Scores and Prenatal Exposure to Chlorpyrifos, a Common Agricultural Pesticide. Environ. Health Perspect. 2011, 119, 1196. [Google Scholar] [CrossRef] [PubMed]
- Loomes, R.; Hull, L.; Mandy, W.P.L. What Is the Male-to-Female Ratio in Autism Spectrum Disorder? A Systematic Review and Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 466–474. [Google Scholar] [CrossRef]
- Horton, M.K.; Kahn, L.G.; Perera, F.; Boyd Barr, D.; Rauh, V. Does the home environment and the sex of the child modify the adverse effects of prenatal exposure to chlorpyrifos on child working memory? Neurotoxicol. Teratol. 2012, 34, 534–541. [Google Scholar] [CrossRef]
- Lan, A.; Stein, D.; Portillo, M.; Toiber, D.; Kofman, O. Impaired innate and conditioned social behavior in adult C57Bl6/J mice prenatally exposed to chlorpyrifos. Behav. Brain Funct. 2019, 15, 2. [Google Scholar] [CrossRef]
- Venerosi, A.; Ricceri, L.; Rungi, A.; Sanghez, V.; Calamandrei, G. Gestational exposure to the organophosphate chlorpyrifos alters social-emotional behaviour and impairs responsiveness to the serotonin transporter inhibitor fluvoxamine in mice. Psychopharmacology 2010, 208, 99–107. [Google Scholar] [CrossRef]
- Venerosi, A.; Tait, S.; Stecca, L.; Chiarotti, F.; De Felice, A.; Cometa, M.F.; Volpe, M.T.; Calamandrei, G.; Ricceri, L. Effects of maternal chlorpyrifos diet on social investigation and brain neuroendocrine markers in the offspring—A mouse study. Environ. Health 2015, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Cowell, W.J.; Wright, R.J. Sex-specific Effects of Combined Exposure to Chemical and Non-Chemical Stressors on Neuroendocrine Development: A Review of Recent Findings and Putative Mechanisms. Curr. Environ. Health Rep. 2017, 4, 415. [Google Scholar] [CrossRef]
- Cassault-Meyer, E.; Gress, S.; Séralini, G.É.; Galeraud-Denis, I. An acute exposure to glyphosate-based herbicide alters aromatase levels in testis and sperm nuclear quality. Environ. Toxicol. Pharmacol. 2014, 38, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Defarge, N.; Takács, E.; Lozano, V.L.; Mesnage, R.; de Vendômois, J.S.; Séralini, G.E.; Székács, A. Co-formulants in glyphosate-based herbicides disrupt aromatase activity in human cells below toxic levels. Int. J. Environ. Res. Public Health 2019, 13, 264. [Google Scholar] [CrossRef] [PubMed]
- Bretveld, R.W.; Thomas, C.M.; Scheepers, P.T.; Zielhuis, G.A.; Roeleveld, N. Pesticide exposure: The hormonal function of the female reproductive system disrupted? Reprod. Biol. Endocrinol. 2006, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Schilirò, T.; Gea, M.; Bianchi, S.; Spinello, A.; Magistrato, A.; Gilardi, G.; Di Nardo, G. Molecular basis for endocrine disruption by pesticides targeting aromatase and estrogen receptor. Int. J. Environ. Res. Public Health 2020, 17, 5664. [Google Scholar] [CrossRef]
- Mesnage, R.; Phedonos, A.; Biserni, M.; Arno, M.; Balu, S.; Corton, J.C.; Ugarte, R.; Antoniou, M.N. Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents. Food Chem. Toxicol. 2017, 108, 30–42. [Google Scholar] [CrossRef]
- Addissie, Y.A.; Kruszka, P.; Troia, A.; Wong, Z.C.; Everson, J.L.; Kozel, B.A.; Lipinski, R.J.; Malecki, K.; Muenke, M. Prenatal exposure to pesticides and risk for holoprosencephaly: A case-control study. Environ. Health 2020, 19, 65. [Google Scholar] [CrossRef]
- Anand, M.; Singh, L.; Agarwal, P.; Saroj, R.; Taneja, A. Pesticides exposure through environment and risk of pre-term birth: A study from Agra city. Drug Chem. Toxicol. 2019, 42, 471–477. [Google Scholar] [CrossRef]
- Lacasaña, M.; Vazquez-Grameix, H.; Borja-Aburto, V.H.; Blanco-Muñoz, J.; Romieu, I.; Aguilar-Garduño, C.; García, A.M. Maternal and paternal occupational exposure to agricultural work and the risk of anencephaly. Occup. Environ. Med. 2006, 63, 649–656. [Google Scholar] [CrossRef]
- Widyawati, S.A.; Suhartono, S.; Mexitalia, M.; Soejoenoes, A. The relationship between pesticide exposure and umbilical serum igf-1 levels and low-birth weight: A case-control study in Brebes, Indonesia. Int. J. Occup. Environ. Med. 2020, 11, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Ait-Bali, Y.; Ba-M’hamed, S.; Gambarotta, G.; Sassoè-Pognetto, M.; Giustetto, M.; Bennis, M. Pre-and postnatal exposure to glyphosate-based herbicide causes behavioral and cognitive impairments in adult mice: Evidence of cortical ad hippocampal dysfunction. Arch. Toxicol. 2020, 94, 1703–1723. [Google Scholar] [CrossRef] [PubMed]
