Application of the European Kidney Function Consortium Equation to Estimate Glomerular Filtration Rate: A Comparison Study of the CKiD and CKD-EPI Equations Using the Korea National Health and Nutrition Examination Survey (KNHANES 2008–2021)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Estimation of GFR and Categories
- (a)
- CKiD:
- (b)
- CKD-EPI 2009 equation:
- (c)
- CKD-EPI 2021 equation:
- (d)
- EKFC equation:
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delanaye, P.; Pottel, H.; Cavalier, E.; Flamant, M.; Stehlé, T.; Mariat, C. Diagnostic Standard: Assessing Glomerular Filtration Rate. Nephrol. Dial. Transplant. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Tighiouart, H.; Greene, T.; Inker, L.A. Measured and Estimated Glomerular Filtration Rate: Current Status and Future Directions. Nat. Rev. Nephrol. 2020, 16, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Guideline Updates Team (UK); National Institute for Health and Care Excellence. Evidence Reviews for the Diagnostic Accuracy of eGFR Calculations in Adults, Children, and Young People from Black, Asian and Other Minority Ethnic Groups with Chronic Kidney Disease. In NICE Guideline NG203; NICE Evidence Reviews Collection: London, UK, 2021; ISBN 978-1-4731-4233-6. [Google Scholar]
- Schwaderer, A.L.; Maier, P.; Greenbaum, L.A.; Furth, S.L.; Schwartz, G.J. Application of GFR Estimating Equations to Children with Normal, Near-normal, or Discordant GFR. Pediatr. Nephrol. 2023, 38, 4051–4059. [Google Scholar] [CrossRef] [PubMed]
- Pottel, H.; Björk, J.; Bökenkamp, A.; Berg, U.; Åsling-Monemi, K.; Selistre, L.; Dubourg, L.; Hansson, M.; Littmann, K.; Jones, I.; et al. Estimating Glomerular Filtration Rate at the Transition from Pediatric to Adult Care. Kidney Int. 2019, 95, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Björk, J.; Nyman, U.; Larsson, A.; Delanaye, P.; Pottel, H. Estimation of the Glomerular Filtration Rate in Children and Young Adults by Means of the CKD-EPI Equation with Age-Adjusted Creatinine Values. Kidney Int. 2021, 99, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.G.; Kaufman, H.W.; Levey, A.S.; Straseski, J.A.; Wilhelms, K.W.; Yu, H.E.; Klutts, J.S.; Hilborne, L.H.; Horowitz, G.L.; Lieske, J.; et al. National Kidney Foundation Laboratory Engagement Working Group Recommendations for Implementing the CKD-EPI 2021 Race-Free Equations for Estimated Glomerular Filtration Rate: Practical Guidance for Clinical Laboratories. Clin. Chem. 2022, 68, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, J.W.; Kasozi, R.N.; Larson, T.S.; Lieske, J.C. Clinical Impact of the Refit CKD-EPI 2021 Creatinine-Based eGFR Equation. Clin. Chem. 2022, 68, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-based Equations to Estimate GFR Without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Delgado, C.; Baweja, M.; Crews, D.C.; Eneanya, N.D.; Gadegbeku, C.A.; Inker, L.A.; Mendu, M.L.; Miller, W.G.; Moxey-Mims, M.M.; Roberts, G.V.; et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am. J. Kidney Dis. 2022, 79, 268–288. [Google Scholar] [CrossRef] [PubMed]
- Duggal, V.; Thomas, I.C.; Montez-Rath, M.E.; Chertow, G.M.; Tamura, M.K. National Estimates of CKD Prevalence and Potential Impact of Estimating Glomerular Filtration Rate without Race. J. Am. Soc. Nephrol. 2021, 32, 1454–1463. [Google Scholar] [CrossRef] [PubMed]