- Cattani, D.; Cesconetto, P.A.; Tavares, M.K.; Parisotto, E.B.; De Oliveira, P.A.; Rieg, C.E.H.; Leite, M.C.; Prediger, R.D.S.; Wendt, N.C.; Razzera, G.; et al. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress. Toxicology 2017, 387, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Curtis, M.A.; Dhamsania, R.K.; Branco, R.C.; Guo, J.-D.; Creeden, J.; Neifer, K.L.; Black, C.A.; Winokur, E.J.; Andari, E.; Dias, B.G. Developmental pyrethroid exposure causes a neurodevelopmental disorder phenotype in mice. PNAS Nexus 2023, 2, pgad085. [Google Scholar] [CrossRef]
- Gasmi, S. Neurotransmission dysfunction by mixture of pesticides and preventive effects of quercetin on brain, hippocampus and striatum in rats. Toxicol. Environ. Health Sci. 2020, 12, 203–212. [Google Scholar] [CrossRef]
- Cattani, D.; de Liz Oliveira Cavalli, V.L.; Heinz Rieg, C.E.; Domingues, J.T.; Dal-Cim, T.; Tasca, C.I.; Mena Barreto Silva, F.R.; Zamoner, A. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity. Toxicology 2014, 320, 34–45. [Google Scholar] [CrossRef]
- Hossain, M.M.; Liu, J.; Richardson, J.R. Pyrethroid insecticides directly activate microglia through interaction with voltage-gated sodium channels. Toxicol. Sci. 2017, 155, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Ait-Belgnaoui, A.; Colom, A.; Braniste, V.; Ramalho, L.; Marrot, A.; Cartier, C.; Houdeau, E.; Theodorou, V.; Tompkins, T. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol. Motil. 2014, 26, 510–520. [Google Scholar] [CrossRef]
- Cornell, J.; Salinas, S.; Huang, H.-Y.; Zhou, M. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen. Res. 2022, 17, 705. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
ASD | Exposure | Age (Mean (SD)) | p Value * |
---|---|---|---|
Males | High pesticide use | 5.08 (3.33) | 0.06 * |
Low pesticide use | 5.25 (3.04) | ||
Females | High pesticide use | 4.89 (3.38) | 0.43 * |
Low pesticide use | 4.93 (3.08) | ||
Total | High pesticide use | 4.96 (3.34) | 0.06 * |
Low pesticide use | 5.15 (3.05) |
ASD | High Pesticide Use | Low Pesticide Use | OR (95% CI) | p Value * |
---|---|---|---|---|
Total | 1.03 | 0.76 | 1.34 (1.24–1.44) | <0.001 |
Males | 1.47 | 1.03 | 1.42 (1.30–1.55) | <0.001 |
Females | 0.56 | 0.48 | 1.17 (1.10–1.34) | 0.02 |
Risk Factor | OR * | OR (95% CI) | p Value * | |
---|---|---|---|---|
ASD | Areas of high pesticide use | 1.52 | 1.41–1.64 | <0.001 |
Male | 2.41 | 2.21–2.62 | <0.001 |
High Pesticide Use | Low Pesticide Use | p Value | |
---|---|---|---|
Economic sectors * | |||
Primary sector (agriculture and livestock, forestry and fishing) | 56,658 (30.53%) | 9845 (21.79%) | <0.001 |
Secondary sector (manufacturing industry and construction) | 32,678 (17.60%) | 13,462 (29.79%) | |
Tertiary sector (service industries, private and public activities) | 96,231 (51.85%) | 21,870 (48.40%) | |
Disposable personal income ** (Euros/person) | 13,567 ± 1.77 | 14,120 ± 1.20 | 0.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Román, P.; Ruiz-González, C.; Rueda-Ruzafa, L.; Cardona, D.; Requena, M.; Alarcón, R. Exposure to Environmental Pesticides and the Risk of Autism Spectrum Disorders: A Population-Based Case-Control Study. Medicina 2024, 60, 479. https://doi.org/10.3390/medicina60030479
Román P, Ruiz-González C, Rueda-Ruzafa L, Cardona D, Requena M, Alarcón R. Exposure to Environmental Pesticides and the Risk of Autism Spectrum Disorders: A Population-Based Case-Control Study. Medicina. 2024; 60(3):479. https://doi.org/10.3390/medicina60030479
Chicago/Turabian StyleRomán, Pablo, Cristofer Ruiz-González, Lola Rueda-Ruzafa, Diana Cardona, Mar Requena, and Raquel Alarcón. 2024. "Exposure to Environmental Pesticides and the Risk of Autism Spectrum Disorders: A Population-Based Case-Control Study" Medicina 60, no. 3: 479. https://doi.org/10.3390/medicina60030479
APA StyleRomán, P., Ruiz-González, C., Rueda-Ruzafa, L., Cardona, D., Requena, M., & Alarcón, R. (2024). Exposure to Environmental Pesticides and the Risk of Autism Spectrum Disorders: A Population-Based Case-Control Study. Medicina, 60(3), 479. https://doi.org/10.3390/medicina60030479