- Pottel, H.; Björk, J.; Courbebaisse, M.; Couzi, L.; Ebert, N.; Eriksen, B.O.; Dalton, R.N.; Dubourg, L.; Gaillard, F.; Garrouste, C.; et al. Development and Validation of a Modified Full Age Spectrum Creatinine-Based Equation to Estimate Glomerular Filtration Rate: A Cross-Sectional Analysis of Pooled Data. Ann. Intern. Med. 2021, 174, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Schaeffner, E.; Cozzolino, M.; Langlois, M.; Plebani, M.; Ozben, T.; Cavalier, E. The New, Race-Free, Chronic Kidney Disease Epidemiology Consortium (CKD-EPI) Equation to Estimate Glomerular Filtration Rate: Is It Applicable in Europe? A position Statement by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM). Clin. Chem. Lab. Med. 2023, 61, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Houlind, M.B.; Iversen, E.; Curovic, V.R.; Jørgensen, M.B.; Andersen, A.; Gustafsson, F.; Nelson, L.M.S.; Perch, M.; Damgaard, M.; Persson, F.; et al. Performance of the 2009 CKDEPI, 2021 CKDEPI, and EKFC Equations Among High-Risk Patients in Denmark. Clin. Chem. Lab. Med. 2023, 61, e192–e195. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Vidal-Petiot, E.; Björk, J.; Ebert, N.; Eriksen, B.O.; Dubourg, L.; Grubb, A.; Hansson, M.; Littmann, K.; Mariat, C.; et al. Performance of Creatinine-Based Equations to Estimate Glomerular Filtration Rate in White and Black Populations in Europe, Brazil and Africa. Nephrol. Dial. Transpl. 2023, 38, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Pottel, H.; Delanaye, P.; Cavalier, E. Exploring Renal Function Assessment: Creatinine, Cystatin C, and Estimated Glomerular Filtration Rate Focused on the European Kidney Function Consortium Equation. Ann. Lab. Med. 2024, 44, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hur, M.; Lee, S.; Lee, G.H.; Moon, H.W.; Yun, Y.M. European Kidney Function Consortium Equation vs. Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) refit equations for estimating glomerular filtration rate: Comparison with CKD-EPI equations in the Korean population. J. Clin. Med. 2022, 11, 4323. [Google Scholar] [CrossRef] [PubMed]
- Jeong, T.D.; Hong, J.; Lee, W.; Chun, S.; Min, W.K. Accuracy of the New Creatinine-Based Equations for Estimating Glomerular Filtration Rate in Koreans. Ann. Lab. Med. 2023, 43, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, H.L.; Liu, H.J.; Ma, J.; Liu, W.; Huang, J.M.; Wei, L.G.; Xie, P. Validation of the EKFC Equation for Glomerular Filtration Rate Estimation and Comparison with the Asian-Modified CKD-EPI equation in Chinese Chronic Kidney Disease Patients in an External Study. Ren. Fail. 2023, 45, 2150217. [Google Scholar] [CrossRef] [PubMed]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data Resource Profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Jeong, T.D.; Lee, W.; Chun, S.; Lee, S.K.; Ryu, J.S.; Min, W.K.; Park, J.S. Comparison of the MDRD Study and CKD-EPI Equations for the Estimation of the Glomerular Filtration Rate in the Korean General Population: The Fifth Korea National Health and Nutrition Examination Survey (KNHANES V-1), 2010. Kidney Blood Press. Res. 2013, 37, 443–450. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.L. Interrater Reliability: The Kappa Statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Measurement Procedure Comparison and Bias Estimation Using Patient Samples, 3rd ed.; CLSI Guideline EP09c; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; ISBN 978-1-68440-006-5. [Google Scholar]
- Mukaka, M.M. A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi. Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Nyman, U.; Björk, J.; Delanaye, P.; Lahens, A.; Pottel, H.; Vidal-Petiot, E.; Flamant, M. Rescaling Creatinine Makes GFR Estimation Equations Generally Applicable Across Populations—Validation Results for the Lund-Malmö Equation in a French Cohort of Sub-Saharan Ancestry. Clin. Chem. Lab. Med. 2024, 62, 421–427. [Google Scholar] [CrossRef]
- Ji, M.; Lee, Y.H.; Hur, M.; Kim, H.; Cho, H.I.; Yang, H.S.; Navarin, S.; Di Somma, S.; GREAT Network. Comparing Results of Five Glomerular Filtration Rate-Estimating Equations in the Korean General Population: MDRD Study, Revised Lund-Malmö, and Three CKD-EPI Equations. Ann. Lab. Med. 2016, 36, 521–528. [Google Scholar] [CrossRef]
- Levey, A.S.; Inker, L.A.; Coresh, J. GFR Estimation: From Physiology to Public Health. Am. J. Kidney Dis. 2014, 63, 820–834. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.; Lee, M.H.; Lee, S.K.; Jeong, S.; Han, H.W. Increased Estimated GFR Is Negatively Associated with the Risk of SARS-CoV-2 Infection and Severe COVID-19 Within Normal to Mildly Decreased Levels: Nested Case-Control Study. J. Korean Med. Sci. 2023, 38, e415. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.S.; Chang, A.R.; Shin, J.I.; Reider, J.; Echouffo-Tcheugui, J.B.; Grams, M.E.; Selvin, E. Obesity and Chronic Kidney Disease in US Adults with Type 1 and Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2022, 107, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Kuppachi, S.; Norman, S.P.; Lentine, K.L.; Axelrod, D.A. Using Race to Estimate Glomerular Filtration and Its Impact in Kidney Transplantation. Clin. Transpl. 2021, 35, e14136. [Google Scholar] [CrossRef] [PubMed]
- Mc Causland, F.R.; Claggett, B.L.; Vaduganathan, M.; Desai, A.; Jhund, P.; Vardeny, O.; Fang, J.C.; de Boer, R.A.; Docherty, K.F.; Hernandez, A.F.; et al. Decline in Estimated Glomerular Filtration Rate After Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction A Prespecified Secondary Analysis of the DELIVER Randomized Clinical Trial. JAMA Cardiol. 2024, 9, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhu, M.; Wang, Z.; Zhang, H. Associations Between Different eGFR Estimating Equations and Mortality for CVD Patients: A Retrospective Cohort Study Based on the NHANES Database. Medicine 2022, 101, e30726. [Google Scholar] [CrossRef]
Age Group | |||||
---|---|---|---|---|---|
≤18 Years | 19–25 Years | 26–40 Years | 41–60 Years | >60 Years | |
Total | |||||
N | 9917 | 6225 | 19,309 | 30,674 | 25,803 |
BMI (kg/m2) | 20.2 (18.0–22.9) | 21.7 (19.7–24.4) | 23.0 (20.7–25.7) | 23.9 (21.9–26.0) | 24.0 (22.0–26.0) |
SBP (mm Hg) | 106 (100–113) | 108 (101–116) | 109 (102–118) | 117 (107–128) | 127 (116–139) |
DBP (mm Hg) | 66 (60–72) | 71 (65–76) | 73 (68–80) | 78 (71–85) | 74 (68–81) |
sCr (mg/dL) | 0.68 (0.59–0.80) | 0.80 (0.69–0.93) | 0.80 (0.68–0.93) | 0.79 (0.68–0.92) | 0.81 (0.70–0.96) |
Glucose (mg/dL) | 90 (86–95) | 88 (84–92) | 91 (86–97) | 96 (89–104) | 99 (92–112) |
Hb A1c (%) | 5.4 (5.2–5.6) | 5.3 (5.1–5.5) | 5.4 (5.2–5.6) | 5.6 (5.4–5.9) | 5.9 (5.6–6.4) |
TC (mg/dL) | 159 (142–177) | 170 (151–190) | 184 (163–207) | 195 (172–220) | 186 (160–212) |
TG (mg/dL) | 74 (53–104) | 75 (56–108) | 94 (64–147) | 114 (77–173) | 117 (83–165) |
Male | |||||
N | 5298 | 2841 | 8448 | 13,247 | 11,279 |
BMI (kg/m2) | 20.5 (18.2–23.5) | 23.0 (20.8–25.6) | 24.5 (22.4–26.9) | 24.5 (22.6–26.4) | 23.7 (21.7–25.6) |
SBP (mm Hg) | 109 (102–116) | 114 (107–121) | 115 (108–123) | 120 (111–130) | 126 (115–137) |
DBP (mm Hg) | 67 (60–73) | 73 (68–80) | 78 (72–85) | 81 (74–88) | 74 (68–81) |
sCr (mg/dL) | 0.74 (0.60–0.88) | 0.94 (0.88–1.02) | 0.95 (0.88–1.03) | 0.94 (0.86–1.02) | 0.95 (0.85–1.08) |
Glucose (mg/dL) | 91 (87–96) | 89 (84–93) | 93 (88–99) | 99 (92–109) | 101 (93–114) |
Hb A1c (%) | 5.4 (5.3–5.6) | 5.3 (5.1–5.5) | 5.5 (5.3–5.7) | 5.7 (5.4–6.0) | 5.9 (5.5–6.4) |
TC (mg/dL) | 155 (138–173) | 169 (150–190) | 191 (168–214) | 194 (171–218) | 178 (154–203) |
TG (mg/dL) | 72 (51–102) | 89 (63–129) | 125 (85–190) | 141 (96–213) | 115 (81–167) |
Female | |||||
N | 4619 | 3384 | 10,861 | 17,427 | 14,524 |
BMI (kg/m2) | 19.8 (17.9–22.1) | 20.8 (19.1–23.0) | 21.8 (19.9–24.2) | 23.3 (21.4–25.7) | 24.2 (22.2–26.4) |
SBP (mm Hg) | 104 (98–110) | 104 (98–110) | 105 (99–111) | 114 (105–126) | 128 (117–140) |
DBP (mm Hg) | 66 (60–71) | 69 (63–74) | 70 (65–76) | 75 (69–82) | 74 (68–81) |
sCr (mg/dL) | 0.62 (0.55–0.70) | 0.70 (0.63–0.76) | 0.70 (0.62–0.76) | 0.70 (0.63–0.77) | 0.71 (0.64–0.81) |
Glucose (mg/dL) | 90 (85–94) | 87 (83–91) | 89 (85–95) | 94 (88–101) | 98 (91–110) |
Hb A1c (%) | 5.4 (5.2–5.6) | 5.3 (5.1–5.5) | 5.40 (5.2–5.6) | 5.6 (5.4–5.9) | 5.9 (5.6–6.3) |
TC (mg/dL) | 162 (147–180) | 171 (153–190) | 179 (159–201) | 196 (174–221) | 192 (166–219) |
TG (mg/dL) | 77 (56–105) | 68 (51–92) | 75 (55–111) | 97 (69–143) | 118 (85–164) |
CKD-EPI 2009 | CKD-EPI 2021 | EKFC | ||||
---|---|---|---|---|---|---|
Category | N | Median (IQR) | N | Median (IQR) | N | Median (IQR) |
Total | 82,011 | 94.68 (83.55–106.13) | 82,011 | 99.29 (88.56–109.94) | 91,928 | 91.84 (79.90–103.95) |
Sex | ||||||
Male | 35,815 | 92.03 (81.24–102.87) | 35,815 | 96.91 (86.26–107.05) | 41,113 | 89.86 (78.99–100.95) |
Female | 46,196 | 97.02 (85.61–108.71) | 46,196 | 101.30 (90.53–112.05) | 50,815 | 93.17 (80.91–105.82) |
Age (years) | ||||||
≤18 | 9917 * | 98.00 (86.21–110.74) | - | 9917 | 100.09 (89.61–108.64) | |
19–25 | 6225 | 119.38 (106.36–125.36) | 6225 | 122.31 (109.13–127.45) | 6225 | 104.92 (94.31–109.67) |
26–40 | 19,309 | 109.40 (97.57–115.83) | 19,309 | 113.27 (101.23–118.75) | 19,309 | 107.37 (95.83–110.33) |
41–60 | 30,674 | 96.82 (86.64–103.19) | 30,674 | 101.70 (91.12–107.34) | 30,674 | 93.38 (85.17–100.46) |
>60 | 25,803 | 82.47 (70.91–89.96) | 25,803 | 88.30 (76.04–95.32) | 25,803 | 75.53 (65.69–82.77) |
BMI (kg/m2) | ||||||
<18.5 | 3792 | 103.23 (88.82–115.62) | 3792 | 106.79 (93.47–118.51) | 6804 | 100.28 (88.24–108.71) |
18.5 to <23.0 | 31,672 | 97.40 (86.02–108.98) | 31,672 | 101.63 (91.02–112.51) | 36,211 | 93.78 (81.95–105.82) |
23.0 to <25.0 | 19,097 | 92.61 (82.10–102.94) | 19,097 | 97.33 (87.16–107.03) | 20,212 | 88.91 (77.96–100.07) |
25.0 to <30.0 | 23,560 | 91.95 (80.65–102.46) | 23,560 | 96.85 (85.55–106.62) | 24,581 | 88.31 (77.06–99.84) |
≥30.0 | 3890 | 97.45 (84.73–109.17) | 3890 | 101.81 (89.65–112.72) | 4120 | 94.16 (81.27–106.29) |
G1: ≥90 | G2: 60 to <90 | G3a: 45 to <60 | G3b: 30 to <45 | G4: 15 to <30 | G5: <15 | Kappa * (95% CI) | |
---|---|---|---|---|---|---|---|
N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | ||
Children (N = 9917) | |||||||
CKiD | 6692 (67.5) | 3206 (32.3) | 19 (0.2) | - | 0.64 (0.62–0.65) | ||
EKFC | 7323 (73.8) | 2579 (26.0) | 15 (0.2) | - | |||
Adults (N = 82,011) | |||||||
CKD-EPI 2009 | 50,255 (61.3) | 28,590 (34.9) | 2371 (2.9) | 577 (0.7) | 158 (0.2) | 60 (0.1) | 0.77 (0.77–0.77) |
CKD-EPI 2021 | 59,195 (72.2) | 20,637 (25.2) | 1600 (2.0) | 400 (0.5) | 126 (0.2) | 53 (0.1) | 0.54 (0.53–0.54) |
EKFC | 42,219 (51.5) | 35,427 (43.2) | 3343 (4.1) | 794 (1.0) | 172 (0.2) | 56 (0.1) | |
Total (N = 91,928) | |||||||
EKFC | 49,542 (53.9) | 38,006 (41.3) | 3358 (3.7) | 794 (0.9) | 172 (0.2) | 56 (0.1) |
High EKFC (N = 1465) | Low EKFC (N = 8452) | p Value | |
---|---|---|---|
Female, N | 859 (58.6%) | 3760 (44.5%) | <0.001 |
Age, years | 13.0 (11.0–15.0) | 14.0 (12.0–16.0) | <0.001 |
CKiD (mL/min/1.73 m2) | 125.3 (116.8–134.1) | 94.8 (84.2–105.2) | <0.001 |
EKFC (mL/min/1.73 m2) | 112.8 (111.5–114.7) | 96.6 (88.2–106.0) | <0.001 |
CKiD–EKFC (mL/min/1.73 m2) | 12.1 (4.6–20.1) | −0.9 (−6.6–4.6) | <0.001 |
Difference between CKiD and EKFC > 95%, N | 336 (22.9%) | 128 (1.5%) | <0.001 |
BMI (kg/m2) | 19.6 (17.3–22.4) | 20.3 (18.1–22.9) | <0.001 |
Systolic BP (mm Hg) | 106.0 (99.0–112.0) | 107.0 (100.0–114.0) | <0.001 |
Diastolic BP (mm Hg) | 65.0 (59.0–71.0) | 67.0 (61.0–72.0) | <0.001 |
Serum creatinine (mg/dL) | 0.50 (0.47–0.56) | 0.70 (0.60–0.81) | <0.001 |
Fasting glucose (mg/dL) | 91.0 (87.0–96.0) | 90.0 (86.0–950.) | <0.001 |
HbA1c (%) | 5.40 (5.20–5.60) | 5.40 (5.20–5.60) | 0.883 |
Total cholesterol (mg/dL) | 162.0 (146.0–179.0) | 158.0 (142.0–176.0) | <0.001 |
Triglyceride (mg/dL) | 77.0 (55.0–110.0) | 74.0 (53.0–103.0) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Lee, G.-H.; Kim, H.; Yang, H.S.; Hur, M. Application of the European Kidney Function Consortium Equation to Estimate Glomerular Filtration Rate: A Comparison Study of the CKiD and CKD-EPI Equations Using the Korea National Health and Nutrition Examination Survey (KNHANES 2008–2021). Medicina 2024, 60, 612. https://doi.org/10.3390/medicina60040612
Lee S, Lee G-H, Kim H, Yang HS, Hur M. Application of the European Kidney Function Consortium Equation to Estimate Glomerular Filtration Rate: A Comparison Study of the CKiD and CKD-EPI Equations Using the Korea National Health and Nutrition Examination Survey (KNHANES 2008–2021). Medicina. 2024; 60(4):612. https://doi.org/10.3390/medicina60040612
Chicago/Turabian StyleLee, Seungho, Gun-Hyuk Lee, Hanah Kim, Hyun Suk Yang, and Mina Hur. 2024. "Application of the European Kidney Function Consortium Equation to Estimate Glomerular Filtration Rate: A Comparison Study of the CKiD and CKD-EPI Equations Using the Korea National Health and Nutrition Examination Survey (KNHANES 2008–2021)" Medicina 60, no. 4: 612. https://doi.org/10.3390/medicina60040612
APA StyleLee, S., Lee, G.-H., Kim, H., Yang, H. S., & Hur, M. (2024). Application of the European Kidney Function Consortium Equation to Estimate Glomerular Filtration Rate: A Comparison Study of the CKiD and CKD-EPI Equations Using the Korea National Health and Nutrition Examination Survey (KNHANES 2008–2021). Medicina, 60(4), 612. https://doi.org/10.3390/medicina60040612